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ABSTRACT 
Workflows are taking an Workflows are taking an increasingly 
important role in orchestrating complex scientific processes in 
extreme scale and highly heterogeneous environments. However, 
to date we cannot reliably predict, understand, and optimize 
workflow performance.  Sources of performance variability and in 
particular the interdependencies  of  workflow  design,  execution  
environment and system architecture are not well understood. 
While there is a rich portfolio of tools for performance analysis,  
modeling and prediction for single applications in homogenous 
computing environments, these are not applicable to workflows, 
due to the number and heterogeneity of the involved workflow 
and system components and their strong interdependencies. In this 
paper, we investigate workflow performance goals and identify 
factors that could have a relevant impact. Based on our analysis, 
we propose a new workflow performance provenance ontology, 
the Open Provenance Model-based WorkFlow Performance 
Provenance, or OPM-WFPP, that will enable the empirical study 
of workflow performance characteristics and variability including 
complex source attribution. 

General Terms 
Algorithms, Measurement, Documentation, Performance, 
Standardization, Theory. 
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Workflow, Performance, Provenance, Extreme-Scale  

 
INTRODUCTION 
High-performance computing (HPC), Grid and Cloud users are 
looking increasingly toward workflow solutions to orchestrate 
their complex application coupling, pre- and post-processing 
needs. Their growing popularity is particularly visible at 
workflow sharing sites such as MyExperiment [1] or Galaxy [2-
4]. Workflows can be implemented through simple scripts, work 
schedulers [27] or sophisticated workflow management systems 
such as Kepler[22], Pegasus [40], Swift[23], Galaxy[19-21], 
VisTrails[24],  Taverna[25] or Medici[26]. Many workflow 
systems have the ability to coordinate tasks spread across many 
different systems, indeed some offer the ability to adapt and 
optimize task placement at runtime [22, 40]. Higher level 
workflow systems hereby separate the composition of the 
interrelated tasks into scientific workflows, from the actual 
execution of specific workflow instances in a particular execution 
environment, and as such can help to lower the barriers to using 
complex infrastructures. For exascale systems with their complex 
memory, I/O and processor architectures, the ability to easily 
coordinate simulations, in-situ analysis, external processing and 
data access tasks [5, 6] through the usage of workflows, could 
play an important role in enabling more scientists to master their 
complexity and harness their capabilities. The reliability of the 
performance delivered by the workflow systems will hereby play 
a key role in their adoption. 



Unfortunately, while workflows are in regular use today, the 
community lacks the ability to study, predict and optimize the 
performance of complex workflows, in particular in extreme-scale 
environments. There are no performance analyses or modeling 
tools available, and existing performance studies are usually 
centered around one off studies of specific use cases in a specific 
execution environment, rather than structured, analytical analysis 
of whole classes of workflows. 

For single computational applications key performance limiting 
and influencing factors have been widely studied 
[28,29,30,31,32], and performance analysis [36,37] and modeling 
[30,33] tools and techniques can provide key insights into 
potential bottlenecks or sources of performance variability (i.e. 
strong reliance on I/O). These insights have been used to devise 
algorithms [38,39] and design templates [34,35] that enable 
scientists to create codes with reliable performance characteristics. 
OS, Runtime and Resource Management systems for extreme 
scale systems including exascale are optimized to support single 
application performance, based on the fundamental understanding 
of their performance characteristics. Unfortunately these 
capabilities have not been brought to bear on complex workflows, 
because these differ from single applications executed in one 
homogenous environment in a number of significant ways:  

• Workflows combine several applications with 
potentially quite different programming models, data 
models, execution and performance characteristics that 
can show strong interdependencies in their execution 
behavior. 

• Are often executed on more than one system, each with 
quite different architectures, execution environments, 
policies, performance and load characteristics, and are 
not under the control of a single institution.  

• They regularly utilize shared resources such as file 
systems, archives or wide area networks, as such their 
performance can be strongly influenced by the 
availability of resources and the behavior of other users. 

• Utilize a workflow management system that can adjust 
execution behavior at runtime based on rules or user 
input. 

