
Enabling Structured Exploration of Workflow Performance
Variability in Extreme-scale Environments

Kerstin Kleese van Dam*

Pacific Northwest National
Laboratory

902 Batelle Boulevard

Richland, WA, 99352, USA

+15093717797

Kerstin.Kleesevandam@pn
nl.gov

Ilkay Altintas

San Diego Supercomputer Center

9500Gilman Drive

La Jolla, CA, 92093-0505, USA

+18588225453

Altintas@sdsc.edu

Eric Stephan
Pacific Northwest National

Laboratory

902 Batelle Boulevard

Richland, WA, 99352, USA

+15093756977

Eric.Stephan@pnnl.gov

Todd Elsethagen
Pacific Northwest National

Laboratory

902 Batelle Boulevard

Richland, WA, 99352, USA

+15093754431

Todd.Elsethagen@pnnl.gov

Bibi Raju
Pacific Northwest National

Laboratory

902 Batelle Boulevard

Richland, WA, 99352, USA

+15093753623

Bibi.Raju@pnnl.gov

Sriram Krishnamoorthy
Pacific Northwest National

Laboratory
902 Batelle Boulevard

Richland, WA, 99352, USA

+15093726963

Sriram@pnnl.gov

ABSTRACT
Workflows are taking an Workflows are taking an increasingly
important role in orchestrating complex scientific processes in
extreme scale and highly heterogeneous environments. However,
to date we cannot reliably predict, understand, and optimize
workflow performance. Sources of performance variability and in
particular the interdependencies of workflow design, execution
environment and system architecture are not well understood.
While there is a rich portfolio of tools for performance analysis,
modeling and prediction for single applications in homogenous
computing environments, these are not applicable to workflows,
due to the number and heterogeneity of the involved workflow
and system components and their strong interdependencies. In this
paper, we investigate workflow performance goals and identify
factors that could have a relevant impact. Based on our analysis,
we propose a new workflow performance provenance ontology,
the Open Provenance Model-based WorkFlow Performance
Provenance, or OPM-WFPP, that will enable the empirical study
of workflow performance characteristics and variability including
complex source attribution.

General Terms
Algorithms, Measurement, Documentation, Performance,
Standardization, Theory.

Keywords
Workflow, Performance, Provenance, Extreme-Scale

INTRODUCTION
High-performance computing (HPC), Grid and Cloud users are
looking increasingly toward workflow solutions to orchestrate
their complex application coupling, pre- and post-processing
needs. Their growing popularity is particularly visible at
workflow sharing sites such as MyExperiment [1] or Galaxy [2-
4]. Workflows can be implemented through simple scripts, work
schedulers [27] or sophisticated workflow management systems
such as Kepler[22], Pegasus [40], Swift[23], Galaxy[19-21],
VisTrails[24], Taverna[25] or Medici[26]. Many workflow
systems have the ability to coordinate tasks spread across many
different systems, indeed some offer the ability to adapt and
optimize task placement at runtime [22, 40]. Higher level
workflow systems hereby separate the composition of the
interrelated tasks into scientific workflows, from the actual
execution of specific workflow instances in a particular execution
environment, and as such can help to lower the barriers to using
complex infrastructures. For exascale systems with their complex
memory, I/O and processor architectures, the ability to easily
coordinate simulations, in-situ analysis, external processing and
data access tasks [5, 6] through the usage of workflows, could
play an important role in enabling more scientists to master their
complexity and harness their capabilities. The reliability of the
performance delivered by the workflow systems will hereby play
a key role in their adoption.

Unfortunately, while workflows are in regular use today, the
community lacks the ability to study, predict and optimize the
performance of complex workflows, in particular in extreme-scale
environments. There are no performance analyses or modeling
tools available, and existing performance studies are usually
centered around one off studies of specific use cases in a specific
execution environment, rather than structured, analytical analysis
of whole classes of workflows.

For single computational applications key performance limiting
and influencing factors have been widely studied
[28,29,30,31,32], and performance analysis [36,37] and modeling
[30,33] tools and techniques can provide key insights into
potential bottlenecks or sources of performance variability (i.e.
strong reliance on I/O). These insights have been used to devise
algorithms [38,39] and design templates [34,35] that enable
scientists to create codes with reliable performance characteristics.
OS, Runtime and Resource Management systems for extreme
scale systems including exascale are optimized to support single
application performance, based on the fundamental understanding
of their performance characteristics. Unfortunately these
capabilities have not been brought to bear on complex workflows,
because these differ from single applications executed in one
homogenous environment in a number of significant ways:

• Workflows combine several applications with
potentially quite different programming models, data
models, execution and performance characteristics that
can show strong interdependencies in their execution
behavior.

• Are often executed on more than one system, each with
quite different architectures, execution environments,
policies, performance and load characteristics, and are
not under the control of a single institution.

• They regularly utilize shared resources such as file
systems, archives or wide area networks, as such their
performance can be strongly influenced by the
availability of resources and the behavior of other users.

• Utilize a workflow management system that can adjust
execution behavior at runtime based on rules or user
input.

