
www.ci.anl.gov
www.ci.uchicago.edu

www.ci.anl.gov
www.ci.uchicago.edu

Application	Skeletons:	Constructing	and	Using	
Abstract	Many	Task	Applications	in	eScience	

Daniel	S.	Katz1,	Andre	Merzky2,	Zhao	Zhang3,	Shantenu	Jha2

1Computation	 Institute,	University	of	Chicago	&	Argonne	National	Laboratory
2RADICAL	Laboratory,	Rutgers	University
3AMPLab,	University	of	California,	Berkeley

d.katz@ieee.org,	 andre.merzky.net,	 zhaozhang@eecs.berkeley.edu,	
shantenu.jha@rutgers.edu

www.ci.anl.gov
www.ci.uchicago.edu

2

Motivation

• Computer	 scientists	who	build	tools	and	systems	need	to	work	on	
real	scientific	applications	 to	prove	the	effectiveness	 of	their	tools	
and	systems	
– And	often	vary	them	– change	problem	size,	etc.

• However,	 accessing	and	building	 real	applications	can	be	hard	(and	
isn’t	really	 the	core	of	their	work)
– Some	applications	(source)	are	privately	accessible
– Some	data	is	difficult	to	access
– Some	applications	use	legacy	code	and	are	dependent	on	out-of-date	

libraries
– Some	applications	are	hard	to	understand	without	domain	science	

expertise
– Real	applications	may	be	difficult	to	scale	or	modify	to	demonstrate	system	

trends	and	characteristics

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

3

Part	of	the	AIMES	Project
AIMES:	Abstractions	and	Integrative	Middleware	for	Extreme	Scales
• Goal

– Improve	principles	and	practice	of	distributed	dynamic	resource	
federation

• Motivation
– Identify	abstractions;	implement	 to	study	&	support	 federation
– Improve	dynamic	and	distributed	execution	 on	heterogeneous	 distributed	

computing	infrastructure	 (DCI)
o “How	will	my	application	perform	on	 this	DCI?”
o “How	can	I	best	adapt	my	application	 to	a	DCI?”
o “How	can	the	set	of	resources	DCI	best	adapt	to	my	application?”
o “Why	did	 the	system	allocate	this	DCI	to	my	application?
o “What	“variables”	matter	most	…	matter	least?

– Understand	 how	distributed	workload	execution	 can	be	managed
o Hypothesis:	 Using	middleware	that	supports	 the	integration	of	application-level	

and	resource-level	information
o Questions:	What	are	the	relevant	decisions,	 and	at	what	level	should	 they	be	

made?

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

4

AIMES	Approach
• Use	abstractions	that	can	be	flexibly	composed	and	support	a	

range	of	experiments,	including
– Skeletons represent	primary	DCI	application	 characteristics
– Resource	Bundles provide	 real-time	 info	on	state	of	diverse	

resources
– Pilot	Jobs	enable	dynamical	

distributed	 resource	
federation	&	management

– Execution	 strategy:	
temporally	 ordered	set	of	
decisions	 that	need	to	be	
made	when	executing	a	
given	workload

• Experiment	to	understand	
requirements	&	trade-offs

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

5

Skeleton	Target

• We	want	to	build	a	tool	so	that
– Users	can	quickly	and	easily	produce	a	synthetic	distributed	application	

that	represents	 the	key	distributed	characteristics	 of	a	real	application
o The	synthetic	application	should	have	task	type	(serial	or	parallel),	runtime,	I/O	

buffer,	I/O	quantity,	computation	and	I/O	interleaving	pattern	and	intertask
communication	that	are	similar	to	those	of	the	real	application

– The	synthetic	application	is	easy	to	run	in	a	distributed	environment:	
grids,	clusters,	and	clouds

– The	synthetic	application	should	be	executable	with	common	
distributed	computing	middleware (e.g.,	 Swift	and	Pegasus)	as	well	as	
the	ubiquitous	Unix	shell