Ultimately it is the number and heterogeneity of the involved 
workflow and system components and their strong 
interdependencies that provide key challenges in understanding 
workflow performance variability. Furthermore their ability to 
react to hardware, systems, software and user created events at 
runtime, adds another level of complexity. Consider the following 
simple exemplary use case and its potential performance 
challenges: 

We have three computational models, utilizing (MPI and PGAS) 
as their programming models, the codes are coupled through a 
workflow. Their input data is streamed from an external data 
archive server, as it cannot be held on the system in its entirety. 
As the models produce significant output an automated analysis 
step, utilizing a map reduce programming paradigm, has also been 
added. This analysis model requires access to externally held 
observational data for its validation component and selects and 
accesses this data based on the results received from the modeling 
programs. As the time steps of the three models are in sync, the 
underperformance of one of them for any reason or time interval 
will impact the overall workflow, bad load balancing, resilience 
measures, slow data access to the input data due to low rate 

storage or network connections would have the same effect. As all 
models are run at the same time utilizing the same storage and 
memory they could create their own contention challenges. A 
workflow system might need to halt the majority of the 
applications while it restarts on application affected by a hard, soft 
or silent error. The underlying runtime system might decide to 
reduce the processor speed to save energy, just as the workflow 
prepares to send more work to it to balance the overall workflow 
performance better, leading to a slowdown of all components and 
underutilization of their resources. 

As can be seen, even simple workflows, such as the one described 
above, include many potentially performance influencing factors 
that would need to be analyzed and modeled. We suggest that 
extended provenance capture systems could provide a novel 
approach to providing performance monitoring capabilities that 
correlate information across system levels and systems itself. 
Initially this would be envisaged as a post hoc analysis, but the 
approach could be extended to provide runtime information. 
Furthermore the task of modeling and simulating all possible 
workflow and systems components that could influence workflow 
performance in one integrated system at any level of detail would 
be a formidable computational task in its own right. We propose 
that  empirical  studies  based  on  the  collected  workflow 
performance   provenance   information   could   help   to   provide 
critical guidance on the importance and impact of specific factors 
for selected classes of workflows. Thus providing guidance and 
focus to the modeling and simulation activities. In addition these 
studies can illuminate key interdependencies between workflow 
design, execution environment, executables’ computation models 
and system architecture. 

In this paper, we investigate workflow performance goals and 
identify factors that could have a relevant impact. Based on our 
analysis, we propose a new workflow performance provenance 
ontology, Open Provenance Model-based WorkFlow Performance 
Provenance,  or  OPM-WFPP,  that  will  enable  the  structured 
capture and subsequent evaluation of workflow performance 
characteristics  and  variability  including  complex  source 
attribution. In addition we will introduce the basic architecture of 
the  ProvEn  provenance  capture,  storage  and  analysis 
infrastructure.  

1. WORKFLOW PERFORMANCE GOALS 
Workflow performance is commonly defined as “execution time” 
for a particular workflow instance—that is, the wall clock time it 
takes from the start of the workflow to its successful conclusion. 
Other variations on this theme are “always-on” workflows, which 
act upon data as it arrives. In which case, execution time is the 
time it takes for a specific data element (record, file, or data set) to 
pass through the workflow pipeline. In addition, response time 
may be considered as a performance goal: the time it takes from 
the request for a workflow execution to its completion. This can 
be a particularly important factor in time-critical decision making 
processes. In extreme-scale computing environments, energy use 
is a growing concern; therefore, low energy consumption can be 
another workflow performance goal.  

In commercial computing systems, users need to pay for service 
use, making lowering monetary costs another workflow 
performance goal. There are concerns that also might be 
considered under this goal, such as optimized use of resources, 
which is important when available compute time, data and 



network resources are limited and completion of a predefined 
volume of work depends on effective use of the available 
resources. Highly distributed workflows, workflows in cloud 
environments, or workflows for extreme-scale computing 
resources (e.g., U.S. Department of Energy [DOE]-owned 
Leadership Class Computing Facilities (LCFs)) are expected to 
encounter increasing amount of failure events during execution. 
Thus, reliability and resilience also may be considered additional 
facets of workflow performance.  