Ultimately it is the number and heterogeneity of the involved
workflow and system components and their strong
interdependencies that provide key challenges in understanding
workflow performance variability. Furthermore their ability to
react to hardware, systems, software and user created events at
runtime, adds another level of complexity. Consider the following
simple exemplary use case and its potential performance
challenges:

We have three computational models, utilizing (MPI and PGAS)
as their programming models, the codes are coupled through a
workflow. Their input data is streamed from an external data
archive server, as it cannot be held on the system in its entirety.
As the models produce significant output an automated analysis
step, utilizing a map reduce programming paradigm, has also been
added. This analysis model requires access to externally held
observational data for its validation component and selects and
accesses this data based on the results received from the modeling
programs. As the time steps of the three models are in sync, the
underperformance of one of them for any reason or time interval
will impact the overall workflow, bad load balancing, resilience
measures, slow data access to the input data due to low rate

storage or network connections would have the same effect. As all
models are run at the same time utilizing the same storage and
memory they could create their own contention challenges. A
workflow system might need to halt the majority of the
applications while it restarts on application affected by a hard, soft
or silent error. The underlying runtime system might decide to
reduce the processor speed to save energy, just as the workflow
prepares to send more work to it to balance the overall workflow
performance better, leading to a slowdown of all components and
underutilization of their resources.

As can be seen, even simple workflows, such as the one described
above, include many potentially performance influencing factors
that would need to be analyzed and modeled. We suggest that
extended provenance capture systems could provide a novel
approach to providing performance monitoring capabilities that
correlate information across system levels and systems itself.
Initially this would be envisaged as a post hoc analysis, but the
approach could be extended to provide runtime information.
Furthermore the task of modeling and simulating all possible
workflow and systems components that could influence workflow
performance in one integrated system at any level of detail would
be a formidable computational task in its own right. We propose
that empirical studies based on the collected workflow
performance provenance information could help to provide
critical guidance on the importance and impact of specific factors
for selected classes of workflows. Thus providing guidance and
focus to the modeling and simulation activities. In addition these
studies can illuminate key interdependencies between workflow
design, execution environment, executables’ computation models
and system architecture.

In this paper, we investigate workflow performance goals and
identify factors that could have a relevant impact. Based on our
analysis, we propose a new workflow performance provenance
ontology, Open Provenance Model-based WorkFlow Performance
Provenance, or OPM-WFPP, that will enable the structured
capture and subsequent evaluation of workflow performance
characteristics and variability including complex source
attribution. In addition we will introduce the basic architecture of
the ProvEn provenance capture, storage and analysis
infrastructure.

1. WORKFLOW PERFORMANCE GOALS
Workflow performance is commonly defined as “execution time”
for a particular workflow instance—that is, the wall clock time it
takes from the start of the workflow to its successful conclusion.
Other variations on this theme are “always-on” workflows, which
act upon data as it arrives. In which case, execution time is the
time it takes for a specific data element (record, file, or data set) to
pass through the workflow pipeline. In addition, response time
may be considered as a performance goal: the time it takes from
the request for a workflow execution to its completion. This can
be a particularly important factor in time-critical decision making
processes. In extreme-scale computing environments, energy use
is a growing concern; therefore, low energy consumption can be
another workflow performance goal.

In commercial computing systems, users need to pay for service
use, making lowering monetary costs another workflow
performance goal. There are concerns that also might be
considered under this goal, such as optimized use of resources,
which is important when available compute time, data and

network resources are limited and completion of a predefined
volume of work depends on effective use of the available
resources. Highly distributed workflows, workflows in cloud
environments, or workflows for extreme-scale computing
resources (e.g., U.S. Department of Energy [DOE]-owned
Leadership Class Computing Facilities (LCFs)) are expected to
encounter increasing amount of failure events during execution.
Thus, reliability and resilience also may be considered additional
facets of workflow performance.

Next to workflow performance dimensions related to its execution
properties, scientific users also are concerned with more quality-
specific performance measures, such as accuracy, reproducibility,
and adaptability. It is important to involve these types of criteria
in an overall performance investigation and optimization effort as
they can lead to important trade-off decisions, for example: am I
prepared to give up some of my accuracy or adaptability for a
faster result or what are the costs of user interactions in terms of
speed and the quality of the scientific outcome?

Thus, workflow performance might be characterized as subset or
combination of the following features:

• Execution Time
• Total Response Time
• Resource Use
• Energy Use
• Reliability
• Resilience
• Reproducibility
• Accuracy

It is clear that many users will pursue more than one performance
optimization goal, and they need to study the trade-offs in a
multidimensional design space. For example, de Olievera et al. [7]
define performance in a cloud environment in a three-objective
cost model, considering execution time, financial cost, and
reliability. Khaled Ahsan Talukder et al. [8] use quality of service
parameters to define performance, such as execution time, cost,
and total data transmission time. In the following we investigate
which observable factors are relevant in the context of different
performance goals.

2. FACTORS RELEVANT TO
WORKFLOW PERFORMANCE

To study workflow performance, we first and foremost need to
understand the different sources of workflow performance
variability and under performance as they pertain to specific
performance goals, such as speed, energy efficiency or resource
usage. Our key interest is to identify patterns across different
workflow classes that cause performance degradation, particularly
in extreme-scale environments. As workflows have the ability to
adapt at runtime, it is similarly important to investigate suitable
strategies in response to performance impacting events. The
ability to identify, describe and prioritize all components that
could have an impact on workflow performance is fundamental to
this endeavor. In the following subsections, we review existing
workflow performance description mechanisms used in studies of
workflow performance and suggest a number of new extensions
that will be required to capture a comprehensive picture of
performance-relevant components and their interdependencies.

