Energy Prediction for I/O Intensive Workflow Applications

Hao Yang, Lauro Beltrão Costa, Matei Ripeanu

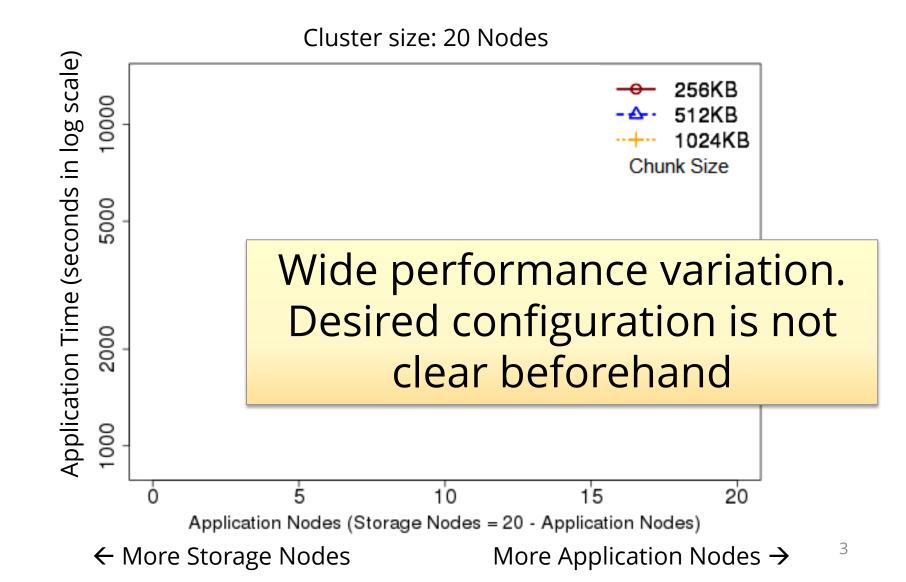
NetSysLab Electrical and Computer Engineering Department The University of British Columbia

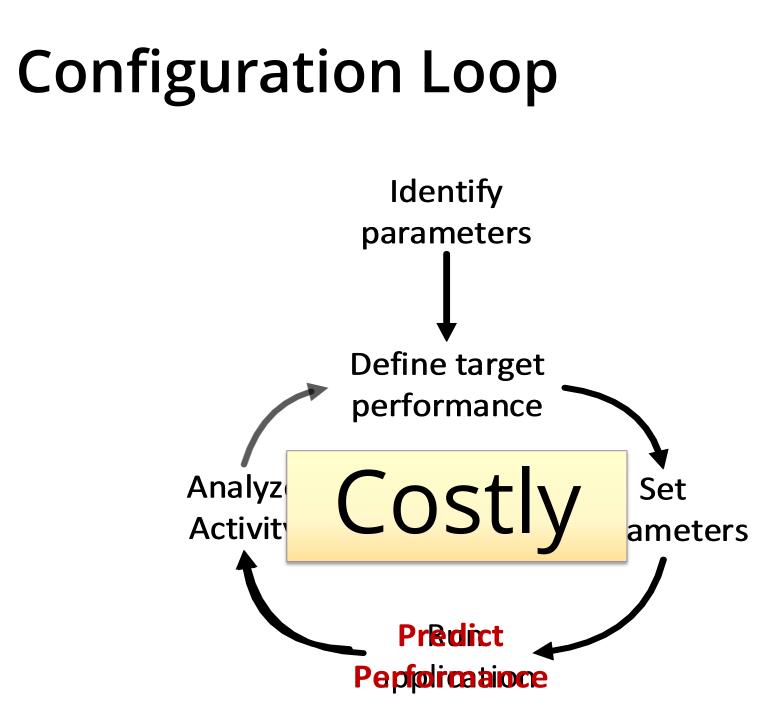
Electrical and Computer Engineering

The user can extract the maximum platform performance ...