Next to workflow performance dimensions related to its execution 
properties, scientific users also are concerned with more quality-
specific performance measures, such as accuracy, reproducibility, 
and adaptability. It is important to involve these types of criteria 
in an overall performance investigation and optimization effort as 
they can lead to important trade-off decisions, for example: am I 
prepared to give up some of my accuracy or adaptability for a 
faster result or what are the costs of user interactions in terms of 
speed and the quality of the scientific outcome? 

Thus, workflow performance might be characterized as subset or 
combination of the following features: 

• Execution Time 
• Total Response Time 
• Resource Use 
• Energy Use 
• Reliability 
• Resilience 
• Reproducibility 
• Accuracy 

It is clear that many users will pursue more than one performance 
optimization goal, and they need to study the trade-offs in a 
multidimensional design space. For example, de Olievera et al. [7] 
define performance in a cloud environment in a three-objective 
cost model, considering execution time, financial cost, and 
reliability. Khaled Ahsan Talukder et al. [8] use quality of service 
parameters to define performance, such as execution time, cost, 
and total data transmission time. In the following we investigate 
which observable factors are relevant in the context of different 
performance goals.  

2. FACTORS RELEVANT TO 
WORKFLOW PERFORMANCE 

To study workflow performance, we first and foremost need to 
understand the different sources of workflow performance 
variability and under performance as they pertain to specific 
performance goals, such as speed, energy efficiency or resource 
usage. Our key interest is to identify patterns across different 
workflow classes that cause performance degradation, particularly 
in extreme-scale environments. As workflows have the ability to 
adapt at runtime, it is similarly important to investigate suitable 
strategies in response to performance impacting events. The 
ability to identify, describe and prioritize all components that 
could have an impact on workflow performance is fundamental to 
this endeavor. In the following subsections, we review existing 
workflow performance description mechanisms used in studies of 
workflow performance and suggest a number of new extensions 
that will be required to capture a comprehensive picture of 
performance-relevant components and their interdependencies. 

2.1 Basic Workflow Descriptions 
Workflows are commonly described as a type of graph, e.g., as 
directed acyclic graphs [6], incorporating the applications or tasks 
present in the workflow and their connection with each other, 
such as “A creates input for B.” In addition, input and output (I/O) 
data sets are represented as components of the workflow. Few of 
the available workflow performance languages   capture the 
workflow management system that was used to orchestrate the 
tasks [7], [9], [10]. This is of particular import as the workflow 
management system itself can introduce an additional layer of 
tasks and may influence overall performance by: a) introducing a 
certain level of overhead and b) impacting performance based on 
its scheduling and adaptation policies. Thus, we suggest that the 
workflow management system needs to be part of the overall 
workflow description when performance is being investigated.  

2.2 Execution Environment and Systems 
Architectures 
However to date, none of the workflow description languages 
utilized for performance investigations provides any mechanisms 
to describe either the systems software or hardware components 
employed in the workflow execution. With this we neglect to 
account for performance variability due to different hardware 
solutions (CPUs, storage, or networking), the impact of protocols 
and runtime systems on performance and resource contention or 
the influence system load fluctuations can have. Furthermore it is 
important to correlate the system descriptions with the workflow 
itself, so that subsequent performance studies can identify the root 
causes of performance degrading events and assess their impact 
and knock-on effects on the overall workflow performance. In 
consequence we propose to make the description of the execution 
environment and system architecture part of the core workflow 
description (Figure 1).  
Key performance influencing factors are the execution 
environments and system architectures on which the workflow 
will be executed. 

	  
Figure 1: Comprehensive Workflow Ecosystem 

Representation for Performance Studies 

 



2.3 Performance Relevant Workflow 
Description Details 
Components involved in a workflow must be represented in 
sufficient detail to capture their key characteristics and potential 
sources of performance variability.  

2.3.1 Workflows 
As workflows are performed more than once and likely in 
changing execution environment and on different hardware 
platforms, we propose to introduce a basic abstraction layer in the 
workflow description. An abstract description of the overall 
workflow provides hereby an overview of all possible execution 
pathways; this is linked to one or more descriptions of executed 
workflow instances. These workflow instances might vary in their 
description, depending on the rule based decisions taken during its 
execution, however they will all be a subset of the overall abstract 
workflow. This workflow instance description is then linked to the 
actual execution environment and system architectures used 
during the workflow execution (Figure 2).  