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

6

Classes	of	Distributed	Applications

• Bag	of	Tasks:	a	set	of	independent	tasks
• MapReduce:	a	set	of	distributed	application	with	key-value	pairs	

as	intermediate	data	format
• Iterative	MapReduce:	MapReduceapplication	with	iteration	

requirement
• Campaign:	an	iterative	application	with	a	varying	set	of	tasks	

that	must	be	run	to	completion	in	each	iteration
• Multi-stage	Workflow:	a	set	of	distributed	applications	with	

multiple	stages	that	use	POSIX	files	as	intermediate	data	format
• Concurrent	Tasks:	a	set	of	tasks	that	have	to	be	executed	at	the	

same	time	(not	supported	by	current	work)

• Note	that	most/all	of	these	are	many-task	applications

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

7

Contributions

• An	application	abstraction	that	gives	users	good	
expressiveness	and	ease	of	programming	to	capture	the	
key	performance	elements	of	distributed	applications

• A	versatile	Skeleton	task	implementation	that	is	
configurable	(number	of	tasks,	serial	or	parallel	tasks,	
amount	of	I/O	and	computation,	I/O	buffer	size,	
computation	and	I/O	interleaving	options)

• An	interoperable	Skeleton	implementation	that	works	
with	mainstream	workflow	frameworks	and	systems	
(Swift,	Pegasus,	and	Shell)

• The	usage	of	Skeleton	applications	to	simplify	system	
optimization	implementation	and	highlight	their	impacts

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

8

Challenge

• Balance the ease of programming and usage with the
performance gap between Skeleton applications and real
applications

E
as

e
of

 P
ro

gr
am

m
in

g

Performance DifferenceSmall Large

E
as

y
H

ar
d

Real App

Skeleton
App

Simple
Model

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

9

An	Multi-Stage	Application	Example

• Applications	have	stages
• Each	stage	has	tasks

– Tasks	have	types	(serial/parallel)
– Tasks	have	computation	lengths
– Input/Output files	have	sizes
– I/O	is	through	buffers
– Input	files	can	be	(pre)	existing	files	or	

Output	files	from	previous	stages
– Computation	and	I/O	can	be	

interleaved

• Each	stage	has	input/output	 files
– Input	files	map	to	tasks	with	patterns

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

10

Skeleton	Abstraction

• Application	Skeletons	abstract	an	application	using	a	top-
down	approach:	an	application	is	composed	of	stages,	each	
of	which	is	composed	of	tasks.

• An	application	can	be	defined	by	a	configuration	file	
containing:
– Number	of	stages
– For	each	stage

o Task	types	(serial/parallel)
o Tasks	(number	and	computation	length)
o Number	of	processes	for	each	task
o Input	files	(number,	sizes,	and	mapping	to	tasks)
o Output	files	(number,	sizes)
o I/O	buffer	size
o Computation	and	I/O	interleaving	option

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

11

Skeleton	Tool	Design

• The	Skeleton	tool	is	implemented	as	a	parser.

Configuration	
File

Skeleton
Tool

Preparation
Scripts

Executables

Application
(Pegasus	DAG,
Swift	Script,

Shell	commands)

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

12

Task	Executable

• All	tasks	implemented	as	one	standalone	C	program	via	
parameters

• C	program	can	be	compiled	as	serial	with	GCC,		as	
parallel	with	MPICC	compiler.

• An	execution	example:
– task serial 1 5 65536 65536 1 1 0

Stage_1_Input/Stage_1_Input_0_1
Stage_1_Output/Stage_1_Output_0_1 4200000

– Path_to_Task Task_TypeNum_Processes Task_Length
Read_BufferWrite_BufferNum_InputNum_Output
Interleave_Option [Input_File]	[Output_FileOutput_Size]	

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

13

A	Bag	of	Task	Application	Example

1. Num_Stage =	1
2.
3. Stage_Name =	Bag
4. Task_Type =	serial
5. Num_Processes =	1
6. Num_Tasks =	4
7. Task_Length =	uniform	5
8. Read_Buffer =	65536
9. Write_Buffer =	65536
10. Input_Files_Each_Task =	1
11. Input_1.Source	=	filesystem
12. Input_1.Size	=	uniform	2100000
13. Output_Files_Each_Task =	1
14. Output_1.Size	=	uniform	4200000
15. Interleave_Option =	0

https://github.com/applicationskeleton/Skeleton/blob/master/src/sample-input/bag.input
Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