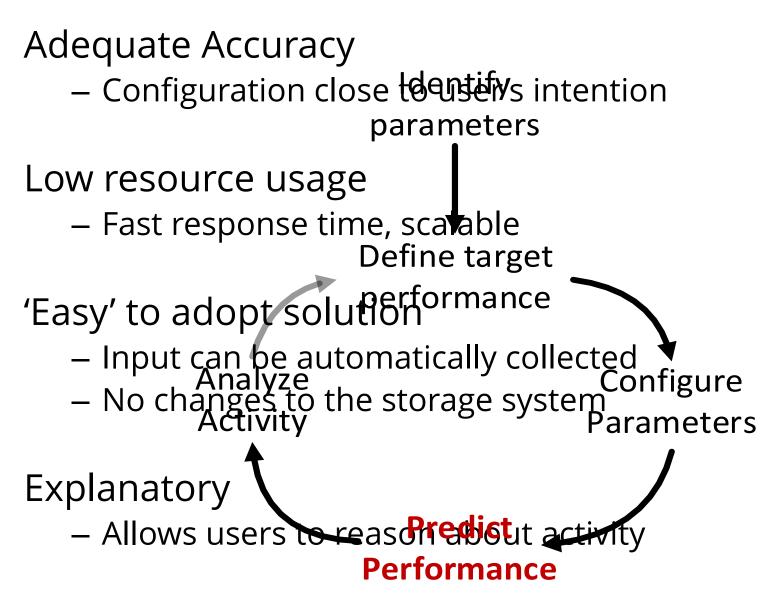
... but he has to configure it!

An Example





Requirements

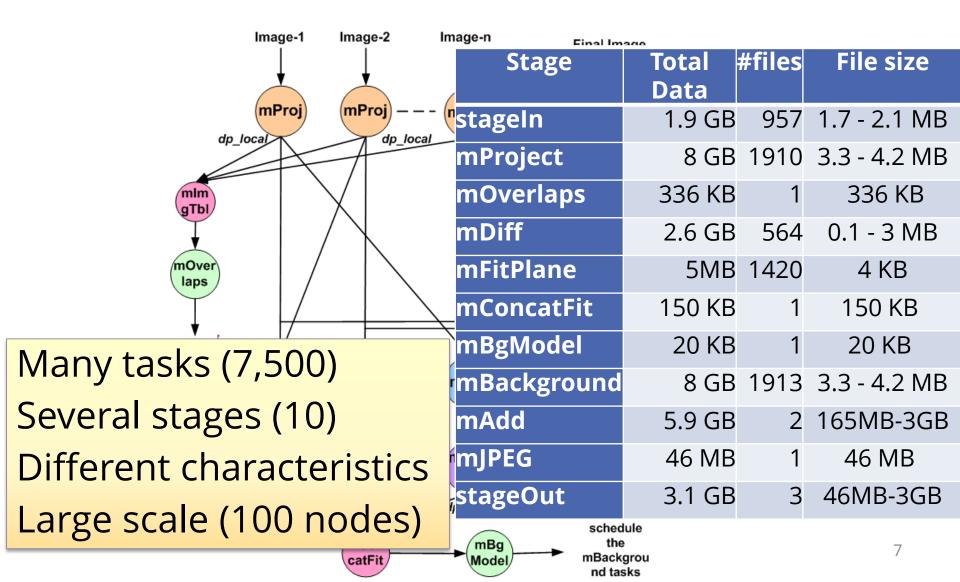


Our goal:

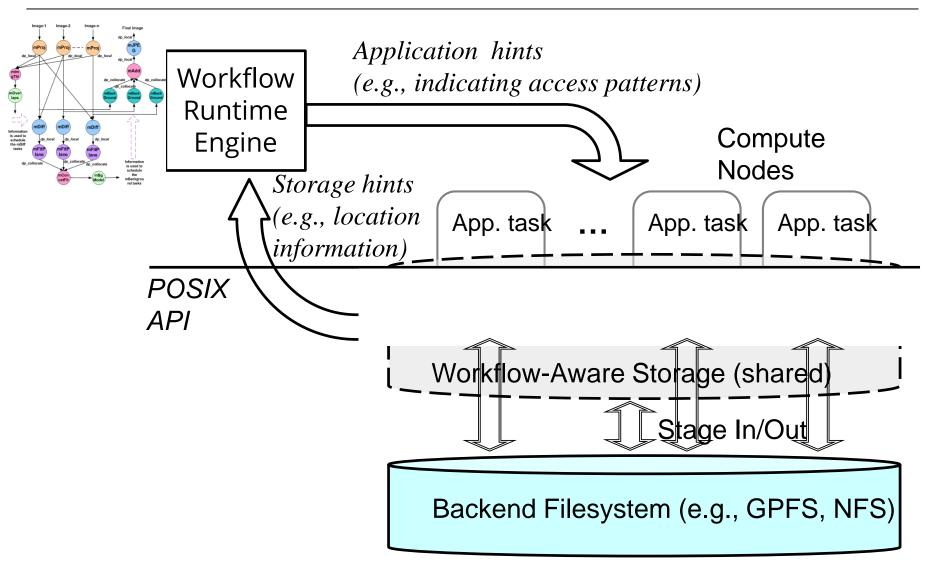
Support for storage configuration/provisioning decisions