The abstract description will characterize the workflow 
management system (name, type, version) and abstract workflow 
scripts that can be executed by the workflow management system, 
e.g., input data x is used by simulation model Community Land 
Model, which produces output data of type b. 

The executed workflow instance is much more detailed in its 
description, noting specific versions of applications used, how 
they were created (parameters, compiler, etc.), their programming 
model, the scientific methods encapsulated in them, and where 
they were executed. The executed workflow instance is the key 
construct that connects workflows, applications, system-level 
software, and systems.  

For the performance evaluation, it is helpful to treat executables 
not as a single entity but to divide them into code regions with 
specific predominant actions as they are observed by the system 
level (i.e., data access, calculation, or data transfer). Similarly the 
utilized systems need to be described in terms of their architecture 
and key performance characteristics, operating and runtime 
system, compilers and libraries. Another aspect currently not 
depicted in Figure 2 are disruptive events that change the 
execution of the workflow during runtime. These could be 
system-level events (e.g., disk failure, core failure, network 
outage) or user-created events (e.g., kill workflow as simulation is 
not converging or choose a different analysis path). These types of 
events would be captured at both the workflow script instance 
system software or hardware level.  

2.3.2 Scientific Simulation Models 
Scientific workflows often center around simulation models. 
These are complex computational models that represent physical, 
biological, and chemical processes. Many of these codes have 
been developed over a long time and consist of a variety of 
theoretical methods. These methods can be combined in different 
ways to serve the investigation of a specific scientific purpose. 
Not all methods available are necessarily involved in each model 
run. Each method usually is developed on its own timescale and 
will have a separate version tree from other methods. A 
simulation model release version will contain a number of 
methods, each with its own version. Method version, method 
combination, and scientific purpose will have a critical impact on 
the overall model performance characteristics and need to be 
captured. In turn, methods have code regions that correspond to 
specific actions in a subsequent executable compiled from these 
methods. These code regions may contain actions, such as access 
to disk storage, numerical calculations, data transfer, or 
communication. It is important to identify these actions and 
corresponding code regions to track their specific performance, as 
well as the effects of changes to them (Figure 3).  

 

 

Figure 3: Simulation Model Representation 

Figure 4: Representations of Parallel Programs 

Figure 2: Principle Workflow Representation 



2.3.3 Workflow Description for Extreme -scale 
Applications and Environments 
Most workflow descriptions treat each application integrated in a 
workflow as one unit, which is associated with a set of properties, 
such as average memory usage. However, in highly parallel codes, 
each application component, executed on a different core or 
thread could display different performance behavior (e.g. due to 
uneven work distribution) or experience different events (e.g., 
memory corruption). Due to interdependencies between different 
workflow components (across applications) it is imperative to 
consider each parallel component as an individual contributor to 
the overall workflow performance and describe them separately 
(see Figure 4).  

In addition we need to provide the ability to capture direct 
dependencies between specific applications (Figure 5), where 
performance degradation in one parallel component or in the 
interaction could have widespread implications. Hereby 
differences in programming models should also be noted as these 
could have a significant impact in the communication and data 
exchange overhead. 

2.4 Workflow as Time Series 
The combination of applications, resource requirements, and 
performance behavior can change significantly during the 
execution of a workflow, as can its execution environment and the 
load characteristics of the involved systems. When studying 
workflow performance variability, it is not enough to look at 
statistics for the overall workflow run. We need to capture the 
changing characteristics through time, meaning a time series of 
snapshots of correlated workflow and system topology and 
behavior are required (Figure 6).  

