Energy Prediction for I/0 Intensive
Workflow Applications
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The user can extract the
maximum platform
performance ...




An Example
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Our goal:

SUupport for storage
configuration/provisioning

decisions

Success metrics:
[time] Application turnaround time, Total CPU time
[energy] Energy, Energy-delay product



Background: The Workload
ManyTask Applications
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Background: The runtime platform
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Backend Filesystem (e.g., GPFS, NFS)

L Costa, H. Yang, E. Vairavanathan, A. Barros, K. Maheshwari, G. Fedak, D.S. Katz, M. Wilde, M. Ripeanu, S. AI—Kiswa%y,
The Case for Workflow-Aware Storage: An Opportunity Study using MosaStore, Journal of Grid Computing 2014.



Solution Overview

What.../f... e
Analysis for —=>\T7-
Configuration -
Recommended
Configuration(s)
Predictor

Model Seeding

= |dentify performance
characteristics of the platform
) (a.k.a. system identification)




Workload Description

Application Analysis for N2
/ \ Configuration -
_»_\”j,& poad Reco_mme_nded
T/ Configuration(s)
race i
\ <~ _ *j Predictor
Seeding Scripts |
o e
— \/“ = |/O trace per task (reads, writes)
Platform » Task dependency graph
description

Preprocessing
= Aggregates |/O operations
» Infers computing time
= [nfers scheduling overhead



Storage System Model
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Key Model Properties:

= Generic: all object-based storage architectures:
= Uniform: all system services modelled similarly
= Coarse: thus more scalable



How well does this work?

Predicting application turnaround time
and total CPU cost for a complex

application atlarge scale
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Time vs.
Allocation Cost

Application time in seconds
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Taking advantage of detailed predictions
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Predictiom

Performance
Predictor
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Estimates: Application
turnaround runtime

Internally: time per-operation
= Compute

= Network /0

= Storage

System
Configu ratiy

Estimating energy
Is possible with
power information
for these states

= Supporting Storage Configuration for I/0 Intensive Workflows, L. Costa, S. Al-Kiswany, H. Yang, M. Ripeanu, ICS'14
=  Predicting Intermediate Storage Performance for Workflow Applications, .L Costa, S. Al-Kiswany, A. Barros, H. Yang,

M. Ripeanu, PDSW'13,
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Methodology - Building Energy Consumption

Predictor
. Sotxces of inaccuracies
\Z2) Prediction Fr odel Simplification
Workload / (mewxgdata, scheduling, ...)
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Evaluation - Platform

Grid5000 Lyon site

Idle piate 91.6W

e Taurus Cluster (11 nodes) App prr _ pidle | 33 G\
two 2.3GHz Intel Xeon E5-2630 CPStéeagh W@h | P79 — pidic | 37 4W
32GB memory, 10 Gbps NIC Net transfer | pret — PZ??C”6 36.1W

e Sagittaire Cluster (16 nodes)

two 2.4GHz AMD Opteron CPUs (each with one core),
2GB RAM and 1 Gbps NIC

e SME Omegawatt power-meter per Node
0.01W power resolution at 1Hz sampling rate




Evaluation sample: What is the energy and performance
impact of CPU throttling? Is it application-specific?

BLAST: CPU Intensive

Blast DB Queryfile1 Queryfile2 Queryfilen

Qutput1 Output2 Qutputn

Pipeline: I/O Intensive

Pipeline

1GB 1GB |
2GB 2GB |
2GB 2GEB !

Frequency Levels: 1200MHz, 1800MHz, 2300MHz

Energy

= Actyal == Predicted

N Throtling a bad idea

Energy Conusmption (kJ

o — -

T T
1200 1800 2300

CPU frequency (MHz)

Energy

et At == === Predicted

-

Throtling a good idea

Energy predictions accurate enough to
support configuration decisions




Summary

Intermediate Storage System
Configuration and provisioning for one application
Our prototype: MosaStore

Minimalist Model + Simple seeding
Leverages applications’ characteristics
Easy to use, Low-runtime

Accuracy adequate to support correct
configuration and provisioning decisions

Code & papers at: NetSyslLab.ece.ubc.ca
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Backup Slides

Synthetic = Supporting
Benchmarks Development

Real Applications » Data Deduplication
Other Scenarios » Data Deduplication
Scalability Energy