Success metrics: [time] Application turnaround time, Total CPU time [energy] Energy, Energy-delay product

Background: The Workload ManyTask Applications

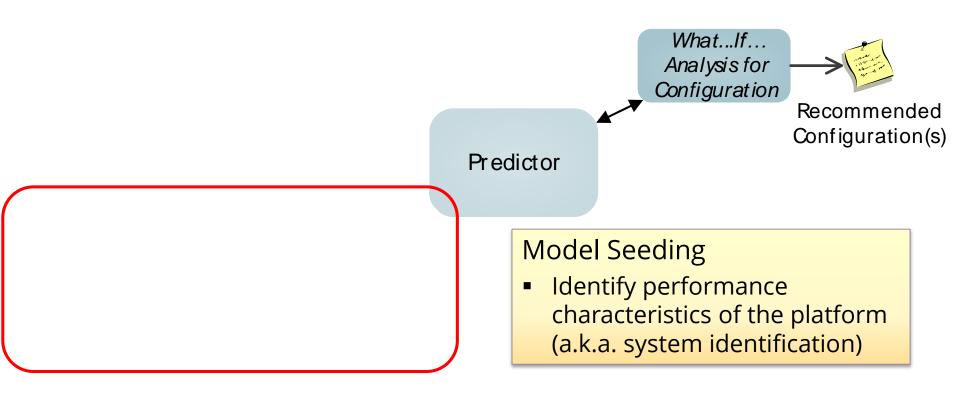


Background: The runtime platform

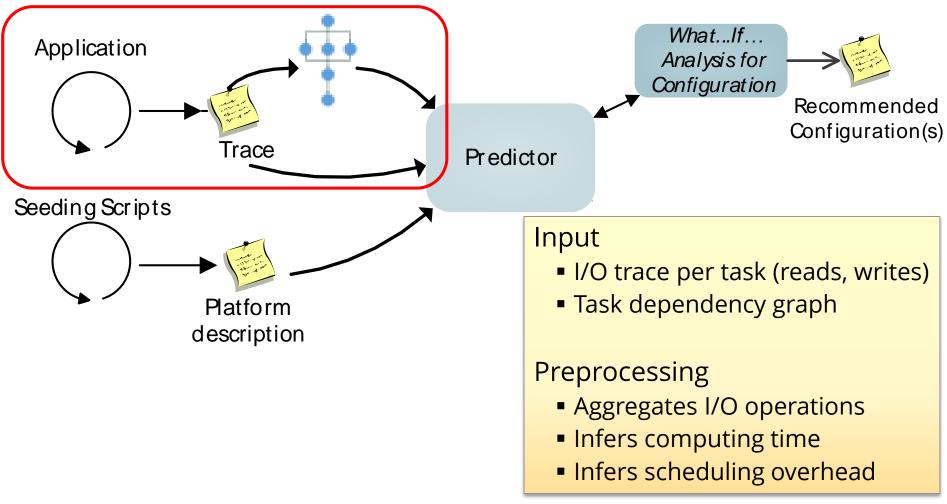


L Costa, H. Yang, E. Vairavanathan, A. Barros, K. Maheshwari, G. Fedak, D.S. Katz, M. Wilde, M. Ripeanu , S. Al-Kiswagy, *The Case for Workflow-Aware Storage: An Opportunity Study using MosaStore*, Journal of Grid Computing 2014.