2.1 Basic Workflow Descriptions
Workflows are commonly described as a type of graph, e.g., as
directed acyclic graphs [6], incorporating the applications or tasks
present in the workflow and their connection with each other,
such as “A creates input for B.” In addition, input and output (I/O)
data sets are represented as components of the workflow. Few of
the available workflow performance languages capture the
workflow management system that was used to orchestrate the
tasks [7], [9], [10]. This is of particular import as the workflow
management system itself can introduce an additional layer of
tasks and may influence overall performance by: a) introducing a
certain level of overhead and b) impacting performance based on
its scheduling and adaptation policies. Thus, we suggest that the
workflow management system needs to be part of the overall
workflow description when performance is being investigated.

2.2 Execution Environment and Systems
Architectures
However to date, none of the workflow description languages
utilized for performance investigations provides any mechanisms
to describe either the systems software or hardware components
employed in the workflow execution. With this we neglect to
account for performance variability due to different hardware
solutions (CPUs, storage, or networking), the impact of protocols
and runtime systems on performance and resource contention or
the influence system load fluctuations can have. Furthermore it is
important to correlate the system descriptions with the workflow
itself, so that subsequent performance studies can identify the root
causes of performance degrading events and assess their impact
and knock-on effects on the overall workflow performance. In
consequence we propose to make the description of the execution
environment and system architecture part of the core workflow
description (Figure 1).
Key performance influencing factors are the execution
environments and system architectures on which the workflow
will be executed.

	
Figure 1: Comprehensive Workflow Ecosystem

Representation for Performance Studies

2.3 Performance Relevant Workflow
Description Details
Components involved in a workflow must be represented in
sufficient detail to capture their key characteristics and potential
sources of performance variability.

2.3.1 Workflows
As workflows are performed more than once and likely in
changing execution environment and on different hardware
platforms, we propose to introduce a basic abstraction layer in the
workflow description. An abstract description of the overall
workflow provides hereby an overview of all possible execution
pathways; this is linked to one or more descriptions of executed
workflow instances. These workflow instances might vary in their
description, depending on the rule based decisions taken during its
execution, however they will all be a subset of the overall abstract
workflow. This workflow instance description is then linked to the
actual execution environment and system architectures used
during the workflow execution (Figure 2).

The abstract description will characterize the workflow
management system (name, type, version) and abstract workflow
scripts that can be executed by the workflow management system,
e.g., input data x is used by simulation model Community Land
Model, which produces output data of type b.

The executed workflow instance is much more detailed in its
description, noting specific versions of applications used, how
they were created (parameters, compiler, etc.), their programming
model, the scientific methods encapsulated in them, and where
they were executed. The executed workflow instance is the key
construct that connects workflows, applications, system-level
software, and systems.

For the performance evaluation, it is helpful to treat executables
not as a single entity but to divide them into code regions with
specific predominant actions as they are observed by the system
level (i.e., data access, calculation, or data transfer). Similarly the
utilized systems need to be described in terms of their architecture
and key performance characteristics, operating and runtime
system, compilers and libraries. Another aspect currently not
depicted in Figure 2 are disruptive events that change the
execution of the workflow during runtime. These could be
system-level events (e.g., disk failure, core failure, network
outage) or user-created events (e.g., kill workflow as simulation is
not converging or choose a different analysis path). These types of
events would be captured at both the workflow script instance
system software or hardware level.

2.3.2 Scientific Simulation Models
Scientific workflows often center around simulation models.
These are complex computational models that represent physical,
biological, and chemical processes. Many of these codes have
been developed over a long time and consist of a variety of
theoretical methods. These methods can be combined in different
ways to serve the investigation of a specific scientific purpose.
Not all methods available are necessarily involved in each model
run. Each method usually is developed on its own timescale and
will have a separate version tree from other methods. A
simulation model release version will contain a number of
methods, each with its own version. Method version, method
combination, and scientific purpose will have a critical impact on
the overall model performance characteristics and need to be
captured. In turn, methods have code regions that correspond to
specific actions in a subsequent executable compiled from these
methods. These code regions may contain actions, such as access
to disk storage, numerical calculations, data transfer, or
communication. It is important to identify these actions and
corresponding code regions to track their specific performance, as
well as the effects of changes to them (Figure 3).

Figure 3: Simulation Model Representation

Figure 4: Representations of Parallel Programs

Figure 2: Principle Workflow Representation

2.3.3 Workflow Description for Extreme -scale
Applications and Environments
Most workflow descriptions treat each application integrated in a
workflow as one unit, which is associated with a set of properties,
such as average memory usage. However, in highly parallel codes,
each application component, executed on a different core or
thread could display different performance behavior (e.g. due to
uneven work distribution) or experience different events (e.g.,
memory corruption). Due to interdependencies between different
workflow components (across applications) it is imperative to
consider each parallel component as an individual contributor to
the overall workflow performance and describe them separately
(see Figure 4).

In addition we need to provide the ability to capture direct
dependencies between specific applications (Figure 5), where
performance degradation in one parallel component or in the
interaction could have widespread implications. Hereby
differences in programming models should also be noted as these
could have a significant impact in the communication and data
exchange overhead.

2.4 Workflow as Time Series
The combination of applications, resource requirements, and
performance behavior can change significantly during the
execution of a workflow, as can its execution environment and the
load characteristics of the involved systems. When studying
workflow performance variability, it is not enough to look at
statistics for the overall workflow run. We need to capture the
changing characteristics through time, meaning a time series of
snapshots of correlated workflow and system topology and
behavior are required (Figure 6).