14

A	Bag	of	Task	Application	Example

• Other	options
– Task_Type can	be	parallel

o Task_Type =	parallel
– Task_Length can	be	a	statistical	distribution

o Task_Length =	normal	 [20,	3]
– Task_Length can	be	a	polynomial	function	of	input	file	
size
o Task_Length =	polynomial	 [20,	3]	Input_1
o 20*Input_1.Size^3

– Output	size	can	be	a	polynomial	function	of	Task_Length
o Ouptut_1.Size	 =	polynomial	 [10,	2]	Length
o 10*Length^2

– Interleaving_Option can	be	...

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

15

A	Bag	of	Task	Application	Example

• Interleaving_Optioncan	be

read sleep write

interleave-nothing:

interleave-read-compute:

interleave-compute-write:

interleave-all:

time

0

1

2

3

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

16

A	Multi-stage	Workflow

• Num_Stage =	3
• Stage_Name =	Stage_1
• …
• Stage_Name =	Stage_2
• …
• Write_Buffer =	65536
• Input_Files_Each_Task =	2
• Input_Task_Mapping =	combination	

Stage_1.Output_1	2
• …

• Stage_Name =	Stage_3
• …
• Input_Files_Each_Task =	6
• Input_Task_Mapping =	combination	

Stage_2.Output_1	6
• …

https://github.com/applicationskeleton/Skeleton/blob/master/src/sample-input/multi-stage.input

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

17

Input_Task_Mapping

• Specify	Input_Task_Mapping:
– Input_Task_Mapping =	combination	Stage_1_output_1	2
– Equivalent	to	“N	choose	k”	mathematically
– 4	files,	6	tasks	=>	

o file0,	file1	:	task0
o file0,	file2	:	task1
o file0,	file3	:	task2
o file1,	file2	:	task3
o file1,	file3	:	task4
o file2,	file3	:	task5

https://github.com/applicationskeleton/Skeleton/blob/master/src/sample-input/multi-stage.input
Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

18

Input_Task_Mapping

• If	Input_Task_Mapping is	not	specified
– Input_Files_Each_Task =	2
– Input_1.Source	 =	Stage_1.Output_1
– Input_2.Source	 =	Stage_1.Output_1

– Files	are	mapped	to	tasks	in	a	natural	order
– file0,	file1	:	task0
– file2,	file3	:	task1
– file4,	file5	:	task2
– file6,	file7	:	task3

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

19

Input_Task_Mapping

• External	mapping	option
– Input_Task_Mapping =	external	sample-input/mapping.sh
– cat	sample-input/mapping.sh

o echo	Stage_1_Output_0_1	 Stage_1_Output_0_2
o echo	Stage_1_Output_0_1	 Stage_1_Output_0_3
o echo	Stage_1_Output_0_1	 Stage_1_Output_0_4
o echo	Stage_1_Output_0_2	 Stage_1_Output_0_3
o echo	Stage_1_Output_0_2	 Stage_1_Output_0_4
o echo	Stage_1_Output_0_3	 Stage_1_Output_0_4

– The	ith line	maps	to	the	ith task

https://github.com/applicationskeleton/Skeleton/blob/master/src/sample-input/external-mapper.input
Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

20

A	Single	Stage	Iterative	Application

Num_Stage =	1

Stage_Name =	Stage_1
Task_Type =	serial
Num_Tasks =	4
Task_Length =	uniform	10
Num_Processes =	1
Read_Buffer =	65536
Write_Buffer =	65536
Input_Files_Each_Task =	1
Input_1.Source	=	filesystem
Input_1.Size	=	uniform	1048576