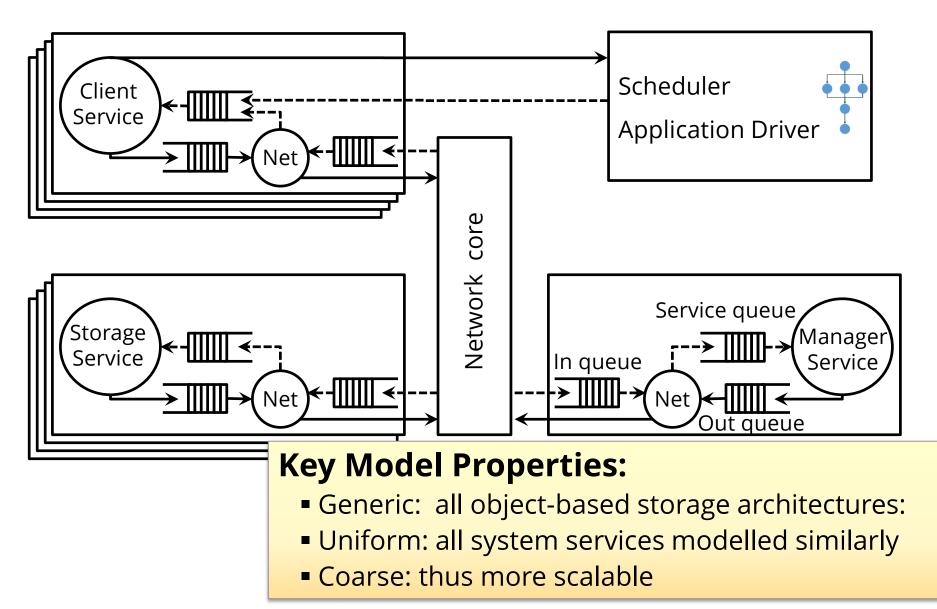
Solution Overview



Workload Description



Storage System Model



How well does this work?

Predicting application turnaround time and total CPU cost for a **COMPLEX application** at **large scale**

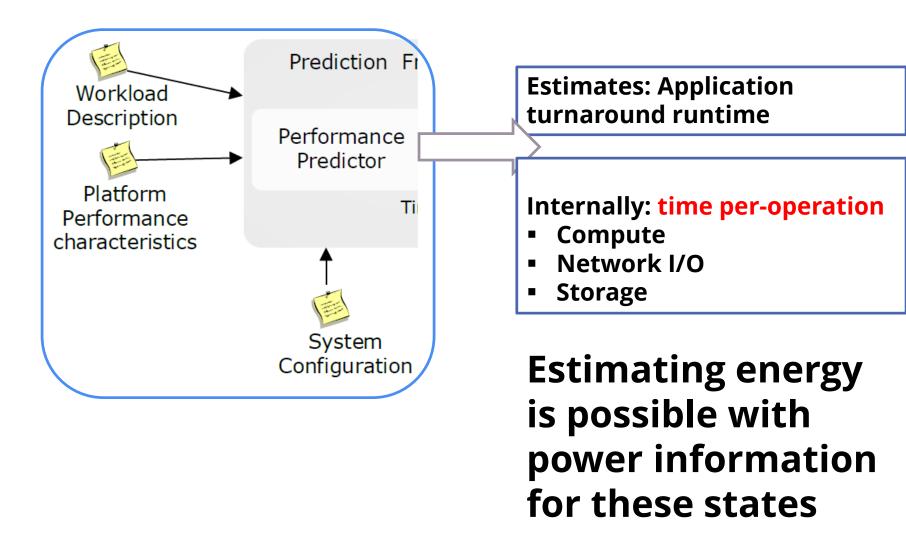
Time vs. Allocation Cost

Montage Workload Many tasks (7,500) Several stages (10) Different characteristics Large scale (100 nodes)

Actual Predicted 4000 Application time in seconds **Adequate Accuracy: Can support configuration decisions** 3000 Time per Stage: Average 7% Error 2000 **Efficient:** 5 Reduced exploration effort: ~2000x less 1000 5 100 500 10000 20000 30000 40000 50000 60000