2.5 Events Related to Workflow Performance
These can originate from the systems or execution environment
the workflow is operating on, the user, the applications, or the
workflow system itself. In each case, we need to capture these
events, attribute them to their source, and describe their impact.
For example, contention on required resources will lead to a
slowdown of the workflow, so the workflow system might react
by scheduling time on additional resources to overcome this
bottleneck. Similarly, the workflow might experience hardware

power throttling events, temperature events, and fault events,
leading to an unexpected slowdown in parts of a workflow. Other
events at the software level might include dynamic load
balancing, idle times, waiting for communication or
synchronization. External events (non program/runtime
controlled) could be power capping, work migration in response
to fault prediction, etc. Workflow management systems are
expected to increase their capabilities to adapt and optimize at
runtime, therefore any action taken by the workflow system will
need to be recorded and the impact of the actions studied. Hereby
it will be of particular interest to observe correlations between
system actions (power throttling) and workflow management
system actions (resource rescheduling). For the future it is hoped
that a direct interaction between the execution environment and
workflow management system will be possible, enabling systems
and workflows to exchange their goals and synchronize their
behavior. These types of negotiations would also need to be
captured and evaluated in their impact on overall workflow
performance. It is further expected that users will need more
direct control over their workflows to adapt them at runtime to
unexpected scientific results that need specialized treatment. In
those cases the user could make changes to the workflow
execution pathway and thus due introduce performance
influencing actions.

As such, a system describing workflow performance must capture
events and event types, as well as link their source and potential
actions taken. A key challenge to this involves the potential delays
between the original event, its impact being noticed, and an action
taken. For instance, a silent error that causes a problem in one of
the workflow components that is not immediately visible but
grows over time. Once it reaches a certain threshold, the affected
algorithm takes mitigating actions in form of a checkpoint restart.

3. WORKFLOW PERFORMANCE
METRICS

Once a sufficient structure is in place to describe workflows and
their environment, provisions have to be made to link these
descriptions with specific observed performance metrics. We can
distinguish these metrics into two categories: 1) metrics directly
associated with the workflow (i.e., execution time and energy use

Figure 5: Capturing Interdependencies between
Parallel Components at Runtime

Figure 6: Workflow Evolution Time Series

of a specific application) and 2) environmental metrics
(i.e.overall system load on Lustre file system) [17]. Most currently
available studies only capture performance information directly
associated with the workflow. Furthermore, we often find that
existing workflow performance investigations (e.g., [9], [10]) tend
to capture summary statistics such as overall I/O reads, peak
memory usage, etc., but they do not—as we intend —capture
performance metrics as time series information [18] linked to
specific workflow phases, components, and events. Independently
a number of initial provenance systems have been developed to
capture specific system level performance characteristics, such as:
provenance aware storage [43,44], distributed storage [45], file
system [50], distributed file systems [49], kernel [46] and
networks [47,48]. Few solutions do however cover multiple
aspects and levels of the operating system. Hi-Fi [46] is one of the
most comprehensive conceptual approaches, and offers a kernel
level approach to trace the data flow through systems, processes
and threads, across files and file systems, memory mappings,
pipes, message queues and sockets. It does however not collect
any application specific computational performance metrics or
information about applications and workflows themselves. Other
approaches [41-43] also aim to facilitate provenance capture
across different system layers, however none goes as deeply into
the operating and storage systems layers as Hi-Fi. To date any
these systems have only been tested in small scale, single system
environments.

Based on our previously defined performance goals (see Section
1) and prior research by others, we will define metrics for the
relevant runtime components of the workflow and its execution
environment in terms of execution time, resource use, energy use,
reliability, and accuracy. Metric categories will include:

• Workflow Script Performance Determining Characteristics
(incl. e.g. number of tasks)

• Workflow Script Instance Performance Metrics (incl.
some outlined in [9],[10])

• Code Region Performance Metrics to be collected for each
call to the code region, for each core, (selected list of metrics
informed by [9], [10])

• Computer System Performance Characteristics (incl. [17])
• Computer System Performance Metrics (as collectable by

e.g. SYSSTAT [18])
• Wide Area Network Performance Characteristics
• Wide Area Network Performance Metrics
• Interconnect Performance Characteristics
• Interconnect Performance Metrics
• Storage System Performance Characteristics
• Storage System Performance Metrics:

Further metrics might be introduced to capture system utilization
and costs.

4. OPM-BASED PROVENANCE MODEL
TO COMPREHENSIVELY CAPTURE
WORKFLOW PERFORMANCE

To establish a better understanding of workflow performance, we
need to routinely capture empirical information from instrumented
workflow runs in a standardized form, providing detailed
performance sensitivity studies or observing workflow
performance during development cycles or operational use. The
analysis of the empirical information captured not only across

variations of the same workflow but across classes of workflows
with differing characteristics and performance goals can help
optimize the design of reliably performing workflows.
Furthermore, we can use these data to identify early indicators for
performance degradation at runtime, as well as successful
methodologies to mitigate the impact of such occurrences.

In the past, much performance information was gathered in a
more ad hoc fashion, especially because many studies were small
and could be analyzed manually. More extensive studies relied on
data structure designs that were purely focused on the direct
measurements of performance data [7], [8], [10], [11]. Truong et
al. [9] developed an ontology to describe and capture workflow
performance metrics on five different levels: workflow, workflow
region, activity, invoked application, and code region. However,
their work did not include performance information for any of the
utilized system components or influencing factors.