2.5 Events Related to Workflow Performance 
These can originate from the systems or execution environment 
the workflow is operating on, the user, the applications, or the 
workflow system itself. In each case, we need to capture these 
events, attribute them to their source, and describe their impact. 
For example, contention on required resources will lead to a 
slowdown of the workflow, so the workflow system might react 
by scheduling time on additional resources to overcome this 
bottleneck. Similarly, the workflow might experience hardware 

power throttling  events,  temperature  events,  and  fault  events, 
leading to an unexpected slowdown in parts of a workflow. Other 
events   at   the   software   level   might   include   dynamic   load 
balancing, idle times, waiting for communication or 
synchronization.  External events  (non program/runtime 
controlled) could be power capping, work migration in response 
to fault prediction, etc. Workflow management systems are 
expected to increase their capabilities to adapt and optimize at 
runtime, therefore any action taken by the workflow system will 
need to be recorded and the impact of the actions studied. Hereby 
it will be of particular interest to observe correlations between 
system actions (power throttling) and workflow management 
system actions (resource rescheduling). For the future it is hoped 
that a direct interaction between the execution environment and 
workflow management system will be possible, enabling systems 
and workflows to exchange their goals and synchronize their 
behavior. These types of negotiations would also need to be 
captured and evaluated in their impact on overall workflow 
performance.  It  is  further  expected  that  users  will  need  more 
direct control over their workflows to adapt them at runtime to 
unexpected scientific results that need specialized treatment. In 
those  cases  the  user  could  make  changes  to  the  workflow 
execution  pathway  and  thus  due  introduce  performance 
influencing actions. 

As such, a system describing workflow performance must capture 
events and event types, as well as link their source and potential 
actions taken. A key challenge to this involves the potential delays 
between the original event, its impact being noticed, and an action 
taken. For instance, a silent error that causes a problem in one of 
the  workflow  components  that  is  not  immediately  visible  but 
grows over time. Once it reaches a certain threshold, the affected 
algorithm takes mitigating actions in form of a checkpoint restart. 

3. WORKFLOW PERFORMANCE 
METRICS 

Once a sufficient structure is in place to describe workflows and 
their  environment,  provisions  have  to  be  made  to  link  these 
descriptions with specific observed performance metrics. We can 
distinguish these metrics into two categories: 1) metrics directly 
associated with the workflow (i.e., execution time and energy use 

Figure 5: Capturing Interdependencies between 
Parallel Components at Runtime 

Figure 6: Workflow Evolution Time Series 



of  a  specific  application)  and  2)  environmental  metrics  
(i.e.overall system load on Lustre file system) [17]. Most currently 
available studies only capture performance information directly 
associated with the workflow. Furthermore, we often find that 
existing workflow performance investigations (e.g., [9], [10]) tend 
to capture summary statistics such as overall I/O reads, peak 
memory usage, etc., but they do not—as we intend —capture 
performance metrics as time series information [18] linked to 
specific workflow phases, components, and events. Independently 
a number of initial provenance systems have been developed to 
capture specific system level performance characteristics, such as: 
provenance aware storage [43,44], distributed storage [45], file 
system  [50],  distributed  file  systems  [49],  kernel  [46]  and 
networks  [47,48].  Few  solutions  do  however  cover  multiple 
aspects and levels of the operating system. Hi-Fi [46] is one of the 
most comprehensive conceptual approaches, and offers a kernel 
level approach to trace the data flow through systems, processes 
and  threads,  across  files  and  file  systems,  memory  mappings, 
pipes, message queues and sockets. It does however not collect 
any application specific computational performance metrics or 
information about applications and workflows themselves. Other 
approaches  [41-43]  also  aim  to  facilitate  provenance  capture 
across different system layers, however none goes as deeply into 
the operating and storage systems layers as Hi-Fi. To date any 
these systems have only been tested in small scale, single system 
environments. 

Based on our previously defined performance goals (see Section 
1) and prior research by others, we will define metrics for the 
relevant runtime components of the workflow and its execution 
environment in terms of execution time, resource use, energy use, 
reliability, and accuracy. Metric categories will include: 

• Workflow Script Performance Determining Characteristics 
(incl. e.g. number of tasks) 

• Workflow  Script  Instance  Performance  Metrics  (incl. 
some outlined in [9],[10]) 

• Code Region Performance Metrics to be collected for each 
call to the code region, for each core, (selected list of metrics 
informed by [9], [10]) 

• Computer  System  Performance  Characteristics  (incl. [17]) 
• Computer System Performance Metrics (as collectable by 

e.g. SYSSTAT [18]) 
• Wide Area Network Performance Characteristics 
• Wide Area Network Performance Metrics 
• Interconnect Performance Characteristics 
• Interconnect Performance Metrics 
• Storage System Performance Characteristics 
• Storage System Performance Metrics: 

Further metrics might be introduced to capture system utilization 
and costs. 