Energy Prediction " Methodology:
_imitations Development
related Work = More on MosaStore
~uture Work
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Modeling: Life is a trade-off

More Fewer Details
Details

1

|

Accuracy

. J
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Storage System Model

Service queue

- b =

Properties:
= General
= Uniform

- = Coarse -
Serviteurmes percrnurnkrreeded

= Read/Write for Client and
Storage

= Open for Manager
= Local/Remote for Network



Model Parameters

System Deployment

Number of Storage Nodes NE™m
Number of Client Nodes Nelh
Collocation of Storage and Client Modules | Colloc
Performance
Manager Service Time ma
Storage Module Read Service Time psmread
Storage Module Write Service Time psmvite
Client Service Time Tol
Remote Network Service Time remNet
locNet

Local Network Service Time

[l
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Workload Description

Input
— 1/0 trace per task (reads, writes)
— Task dependency graph

Preprocessing
— Aggregates I/O operations
— Infers computing time
— Infers scheduling overhead



Evaluation

Success Metrics
Accuracy (time, cost)
Time to predict

Workloads

Synthetic benchmarks
Real applications

Testbed
NetSysLab - 20 nodes e 8
Grid 5K - 101 nodes



Synthetic Benchmarks
Pipeline . Broadcast

S - 1 Actual To R ﬂ'

&3 Predicted T o _
S ﬁ--ﬁ. i o 1= ?_'_7—|—

> 1% Y. A

W o — \7 o \/\

N N NN
A N NN
N TAVATANA
\ﬂ §¢\ N

71NN S TN

IONDON, [7ANN NN
Common patterns iﬁ he structure of workflows

I/0 only to stress the storage system




What about a real application?

30



Simple Application

BLAST

200 queries (tasks) over a DNA database file,
then reduce

Impact of different parameters
# of storage nodes, # of clients
chunk size



Application time in sec
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What is the impact of handling a
complex application at large scale?

34



Application time in seconds

Montage Performance
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Average time (sec)
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Pipeline on 100 nodes
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Spinning Disks
[Add summary from thesis]
SDD trend
Supercomputers have no HDDs

Other solutions for RAM-based
— E.g., Tachyon has grown



Spinning Disks: Worst Case
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Other Scenarios

Various testbeds and benchmarks
— Similar results

Online enabling data deduplication for
checkpointing applications

Energy Prediction

— Power consumption profile approach

— Workflow: Synthetic benchmarks have ~13% error;
smaller Montage, ~26%

— Deduplication: Misprediction costs up to 10%

40



Time(ms)

Predictor Scalability

« Summary of the text

Weak scaling based on large workload
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Execution States:

|dle

Network Transfer

/0O ops (read, write) —— AEsfﬂmge

Task Processing

Energy Model

Energy
—_ Eidfe‘

T Eﬁ'ef

—_— T Eapp

Power Profile *
Predicted Times

p;.dﬁe " Tmma
(pnef. - p’édfﬂ) " I:mf

—_— (Psta-mge . pédfﬁ) N Tlsfa-mge
1

(p.'—’lpp . Pi-dEE) % T.fl-p-p

42



How to seed the energy model?

Power states

- uses synthetic benchmarks to get
the power consumption in each state

Time estimates

- augments a performance predictor
to track the time spent in each state.



Building Energy Predictor

s of inaccuracies
| Simplification
ta, scheduling, ...)

\;‘, Predictiomﬂ

Workload
Description Performance
\?/L——P Predictor
Platform Predicted Energy
Performance = Inputs . .
Time Prediction

characteristics

\_

T

p T

System_ latform Power
Sonfiguration / Characteristics

homaogeneity,
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Energy Evaluation: Testbed

dle prate 91.6W
App PiApp _ P,fdle 33.6W
Storage I/0 | P*r%9¢ — pidle | 37 4W
Net transfer|  pret — pidie | 36 1W

Taurus Cluster (11 nodes)

two 2.3GHz Intel Xeon E5-2630 CPUs (each with 6 cores),

32GB memory, 10 Gbps NIC

Sagittaire Cluster (16 nodes)

two 2.4GHz AMD Opteron CPUs (each with one core),

2GB RAM and 1 Gbps NIC

SME Omegawatt power-meter per Node

0.01W power resolution at THz sampling rate




Energy Consumption (KJ)
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Energy Prediction Evaluation
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Figure 3.20: Actual and predicted average energy consumption and execution
time for BLAST for various CPU frequencies.
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Figure 3.21: Actual and predicted average energy consumption and execution
time for the pipeline benchmark for various CPU frequencies.
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Supporting Development

Can the preitor guide profiling ‘
and debugging efforts?