We suggest that for a more in-depth study of workflow
performance, particularly as part of a larger empirical study, we
need a more extensive data model. There are three different types
of information to capture: 1) static descriptions of the components
involved in the workflow execution, 2) slow changing description
of component characteristics specific to a particular workflow
instance, and 3) fast evolving metrics captured during a specific
workflow execution. The information required for the former two
types of information typically is captured as provenance
information, whereas metrics can be described, for example, in a
performance metrics ontology. In our novel approach, we propose
linking the two to create a comprehensive workflow performance
data model.

5.1 Workflow Performance Provenance
In 2008, the International Provenance and Annotation Working
Group (IPAW) defined the core specification for an Open
Provenance Model [12] to provide an extensible provenance
model that can be used to exchange and integrate provenance
captured in different provenance models implementations. We
built our solution on this standard. There are a number of existing
workflow provenance data model implementations based on the
OPM, such as OPMW [13], D-OPM [16], or the work of Lim et
al. [15]. All of these models focus exclusively on the workflow
graph and do not describe the workflow components or their
performance-determining properties in sufficient detail for a
performance evaluation beyond time spent in a particular
application. Moreover, they do not include system or system
software level information. We have reviewed the existing models
and deemed them not suitable in their layout to be extended to our
much more detailed new data model, OPM-WFPP.

For this model, we will create new subclasses for existing OPM
classes:

• “Agent: Agent is a contextual entity acting as a catalyst of a
process, enabling, facilitating, controlling, or affecting its
execution,” to describe the basic characteristics of the
underpinning systems, system software, compilers,
algorithms, tools and scripts.

SubClass: Workflow – subclasses: Workflow
Management System, Workflow Script
SubClass: Application – subclasses: Algorithm, Script,
Simulation Model, Code Region, Method, Parallel
Component

SubClass: System – subclasses: Computer Systems,
Network, Storage Device
SubClass: System Software – subclasses: Compiler,
Operating System, Protocol, Scheduler

• “Artifact: Artifact is a general concept that represents
immutable piece of state, which may have a physical
embodiment in an object or a digital representation in a
computer system,” to describe a specific version of the
underpinning hardware and software stack.

SubClass: Configuration
SubClass: Data – subclasses: Input Data, Output Data,
Parameters, Performance Metrics
SubClass: Descriptors – subclasses: Location,
Programming Language, Programming Model,
Scientific Domain, Version
SubClass: Purpose

• “Process: Process refers to an action or series of actions
performed on or caused by artifacts and resulting in new
artifacts.” To describe a specific version of an algorithm,
tool, or script, we will create a subclass, “application
instance,” that will describe properties of the instance, such
as version number, compiler flags, parameter, etc., and link
directly to system software component artifacts, such as
compiler or runtime system.

SubClass: Action – subclasses: Calculation,
Communication, Data Transfer, Data Access
SubClass: Decision Points – subclasses: Data Driven
Change, User Driven Change
SubClass: Events – subclasses: Hard Error, Soft Error,
Silent Error, Runtime System Optimization, Workflow
Optimization at Runtime
SubClass: Executable
SubClass: Outcome – subclasses: Failure, Success with
further subclasses of: Accuracy, Error Range,
Uncertainty, Validity
Subclass: State
SubClass: Workflow Script Instance
SubClass: Workflow Management System Instance

In addition, we will add a number of additional properties to those
originally available in OPM (including examples of their use):

Workflow Definitions

• wasDefinedIn => Workflow Script wasDefinedIn Workflow
Management System

• Orchestrates => Workflow Script Orchestrates Algorithm
• facilitatesUseOf => Workflow Script facilitatesUseOf

Computer System

Semantic Description for Specific Domain Instances

• isDependentOn => CESM Executable isDependentOn Data
Assimilation Algorithm

• communicatesWith => Shyre Analysis Executable
communicatesWith OPA Executable

• Follows => Diagnostics package A Executable follows
CESM Executable

During Execution

• hasInstance => Workflow Script hasInstance Workflow
Script Instance

• hasVersion => Workflow Script hasVersion Version

• interactsWith => Workflow Script Instance interactsWith
Scheduler

• wasPerformedBy => Workflow Script Instance
wasPerformedBy Workflow Management System Instance

• wasControlledBy => Executable wasControlledBy Workflow
Script Instance

• hasEvents => Workflow Script Instance hasEvents Decision
Points

• hasDecissionType => Decision Point hasDecissionType Data
Driven Change

• hasEventType => Events hasEventType Silent Error

Executable

• hasDomain => Simulation Model hasDomain Scientific
Domain

• hasProgrammingLanguage => Algorithm
hasProgrammingLanguage Programming Language

• hasProgrammingModel => Simulation Model
hasProgrammingModel Programming Model

• contains => Simulation Model contains Methods
• isSpecifiedIn => Purpose isSpecifiedIn Parameters
• selects => Parameters selects Methods
• isMadeUpOf => Methods isMadeUpOf Code Region
• correspondsTo => Action correspondsTo Code Region
• wasCompiledWith => Executable wasCompiledWith

Compiler
• wasCreatedFrom => Executable wasCreatedFrom

Simulation Model

At Runtime

• drives => Parameters drives Executable
• wasExecutedOn => Executable wasExecutedOn Computer

System
• used => Executable used Input Data
• created => Executable created Output
• hasOutcome => Executable hasOutcome Validity
• hasPerformanceMetrics => executable

hasPerformanceMetrics Performance Metrics
• includesAction => Executable includesAction Data Transfer

Link to System

• isExecutedIn => Data Transfer isExecutedIn Protocol
• wasUsedOn => Protocol wasUsedOn Network
• hasErrors => Storage Device hasErrors Hard Errors
• canCause => Storage Device canCause Silent Error
• linksTo => Network linksTo Computer System

An initial ontology has been created for OPM-WFPP and is
available on request.