4. OPM-BASED PROVENANCE MODEL 
TO COMPREHENSIVELY CAPTURE 
WORKFLOW PERFORMANCE  

To establish a better understanding of workflow performance, we 
need to routinely capture empirical information from instrumented 
workflow runs in a standardized form, providing detailed 
performance sensitivity studies or observing workflow 
performance during development cycles or operational use. The 
analysis of the empirical information captured not only across 

variations of the same workflow but across classes of workflows 
with differing characteristics and performance goals can help 
optimize the design of reliably performing workflows. 
Furthermore, we can use these data to identify early indicators for 
performance degradation at runtime, as well as successful 
methodologies to mitigate the impact of such occurrences.  

In the past, much performance information was gathered in a 
more ad hoc fashion, especially because many studies were small 
and could be analyzed manually. More extensive studies relied on 
data structure designs that were purely focused on the direct 
measurements of performance data [7], [8], [10], [11]. Truong et 
al. [9] developed an ontology to describe and capture workflow 
performance metrics on five different levels: workflow, workflow 
region, activity, invoked application, and code region. However, 
their work did not include performance information for any of the 
utilized system components or influencing factors. 

We suggest that for a more in-depth study of workflow 
performance, particularly as part of a larger empirical study, we 
need a more extensive data model. There are three different types 
of information to capture: 1) static descriptions of the components 
involved in the workflow execution, 2) slow changing description 
of component characteristics specific to a particular workflow 
instance, and 3) fast evolving metrics captured during a specific 
workflow execution. The information required for the former two 
types of information typically is captured as provenance 
information, whereas metrics can be described, for example, in a 
performance metrics ontology. In our novel approach, we propose 
linking the two to create a comprehensive workflow performance 
data model. 

5.1 Workflow Performance Provenance 
In 2008, the International Provenance and Annotation Working 
Group (IPAW) defined the core specification for an Open 
Provenance Model [12] to provide an extensible provenance 
model that can be used to exchange and integrate provenance 
captured in different provenance models implementations. We 
built our solution on this standard. There are a number of existing 
workflow provenance data model implementations based on the 
OPM, such as OPMW [13], D-OPM [16], or the work of Lim et 
al. [15]. All of these models focus exclusively on the workflow 
graph and do not describe the workflow components or their 
performance-determining properties in sufficient detail for a 
performance evaluation beyond time spent in a particular 
application. Moreover, they do not include system or system 
software level information. We have reviewed the existing models 
and deemed them not suitable in their layout to be extended to our 
much more detailed new data model, OPM-WFPP. 

For this model, we will create new subclasses for existing OPM 
classes:  

• “Agent: Agent is a contextual entity acting as a catalyst of a 
process, enabling, facilitating, controlling, or affecting its 
execution,” to describe the basic characteristics of the 
underpinning systems, system software, compilers, 
algorithms, tools and scripts. 

SubClass: Workflow – subclasses: Workflow 
Management System, Workflow Script 
SubClass: Application – subclasses: Algorithm, Script, 
Simulation Model, Code Region, Method, Parallel 
Component 



SubClass: System – subclasses: Computer Systems, 
Network, Storage Device 
SubClass: System Software – subclasses: Compiler, 
Operating System, Protocol, Scheduler 

• “Artifact: Artifact is a general concept that represents 
immutable piece of state, which may have a physical 
embodiment in an object or a digital representation in a 
computer system,” to describe a specific version of the 
underpinning hardware and software stack. 

SubClass: Configuration 
SubClass: Data – subclasses: Input Data, Output Data, 
Parameters, Performance Metrics 
SubClass: Descriptors – subclasses: Location, 
Programming Language, Programming Model, 
Scientific Domain, Version 
SubClass: Purpose 

• “Process: Process refers to an action or series of actions 
performed on or caused by artifacts and resulting in new 
artifacts.” To describe a specific version of an algorithm, 
tool, or script, we will create a subclass, “application 
instance,” that will describe properties of the instance, such 
as version number, compiler flags, parameter, etc., and link 
directly to system software component artifacts, such as 
compiler or runtime system. 