Output_Files_Each_Task =	1
Output_1.Size	=	uniform	1048576

Interleave_Option =	0
Iteration_Num =	3
Iteration_Stages =	Stage_1
Iteration_Substitute =	Stage_1.Input_1,	Stage_1.Output_1

https://github.com/applicationskeleton/Skeleton/blob/master/src/sample-input/single-stage-iterative.input

Stage_1.Input_1	and	
Stage_1.Output_1	 should	have	
IDENTICAL	number	of	files

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

21

A	Multi	Stage	Iterative	Application

https://github.com/applicationskeleton/Skeleton/blob/master/src/sample-input/multiple-stage-iterative.input

Stage_Name =	Stage_3
Task_Type =	serial
Num_Tasks =	6
Task_Length =	uniform	32
Num_Processes =	1
Read_Buffer =	65536
Write_Buffer =	65536
Input_Files_Each_Task =	1
Input_1.Source	=	Stage_2.Output_1

Output_Files_Each_Task =	1
Output_1.Size	=	uniform	1048576

Interleave_Option =	0
Iteration_Num =	3
Iteration_Stages =	Stage_3,	Stage_4
Iteration_Substitute =	Stage_3.Input_1,	

Stage_4.Output_1

Stage_Name =	Stage_4
Task_Type =	serial
Num_Tasks =	6
Task_Length =	uniform	32
Num_Processes =	1
Read_Buffer =	65536
Write_Buffer =	65536
Input_Files_Each_Task =	1
Input_1.Source	=	Stage_3.Output_1

Output_Files_Each_Task =	1
Output_1.Size	=	uniform	1048576

Interleave_Option =	0

Stage_3.Input_1	and	Stage_4.Output_1	 should	
have	IDENTICAL	number	of	files

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

22

Determining	Skeleton	Parameters	Manually

• Steps
– Place	I/O	files	on	RAM	disk,	use	Unix	time
command	to	measure	run	time

– Use	Unix	strace command	to	find	number	of	reads	
and	writes,	total	data	read	and	written

– Align	I/O	calls	in	sequence	order1 to	determine	I/O	
concurrency,	I/O	buffer	size,	and	interleaving	option

1Z.	Zhang,	D.	S.	Katz,	M.	Wilde,	J.	Wozniak,	I.	Foster.	MTC	Envelope:	Defining	the	Capability	 of	
Large	Scale	Computers	 in	the	Context	of	Parallel	Scripting	Applications,	 Proceedings	 of	22nd	
International	 ACM	Symposium	on	High-Performance	Parallel	and	Distributed	Computing	
(HPDC'13),	2013

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

23

Determining	Skeleton	Parameters	Automatically

• Wrap	task	in	a	profiler	(uses	Linux	perf,	hardware	
and	kernel	counters,	system	tools)
– Measure	resource	consumption	over	time	as	profile:	
timed	sequence	of	CPU	cycles,	memory	and	disk	I/O	
operations

– Dependencies	between	compute	and	I/O	implicitly	
captured	in	profile	in	order	of	the	sequence

• Profiles	are	system	independent	
– Assuming	comparable	optimization	at	software	and	
hardware	levels

• Profile	metrics	are	suitable	as	input	for	emulation

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

24

Skeleton	Apps	vs.	Real	Apps

• Applications:
– Case	1:	a	6x6	degree	image	mosaic	in	Montage
– Case	2:	the	first	256	queries	of	NRxNR test	in	BLAST
– Case	3:	partial	seismic	study	of	CyberShake
postprocessingon	site	Test

• Platform	configuration:
– 64	compute	nodes	on	IBM	Blue	Gene/P
– Tasks	are	launched	with	AMFORA[1]
– Each	task	stages	input	file	from	GPFS,	execute	the	
task,	then	writes	the	output	files	to	GPFS

[1]	Zhao	Zhang,	Daniel	S.	Katz,	Timothy	G.	Armstrong,	Justin	M.	Wozniak,	and	Ian	T.	Foster.	"Parallelizing	the	execution	of	sequential	scripts.”
Proceedings	of	the	International	Conference	for	High	Performance	Computing,	Networking,	Storage	and	Analysis	(SC13).	2013.