5. PROVEN
The ProvEn capture, storage, and analysis nfrastructure consists of
two principle components: the OPM- WFPP library and the
ProvEn hybrid provenance servers. The two components
communicate via standard messaging services as they are
available in the execution environments incl. web services calls,
ZeroMQ and Apache Kafka. The system is records provenance
events at any system or application level and correlates these
based on time and context. This approach enables us not only to
study all events relevant to a particular workflow, but we can also

investigate the behavior e.g. of specific system components when
utilized by a variety of workflows at the same time or follow the
performance behavior of specific workflow tasks across systems
and workflow classes (e.g. data transfer between workflow tasks).

The OPM-WFPP libraries are customizable libraries that can be
integrated into workflows, workflow components, and system
level applications and middleware. They are bundled with the
ProvEn OPM-WFPP client API and a pre-registered list of
structured messages, known as provenance messages used to
record performance metrics. Where it is not possible to integrate
the library into a key performance relevant component e.g. a
network service, ProvEn will utilize its existing provenance
harvesting routines to collect provenance from system level log
files and applications.

The ProvEn Hybrid Server component provides a central location
for the storage and collection of provenance messages that have
been created by ProvEn client libraries. It is a Java EE application
managing an embedded Sesame RDF repository, where all
collected provenance data are stored. Web services are made
available by the ProvEn Server allowing clients to register
themselves with the server for exchange of their provenance
messages. The data interchange format used is JSON for Linking
Data (JSON-LD), it provides a simple Java API binding used by
the server to perform serialization of provenance messages from
JSON-LD directly into RDF for storage into ProvEn’s RDF
repository. All collected provenance is compartmentalized into
RDF sub-graphs based on the client producing the provenance.
The time series based performance metrics will be captured via
the ProvEn InfluxDB services. Its integration with the ProvEn
RDF repository enables the correlated capture of time series and
core provenance information (see Figure 7).

Figure 7: Conceptual depiction of ProvEn architecture.

To evaluate the initial ProvEn implementation, we are replicating
a set of experiments on a highly instrumented cluster [42].
SeaPearl is a cluster with 52 nodes and instrumented with sensors
that include temperature and power usage (based on the paper I
provided earlier in the week). Our initial tests are repeating
benchmark tests using Firestarter, a stress test tool that ensures
that a constant high workload generates the maximum amount of

heat that can be generated by a CPU or thermal design power
(TDP) limit. For our tests Firestarter [41] is run on two nodes.
Because SeaPearl is instrumented, temperature and power sensors
for those two nodes are monitored at 10KHz using a Lua script
running on each node that pipes streaming measurements in
parallel into the InfluxDB database. Each recorded time series
measurement record consists of the cluster name, node name (e.g.
numbers "1"-"52"), the instrument name tag, the timestamp, and
the measured floating point value. To correlate performance
measures in the time series database to the provenance store a
timestamp key is needed. To keep the timestamp consistent
across measurements being collected across the cluster the
Network Time Protocol (NTP) is relied upon as the time source.
The cluster name (which for our purposes is assumed), cluster
node name, and instrument name form a semantically meaningful
tag name that relate to a type of performance measurements. At
10KHz each hour 36 million records are collected, for each cluster
node sensor.

ProvEn's semantic store is used for collecting referential
information providing details regarding:

• Benchmark tests being performed,
• Conditions of the system (cold start, successive tests

etc)
• Engineering units used,
• Sensors
• Collection rate
• Codes used in the test
• Versions of the codes being used.

During the experiment ProvEn's semantic store is used for
collecting:

• Start/end time of test on each node.
• When lua scripts begin/end collection on each node.
• Stages of the experiment as the stress tests occur.

	

Figure 8: Depiction of affects of Firestarter stress test in
initial experiments [42].

From this composite information ProvEn reporting services can
monitor collection streams at collection time and provide reports
either while the benchmark tests are running or post mortem.
Figure 8 depicts reporting information that will be available
through ProvEn reporting services.	

6. FUTURE WORK
The OPM-WFPP components and ProvEn infrastructure have
been implemented and undergone initial tests. We expect initial
empirical study results from the SeaPearl evaluation benchmark
tests in late autumn of 2015. In parallel the team is working on
integrating the performance assessment process into four distinct
use cases: Streaming analysis of experimental data, a complex
climate modeling workflow based on Pegasus for the DOE BER
ACME project (in collaboration with USC), a biological
workflow based on Kepler and a high energy physics high
throughput workflow for the Belle II experiment.

7. ACKNOWLEDGMENTS
The research described in this paper was funded by the DOE’s
Office of Advanced Scientific Computing Research Integrated
End-to-End Performance Prediction and Diagnosis for Extreme
Scientific Workflows (IPPD) project and, in part, by the Analysis
In Motion Initiative at Pacific Northwest National Laboratory
(PNNL), which is conducted under PNNL’s Laboratory Directed
Research and Development Program. PNNL is operated by
Battelle for the DOE under Contract DE-AC05-76RL01830.

8. REFERENCES
[1] Heinis, T.; Alonso, G. 2008. Efficient lineage tracking for

scientific workflows. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data,
pp. 1007-1018. DOI: 10.1145/1376616.1376716.