49



Development Flow

="' Unit/System Did it passthe-Yes peEEtieand Run
Implementation Performance
Tests tests?
or Bug Fx Tests

Is Code
Review

No Submit Code to

Review

Yes

Commit

yd

Code Repository
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Development Evolution

Pipeline Reduce

n
DDDDDDDDDD

=

%
o
0

Up to 30% improvement
Up to 10x smaller variance




Future Work

Enhance Automation for Workflows
Heterogeneous Environment
Virtual Machines

Study on Support for Development
Applications out of Comfort Zone

GPU and Content-Based Chunking for Deduplication



Limitations

“Short” tasks

Sensitive to any ‘noise’ or scheduling overhead
e.g., up to 40% error in a Montage phase

At least one whole execution
Limits heterogeneity exploration

Potentially, different network topologies

Old spinning disks



Sources of Inaccuracies

Source

Examples

Storage system

Fine granularity for the activity inside each
component, detailed execution path, or
maintenance services such as failure detection and
garbage collection.

Infrastructure Contention at the network fabric level, complex
network topology, or detailed scheduling overhead.

Application Tasks launched at the same time, absence of faults
by crash, or machines with degraded performance.

System Assumptions about client and storage service times.

identification
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Related Work: Different Target

Storage enclosure focused vs. distributed (e.g., HP
Minerva)

Focus on per I/O request (e.g., average of many)
Lack prediction on the total execution time

Not on workflow applications, or data deduplication
(e.g., Herodotou "11)

Guide configuration using actual executions or ‘machine-
learning’ models (e.g., Behzad "13, ACIC “14)



Approaches

Properties

Modeling

Simulations

Analytical Models

White-Box

Fine Granularity

Less Data

More Exploratory

Detailed Seeding

Machine Learning

Black-Box

Coarse Granularity
More Data (to train)

Close Already Deployed

Application-Level Seeding

56



Architecture

B
Application BX
i
—\=
|
Trace .y What.Jf. > (&2

Seeding Scripts Predicted
1 Performance

#storage nodes, #clients,
storage collocated, chunk
size, data placement policy,
cache size, stripe width,
replication level

Platform
description

Scheduling: workqueue,
workqueue + data aware.
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Data Deduplication

Storage technique to save storage space
and improve performance

Space savings can be as high as:
— 60% for a generic archival workload'
— 85% for application checkpointing?
— 95% for a VM repository?3

1S.Quinlan and S. Dorward, “Venti: A new approach to archival data storage,” FAST '02.
2S. Al-Kiswany et al. “stdchk: A checkpoint storage system for desktop grid computing,” ICDCS, 2008.
3A Liguori, EV Hensbergen. "Experiences with content addressable storage and virtual disks, (WIOV), 2008.



Data Deduplication

* It performs hash computations over
data to detect data similarity

— Saving storage space

* It has computational overhead, but
it can reduce |I/O operations

— Improving performance
— Impact on energy?



Deduplication for Checkpointing?

Checkpointing writes multiple snapshots
Snapshots may have high data similarity

Deduplication detects similarity to save
storage space and network bandwidth, but
has high computational cost

60



Optimizing for Time

5
-+-OFF
3 ~+-ON
£ 4 AUTO
2
=
E 3 — — — + e . *
(=B T,
w
5 Analytical Model:
o 2 . .
o Hashing cost paid
Z off by savings with
|/0O operations
1

0 01 0.2 03 05 06 0.7 0.8 1

Similarity
1L.B. Costa and M. Ripeanu, “Towards automating the configuration of a distributed storage syster&,”
2010 11th IEEE/ACM International Conference on Grid Computing, |EEE, 2010, pp. 201-208.



What cases will lead to energy savings, if
any?

What is the performance impact of
energy-centric tuning?

What is the impact of more energy
proportional hardware?