SubClass: Action – subclasses: Calculation, 
Communication, Data Transfer, Data Access 
SubClass: Decision Points – subclasses: Data Driven 
Change, User Driven Change 
SubClass: Events – subclasses: Hard Error, Soft Error, 
Silent Error, Runtime System Optimization, Workflow 
Optimization at Runtime 
SubClass: Executable 
SubClass: Outcome – subclasses: Failure, Success with 
further subclasses of: Accuracy, Error Range, 
Uncertainty, Validity 
Subclass: State 
SubClass: Workflow Script Instance 
SubClass: Workflow Management System Instance 

In addition, we will add a number of additional properties to those 
originally available in OPM (including examples of their use): 

Workflow Definitions  

• wasDefinedIn => Workflow Script wasDefinedIn Workflow 
Management System 

• Orchestrates => Workflow Script Orchestrates Algorithm 
• facilitatesUseOf => Workflow Script facilitatesUseOf 

Computer System 

Semantic Description for Specific Domain Instances 

• isDependentOn => CESM Executable isDependentOn Data 
Assimilation Algorithm 

• communicatesWith => Shyre Analysis Executable 
communicatesWith OPA Executable 

• Follows => Diagnostics package A Executable follows 
CESM Executable 

During Execution 

• hasInstance => Workflow Script hasInstance Workflow 
Script Instance 

• hasVersion => Workflow Script hasVersion Version 

• interactsWith => Workflow Script Instance interactsWith 
Scheduler 

• wasPerformedBy => Workflow Script Instance 
wasPerformedBy Workflow Management System Instance 

• wasControlledBy => Executable wasControlledBy Workflow 
Script Instance 

• hasEvents => Workflow Script Instance hasEvents Decision 
Points  

• hasDecissionType => Decision Point hasDecissionType Data 
Driven Change 

• hasEventType => Events hasEventType Silent Error 

Executable  

• hasDomain => Simulation Model hasDomain Scientific 
Domain 

• hasProgrammingLanguage => Algorithm 
hasProgrammingLanguage Programming Language 

• hasProgrammingModel => Simulation Model 
hasProgrammingModel Programming Model 

• contains => Simulation Model contains Methods 
• isSpecifiedIn => Purpose isSpecifiedIn Parameters 
• selects => Parameters selects Methods 
• isMadeUpOf => Methods isMadeUpOf Code Region 
• correspondsTo => Action correspondsTo Code Region 
• wasCompiledWith => Executable wasCompiledWith 

Compiler 
• wasCreatedFrom => Executable wasCreatedFrom 

Simulation Model 

At Runtime 

• drives => Parameters drives Executable 
• wasExecutedOn => Executable wasExecutedOn Computer 

System 
• used => Executable used Input Data 
• created => Executable created Output 
• hasOutcome => Executable hasOutcome Validity 
• hasPerformanceMetrics => executable 

hasPerformanceMetrics Performance Metrics 
• includesAction => Executable includesAction Data Transfer 

Link to System 

• isExecutedIn => Data Transfer isExecutedIn Protocol 
• wasUsedOn => Protocol wasUsedOn Network 
• hasErrors => Storage Device hasErrors Hard Errors 
• canCause => Storage Device canCause Silent Error 
• linksTo => Network linksTo Computer System 

An initial ontology has been created for OPM-WFPP and is 
available on request. 

5. PROVEN 
The ProvEn capture, storage, and analysis nfrastructure consists of 
two principle components: the OPM- WFPP library and the 
ProvEn hybrid provenance servers. The two components 
communicate via standard messaging services as they are 
available in the execution environments incl. web services calls, 
ZeroMQ and Apache Kafka. The system is records provenance  
events  at  any  system  or  application  level  and correlates these 
based on time and context. This approach enables us not only to 
study all events relevant to a particular workflow, but we can also 



investigate the behavior e.g. of specific system components when 
utilized by a variety of workflows at the same time or follow the 
performance  behavior of specific workflow tasks across systems 
and workflow classes (e.g. data transfer between workflow tasks). 
  