[2] Anand, M. K.; Bowers, S.; McPhillips, T.; Ludäscher, B.
2009. Efficient provenance storage over nested data
collections. In Proceedings of the 12th International
Conference on Extending Database Technology: Advances in
Database Technology , pp. 958-969. DOI:
10.1145/1516360.1516470.

[3] Anand, M. K.; Bowers, S.; Ludäscher, B. 2010. Techniques
for efficiently querying scientific workflow provenance
graphs. In Proceedings of the 13th International Conference
on Extending Database Technology, Vol. 10, pp. 287-298.
DOI: 10.1145/1739041.1739078.

[4] Ikeda, R.; Park, H.; Widom, J. 2011. Provenance for
generalized map and reduce workflows. In Online
Proceedings, Fifth Biennial Conference on Innovative Data
Systems Research (CIDR), pp. 273-283.

[5] Park, H.; Ikeda, R.; Widom, J. 2011. RAMP: A System for
Capturing and Tracing Provenance in MapReduce
Workflows. In Proceedings of the VLDB Endowment, 4(12),
1351-1354.

[6] Ogasawara, E.; Dias, J.; Oliveira, D.; Porto, F.; Valduriez, P.;
Mattoso, M. 2011. An algebraic approach for data-centric
scientific workflows. In Proceedings of the VLDB
Endowment, 4(12), 1328-1339.

[7] de Oliveira, D.; Ocana, K. A. C. S.; Baiao, F.; Mattoso, M.
2012. A Provenance-based Adaptive Scheduling Heuristics
for Parallel Scientific Workflows in Clouds. J. Grid Comput.
10(3):521-552. DOI: 10.1007/s10723-012-9227-2.

[8] Khaled Ahsan Talukder, A. K. M.; Kirley, M.; Buyya, R.
2009. Multiobjective differential evolution for scheduling
workflow applications on global Grids. Concurrency
Computat.: Pract. Exper. 21(13):1742-1756. DOI:
10.1002/cpe.1417.

[9] Truong, H. L.; Dustdar, S.; Fahringer, T. 2007. Performance
metrics and ontologies for Grid workflows. Fut. Gener.
Comput. Syst. 23(6):760-772. DOI:
10.1016/j.future.2007.01.003.

[10] Juve, G.; Chervenack, A.; Deelman, E.; Bharathi, S.; Mehta,
G.; Vahi, K. 2013. Characterizing and profiling scientific
workflows. Fut. Gener. Comput. Syst. 29(3):682-692. DOI:
10.1016/j.future.2012.08.015.

[11] Samak, T.; Gunter, D.; Goode, M.; Deelman, E.; Mehta, G.;
Silva, F.; Vahi, K. 2011. Failure Prediction and Localization
in Large Scientific Workflows. In Proceedings of the 6th
Workshop on Workflows in Support of Large-scale Science,
pp. 107-116. DOI: 10.1145/2110497.2110510.

[12] Moreau, L.; Clifford, B.; Freire, J.; Futrelle, J.; Gil, Y.;
Groth, P.; Kwasnikowska, N.; Miles, S.; Missier, P.; Myers,
J.; Plale, B.; Simmhan, Y.; Stephan, E.; Van den Bussche, J.
2011. The Open Provenance Model core specification (v1.1).
Fut. Gener. Comput. Syst. 27(6):743-756. DOI:
10.1016/j.future.2010.07.005.

[13] Garijo, D.; Gil, Y. 2012. Towards Open Publication of
Reusable Scientific Workflows: Abstractions, Standards and
Linked Data. Internal Project Report. Accessed on March
23, 2015 at: http://www.isi.edu/~gil/papers/garijo-gil-
opmw12.pdf.

[14] Missier, P.; Dey, S.; Belhajjame, K.; Cuevas-Vicenttín, V.;
Ludäscher, B. 2013. D-PROV: Extending the PROV
provenance model with workflow structure. In Proceedings
of the 5th USENIX Workshop on the Theory and Practice of
Provenance (TaPP '13), Article 9, 1-7.

[15] Lim, C.; Lu, S.; Chebotko, A.; Fotouhi, F. 2010. Storing,
reasoning, and querying OPM-compliant scientific workflow
provenance using relational databases. Fut. Gener. Comput.
Syst. 27(6):781-789. DOI: 10.1016/j.future.2010.10.013.

[16] Cuevas-Vicenttín, V.; Dey, S.; Wang, M. Y.; Song, T.;
Ludäscher, B. 2012. Modeling and querying scientific
workflow provenance in the D-OPM. In High Performance
Computing, Networking, Storage and Analysis (SCC), 2012
SC Companion Technology, pp. 119-128. DOI:
10.1109/SC.Companion.2012.27.

[17] Burtscher, M.; Kim, B.; Diamond, J.; McCalpin, J.;
Koesterke, L.; Browne, J. 2010. PerfExpert: An Easy-to-Use
Performance Diagnosis Tool for HPC Applications. In
Proceedings of the 2010 International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC'10), pp. 1-11. DOI: 10.1109/SC.2010.41.

[18] SYSSTAT. Accessed on March 23, 2015 at:
http://sebastien.godard.pagesperso-orange.fr/features.html.

[19] Blankenberg, D., et al.2001. Galaxy: A Web-Based Genome
Analysis Tool for Experimentalists, in Current Protocols in
Molecular Biology. John Wiley & Sons, Inc.

[20] Giardine, B., et al. 2005. Galaxy: A platform for interactive
large-scale genome analysis. In Genome Research, 2005.
15(10): p. 1451-1455.