Energy Study - Methodology

« Empirical evaluation on a distributed
storage system

« |dentify break-even points for
performance and energy

» Provide a simple analytical model



Test Bed

Processor | Processor Memory |Power
Launched
Old Q4'06 Xeon E5395 | 8GB
(Clovertown)
@ 2.66GHz
New Q1’09 Xeon E5540 | 48GB
(Nehalem) @
2.53GHz

Both: Similar NIC 1Gbps and 7200 rpm SATA disks

64



Synthetic Workload

* It varies similarity ratios

* It covers similarity ratios of several
applications

0 01 02 03 04 05 06 07 08 0.9 1

Maximum Similarity ratio



What cases will lead to energy savings, if
any?

What is the impact of more energy
proportional hardware?



Energy

25007
@ Deduplication ON
Deduplication OFF
2000t
1soo~-\‘\
1000t
*Old” testbed “New" testbed

5(

Break-even points are different
Newer machines save more energy

I IILy L A4
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What is the performance impact of
energy-centric tuning?



Time per write (seconds)

even point for energy

“Old%testbed

® On
Off

“New" testbed

Similar performance
Farther break-even points

= e

Similarity ratio
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Summary of Evaluation

Deduplication can save energy

Newer machines showed little difference for
performance, larger difference for energy

— Energy proportional hardware

Break-even points for performance and energy
are different

— Trend to be farther



Model Input and Output

Simple benchmarks provide information on:
— Time to write and hash a block
— Power to write and hash a block

Model gives the similarity ratio of the break-
even point



Energy consumption per write (joules)

Actual vs. Model - Old test
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Energy consumption per write (joules)

Actual vs. Model - New test
hed
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Energy - New testbed
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Time per write (seconds)

Write Time - New testbed
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Break-even point for energy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Similarity ratio

76



Time per write (seconds)

Write Time - Old testbed
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Figure 1. Average energy consumed and time to write a 256MB file for different similarity levels in the ‘new’ testbed. Note: Y axes do not start at 0.
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Figure 2. Average energy consumed and time to write a 256MB file for different similarity levels in the “old” testbed. Note: Y axes do not start at 0



Methodology: Development
Unit tests

System tests

Code reviews

Some TDD



Workflow Applications on a
Shared Storage

Simplicity for development, and debugging

— Application can be developed on a single
workstation, and deployed on a cluster without
changes

Support for legacy applications

— Stages or binaries can be easily integrated, since
the communication via POSIX

Support for fault-tolerance

— Keeping the task's input files and launching a new
execution of the task, potentially on a different
machine



Platform Example - Argonne
BlueGene/P

GPES 2.5K 10 Nodes 160K cores

|O rate : 8GBps = 51KBps / core

10 Gb/s

_I_ Switch

Complex

24 servers

Nodes dedicated to an application
Storage system coupled with the application’s execution
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WOSS Deployment

Application hints
Workflow (e.g., indicating access patterns)

Runtime
Engine
5 i Compute Nodes
Storage hints
(e.g., location  |App. taskl ﬁpp tas) P\pp task
/nformat/on) —_—— e

___________________ =
POSIX API ¥ Local Local Local |
storage storage storage |

I

I

| Workflow-Optimized Storage (shared)

—— — —— T—
T — — — — — — — — — — — — — —

Stage In/Out

Backend Filesystem (e.g., GPFS, NFS)




Execution Path: Client Example

=

—
Client / Manager
[ Application ] [ SAl ]S w
Userspace |t \
Kernel ¥
" ws | \w

P11

nodes

Many components
Network stack gets more complex
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Building a Predictor

Fine

Granularity Coarse |

Approaches

7| p
.f-_f Component (Detailed)
} S
8_ Ve’ ® 5RX /o= - black-bBo
© [Freedom Exploratory Training-Coupled
o
More Information Explanatory Less Information
[Simulation ] Analytical Models Machine Learning
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System Working

Workflow

¢ Runtime Client Client/Storage
209
| - l ! !
o .
? ¥ - — An I/O operation
] touches several
> - =— components
Storage Storage
Manager

There are several tasks in parallel
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Modeling: Leveraging the

Context

Focus is on application’s overall

performance
— Per I/0 request accuracy is less important

Tasks have distinct phases (read, compute,
write)
— Aggregate operations

Tasks’ I/0 operations have coarse
granularity



Thanks for the Pictures

Flight deck - prayitno

http://www.flickr.com/photos/34128007

@NQ4/5292213279/

http://www.flickr.com/photos/twmlabs/28

2089123/

http://commons.wikimedia.org/wiki/File%

3ABalancec

SCd

By Perhelion
Commons

CCO]

e_of_Justice.svg
, via Wikimedia
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