The OPM-WFPP libraries are customizable libraries that can be 
integrated  into  workflows,  workflow  components,  and  system 
level applications and middleware. They are bundled with the 
ProvEn OPM-WFPP client API and a pre-registered list of 
structured  messages,  known  as  provenance  messages  used  to 
record performance metrics. Where it is not possible to integrate 
the library into a key performance relevant component e.g. a 
network service, ProvEn will utilize its existing provenance 
harvesting routines to collect provenance from system level log 
files and applications. 

 
The ProvEn Hybrid Server component provides a central location 
for the storage and collection of provenance messages that have 
been created by ProvEn client libraries. It is a Java EE application 
managing an embedded Sesame RDF repository, where all 
collected provenance data are stored.  Web services are made 
available by the ProvEn Server allowing clients to register 
themselves with the server for exchange of their provenance 
messages.  The data interchange format used is JSON for Linking 
Data (JSON-LD), it provides a simple Java API binding used by 
the server to perform serialization of provenance messages from 
JSON-LD directly into RDF for storage into ProvEn’s RDF 
repository.  All collected provenance is compartmentalized into 
RDF sub-graphs based on the client producing the provenance. 
The time series based performance metrics will be captured via 
the ProvEn InfluxDB services. Its integration with the ProvEn 
RDF repository enables the correlated capture of time series and 
core provenance information (see Figure 7). 
 

 
Figure 7:  Conceptual depiction of ProvEn architecture. 

To evaluate the initial ProvEn implementation, we are replicating 
a set of experiments on a highly instrumented cluster [42].  
SeaPearl is a cluster with 52 nodes and instrumented with sensors 
that include temperature and power usage (based on the paper I 
provided earlier in the week).  Our initial tests are repeating 
benchmark tests using Firestarter, a stress test tool that ensures 
that a constant high workload generates the maximum amount of 

heat that can be generated by a CPU or thermal design power 
(TDP) limit.   For our tests Firestarter  [41] is run on two nodes.  
Because SeaPearl is instrumented, temperature and power sensors 
for those two nodes are monitored at 10KHz using a Lua script 
running on each node that pipes streaming measurements in 
parallel into the InfluxDB database.  Each recorded time series 
measurement record consists of the cluster name, node name (e.g. 
numbers "1"-"52"), the instrument name tag, the timestamp, and 
the measured floating point value.  To correlate performance 
measures in the time series database to the provenance store a 
timestamp key is needed.  To keep the timestamp consistent 
across measurements being collected across the cluster the 
Network Time Protocol (NTP) is relied upon as the time source.   
The cluster name (which for our purposes is assumed), cluster 
node name, and instrument name form a semantically meaningful 
tag name that relate to a type of performance measurements. At 
10KHz each hour 36 million records are collected, for each cluster 
node sensor. 

 
ProvEn's semantic store is used for collecting referential 
information providing details regarding: 

• Benchmark tests being performed, 
• Conditions of the system (cold start, successive tests 

etc) 
• Engineering units used, 
• Sensors 
• Collection rate 
• Codes used in the test 
• Versions of the codes being used. 
 

During the experiment ProvEn's semantic store is used for 
collecting:  

• Start/end time of test on each node. 
• When lua scripts begin/end collection on each node. 
• Stages of the experiment as the stress tests occur. 

	  

Figure 8:  Depiction of affects of Firestarter stress test in 
initial experiments [42]. 



From this composite information ProvEn reporting services can 
monitor collection streams at collection time and  provide reports 
either while the benchmark tests are running or post mortem. 
Figure 8 depicts reporting information that will be available 
through ProvEn reporting services.	  

6. FUTURE WORK 
The OPM-WFPP components and ProvEn infrastructure  have 
been implemented and undergone initial tests. We expect initial 
empirical study results from the SeaPearl evaluation benchmark 
tests in late autumn of 2015. In parallel the team is working on 
integrating the performance assessment process into four distinct 
use cases: Streaming analysis of experimental data, a complex 
climate modeling workflow based on Pegasus for the DOE BER 
ACME   project   (in   collaboration   with   USC),   a   biological 
workflow based on Kepler and a high energy physics high 
throughput  workflow  for  the  Belle  II  experiment.   
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