[21] Goecks, J., et al. 2010. Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent
computational research in the life sciences. In Genome
Biology, 2010. 11(8): p. R86.

[22] Lud, B., et al. 2006. Scientific workflow management and
the Kepler system: Research Articles. In Concurr. Comput. :
Pract. Exper., 2006. 18(10): p. 1039-1065.

[23] Wilde, M., et al. 2011. Swift: A language for distributed
parallel scripting. In Parallel Comput., 2011. 37(9): p. 633-
652.

[24] Scheidegger, C.E., et al. 2008. Querying and re-using
workflows with VsTrails. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data.
2008, ACM: Vancouver, Canada. p. 1251-1254.

[25] Wolstencroft, K., et al. 2013. The Taverna workflow suite:
designing and executing workflows of Web Services on the
desktop, web or in the cloud. In Nucleic Acids Research,
2013.

[26] Chase, J., et al. 2009. Kepler + MeDICi Service-Oriented
Scientific Workflow Applications. In Proceedings of the
2009 Congress on Services - I. 2009, IEEE Computer
Society. p. 275-282.

[27] Tsaregorodtsev, A. 2014. DIRAC Distributed Computing
Services. In Proceedings of the 20th International
Conference on Computing in High Energy and Nuclear
Physics (CHEP2013). Journal of Physics: Conference Series
513 (2014) 032096. DOI: 10.1088/1742-6596/513/3/032096.

[28] Kerbyson, D. J., Alme, H. J., Hoisie, A., Petrini, F.,
Wasserman, H. J., & Gittings, M. 2001, November.
Predictive performance and scalability modeling of a large-
scale application. In Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (pp. 37-37). ACM.

[29] Williams, S., Waterman, A., & Patterson, D. 2009. Roofline:
an insightful visual performance model for multicore
architectures. Communications of the ACM, 52(4), 65-76.

[30] Nudd, G. R., Kerbyson, D. J., Papaefstathiou, E., Perry, S. C.,
Harper, J. S., & Wilcox, D. V. 2000. PACE—A toolset for
the performance prediction of parallel and distributed
systems. International Journal of High Performance
Computing Applications, 14(3), 228-251.

[31] Ipek, E., De Supinski, B. R., Schulz, M., & McKee, S. A.
2005. An approach to performance prediction for parallel
applications. In Euro-Par 2005 Parallel Processing (pp. 196-
205). Springer Berlin Heidelberg.

[32] Vuduc, R., Demmel, J. W., & Bilmes, J. 2001. Statistical
models for automatic performance tuning. In Computational
Science—ICCS 2001 (pp. 117-126). Springer Berlin
Heidelberg.

[33] Tallent, N. R., & Hoisie, A. 2014, June. Palm: easing the
burden of analytical performance modeling. In Proceedings
of the 28th ACM international conference on
Supercomputing (pp. 221-230). ACM.

[34] Nishtala, R., Vuduc, R. W., Demmel, J. W., & Yelick, K. A.
2007. When cache blocking of sparse matrix vector multiply
works and why. Applicable Algebra in Engineering,
Communication and Computing, 18(3), 297-311.

[35] Yotov, K., Roeder, T., Pingali, K., Gunnels, J., & Gustavson,
F. 2007, June. An experimental comparison of cache-
oblivious and cache-conscious programs. In Proceedings of
the nineteenth annual ACM symposium on Parallel
algorithms and architectures (pp. 93-104). ACM.

[36] Tiwari, A., Gamst, A., Laurenzano, M. A., Schulz, M., &
Carrington, L. 2014. Modeling the Impact of Reduced
Memory Bandwidth on HPC Applications. In Euro-Par 2014
Parallel Processing (pp. 63-74). Springer International
Publishing.

[37] Solomonik, E., Carson, E., Knight, N., & Demmel, J. 2014,
June. Tradeoffs between synchronization, communication,
and computation in parallel linear algebra computations. In
Proceedings of the 26th ACM symposium on Parallelism in
algorithms and architectures (pp. 307-318). ACM.

[38] Ballard, G., Buluc, A., Demmel, J., Grigori, L., Lipshitz, B.,
Schwartz, O., & Toledo, S. 2013, July. Communication
optimal parallel multiplication of sparse random matrices. In
Proceedings of the twenty-fifth annual ACM symposium on
Parallelism in algorithms and architectures (pp. 222-231).
ACM.

[39] Carson, E., Knight, N., & Demmel, J. 2013. Avoiding
communication in nonsymmetric Lanczos-based Krylov
subspace methods. SIAM Journal on Scientific Computing,
35(5), S42-S61.

[40] Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y.,
Kesselman, C., Mehta, G., Vahi, K., Berriman, G., Good, J.,
Laity, A., Jacob, J., Katz, D.2005. Pegasus: a Framework for
Mapping Complex Scientific Workflows onto Distributed
Systems, Scientific Programming Journal, 13:3, pp. 219-237,
2005.

[41] Hackenberg, Daniel, Robert Schöne, Thomas Ilsche, Daniel
Molka, Joseph Schuchart, and Robin Geyer. "An Energy
Efficiency Feature Survey of the Intel Haswell Processor."
(2015).

[42] Getov VS, DJ Kerbyson, MC Macduff, and A Hoisie. 2015.
"Towards an Application-Specific Thermal Energy Model of
Current Processors." In 3rd International Workshop on
Energy Efficient Supercomputing Held in conjunction with
SC15: The International Conference for High Performance
Computing, Networking, Storage and Analysis .(in press)