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

25

Montage	Statistics

#
Tasks

#	
Inputs

#	
Output
s

Input	
(MB)

Output	
(MB)

Skeleton	
Task Length
(uniform)

Interleaving
Option

Error in	
Stage

mProject 1319 1319 2594 2800 10400 11.6 0 -0.2%

mImgtbl 1 1297 1 5200 0.8 30.1 0 -2.1%

mOverlaps 1 1 1 0.8 0.4 9.1 0 -0.2%

mDiffFit 3883 7766 7766 31000 487 1.8 0 -3.3%

mConcatFit 1 3883 1 1.1 4.3 2.1 0 -1.5%

mBgModel 1 2 1 4.5 0.07 288 0 0.03%

mBackground 1297 1297 1297 5200 5200 0.4 0 -1.6%

mAdd 1 1297 1 5200 7400 519 0 -0.9%

Total -1.3%

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

26

BLAST	Statistics

#
Tasks

#	
Inputs

#	
Output
s

Input	
(MB)

Output	
(MB)

Skeleton	
Task Length

Interleaving
Option

Error in	
Stage

split 1 1 64 3800 3800 0 3 -1.9%

formatdb 64 64 192 3800 4400 uniform	42 3 -0.6%

blastp 1024 4096 1024 70402 966 normal	
[109.2,	
14.9]

3 1.6%

merge 16 1024 16 966 867 normal	
[4.4,	4.1]

3 1.1%

Total 1.4%

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

27

CyberShake PostProcessing Statistics

#
Tasks

#	
Inputs

#	
Output
s

Input	
(MB)

Output	
(MB)

Skeleton	
Task Length

Interleaving
Option

Error in	
Stage

Extract 128 130 256 5400 11000 uniform
6.39

0 2.6%

Seis 4096 4352 4096 11000 96 normal
[26.9,	
13.3]

0 2.4%

PeakGM 4096 4096 4096 96 1.4 uniform	
0.23

0 2.3%

Total 2.4%

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

28

Using	Application	Skeletons

• Data	Caching
– Comparing	shared	file	system	(PVFS)	and	in-memory	
file	system	(AMFORA)	performance	for	mProjectPP

– Using	64	n1-highmem-2	instances	on	Google	
Compute	Engine	(GCE)

PVFS AMFORA Improvement

mProjectPP-real 285.2	seconds 100.9	seconds 63.0%

mProjectPP-skeleton 273.7	seconds 101.3	seconds 64.6%

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

29

Using	Application	Skeletons

• Task	Scheduling
– Data-aware	scheduling	vs.	FIFO
– Using	16	n1-highmem-2	GCE	instances

• mProjectPP-real	has	0.7%	improvement
• mProjectPP-skeleton	has	1.6%	improvement

• Used	skeletons	to	show:	5x	larger	input	file	size	
=>	16.4%	time-to-solution	improvement	with	
data-aware	scheduling

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

30

Using	Application	Skeletons

• I/O	Tuning
– Multiple	metadata	server	vs.	Single	metadata	server
– Using	16	n1-highmem-2	instances

• mProjectPP-real	shows	1.1%	improvement
• mProjectPP-skeleton	shows	1.2%	improvement

• Use	skeletons	to	show:	10x	shorter	task	length
=>	31.2%	improvement	for	multiple	metadata	
servers

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

31

Related	Work

• Simplify	parallel	application	code
– Extract	kernels:	NAS	Parallel	Benchmarks,	Berkeley	
Dwarfs/Motifs,	CORAL	benchmarks,	etc.

– Simplify	non-kernel	part	of	app:	Kerbyson (SC12),	Worley	
(SC94),	miniapps (e.g.,	Mantevo,	MADbench)

• Simplify	parallel	applications	in	time
– Sodhi (Cluster	2008)

• Use	system	traces	in	place	of	applications
– Chen	(VLDB12),	Harter	(FAST14),	Ouserhout (NSDI15)

• Skeleton-like	approaches
– Skel (for	I/O),	Tigres (distributed	app	templates),	WGL	(similar	
to	our	work,	but	simpler)

• Other	work	that	used	the	term	skeleton
• See	FGCS	paper	for	comparisons

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

32

Conclusion
• Skeleton	 tool	can	compose	 skeleton	 application	in	a	top-down	

manner:	 application,	 stage,	task
• Skeleton	 task	abstraction	allows	specification	of	task	type,	task	length,	

number	of	processes,	 I/O	buffer,	 I/O	quantity,	 interleaving	 option,	and	
file	number

• Can	create	easy-to-access,	 easy-to-build,	 easy-to-change,	 and	easy-to-
run	bag-of-tasks,	 (iterative)	map-reduce,	 and	(iterative)	multi-stage	
workflow	 applications

• Skeleton	applications	 can	be	easily	 shared,	making	middleware	 and	
tool	experiments	 more	reproducible

• Skeleton	applications	have	performance	 close	to	that	of	the	real	
applications	with	an	overall	 error	of	-1.3%,	1.5%,	and	2.4%	for	
Montage,	BLAST,	and	CyberShake PostProcessing

• Skeletons	 can	show	the	effectiveness	 of	system	improvements	 such	as	
data	caching,	task	scheduling,	 I/O	tuning

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

33

Future	Work

• Use	application	trace	data	to	produce	skeleton	
applications

• Determine	a	way	to	represent	the	computational	work	
in	a	task	that	when	combined	with	a	particular	
platform	can	give	an	accurate	runtime	for	that	task

• Support	concurrent	tasks	that	need	to	run	at	the	same	
time	to	exchange	information

• Test on	distributed	systems	where	latencies,	particular	
file	usage,	and	other	issues	may	be	more	important	
than	on	the	parallel	systems	and	cloud	environments

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

34

References
• Software:

– The	Skeleton	 tool	is	open	source	at:	
https://github.com/applicationskeleton/Skeleton	

– v1.2	published	as:	D.	S.	Katz,	A.	Merzky,	M.	Turilli,	M.	Wilde,	Z.	Zhang	
2015.	Application	Skeleton	v1.2.,	DOI:	10.5281/zenodo.13750

– Try	it!	Contribute	 to	it!
• Papers:

– Z.	Zhang	and	D.	S.	Katz,	"Application	Skeletons:	Encapsulating	MTC	
Application	Task	Computation	and	I/O,”	Proceedings	 of	6th	Workshop	on	
Many-Task	Computing	on	Grids	and	Supercomputers	 (MTAGS),	 2013.

– Z.	Zhang,	D.	S.	Katz,	"Using	Application	Skeletons	 to	Improve	eScience	
Infrastructure,"	 Proceedings	of	10th	IEEE	International	 Conference	 on	
eScience,	2014.	DOI:	10.1109/eScience.2014.9

– D.	S.	Katz,	A.	Merzky,	Z.	Zhang,	S.	Jha,	"Application	Skeletons:	
Construction	and	Use	 in	eScience,"	 Future	Generation	 Computing	
Systems,	2015.	DOI:	10.1016/j.future.2015.10.001

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

www.ci.anl.gov
www.ci.uchicago.edu

35

Acknowledgements

• This	work	was	supported	in	part	by	the	U.S.	
Department	of	Energy	under	the	ASCR	award	DE-
SC0008617	(the	AIMES	project)

• It	has	benefited	from	discussions	with	Matteo
Turilli,	Jon	Weissman,	and	Lavanya Ramakrishnan

• Computing	resources	were	provided	by	the	
Argonne	Leadership	Computing	Facility

• Work	by	Katz	was	supported	by	the	National	
Science	Foundation	while	working	at	the	
Foundation.	Any	opinion,	finding,	and	conclusions	
or	recommendations	expressed	in	this	material	are	
those	of	the	author(s)	and	do	not	necessarily	reflect	
the	views	of	the	National	Science	Foundation

Application	Skeletons:	Constructing	and	Using	Abstract	Many	
Task	Applications	in	eScience	