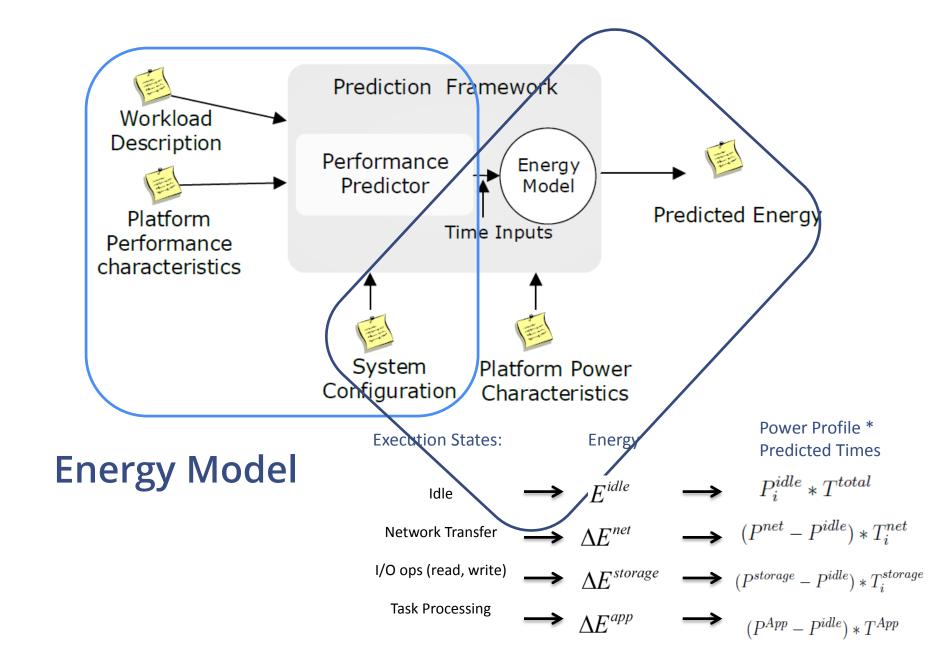
Cost in CPU-seconds

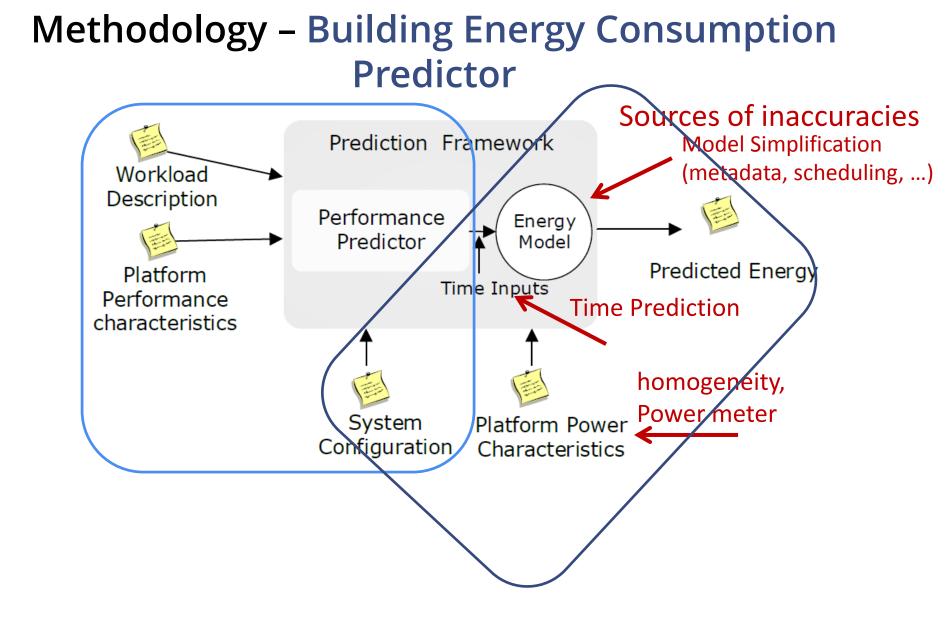
Taking advantage of detailed predictions



Supporting Storage Configuration for I/O Intensive Workflows, L. Costa, S. Al-Kiswany, H. Yang, M. Ripeanu, ICS'14

 Predicting Intermediate Storage Performance for Workflow Applications, .L Costa, S. Al-Kiswany, A. Barros, H. Yang, M. Ripeanu, PDSW'13,





Evaluation - Platform

Grid5000 Lyon site * Grid'5000

Idle

 Taurus Cluster (11 nodes) App two 2.3GHz Intel Xeon E5-2630 CPUst of agh Wat Net transfer 32GB memory, 10 Gbps NIC

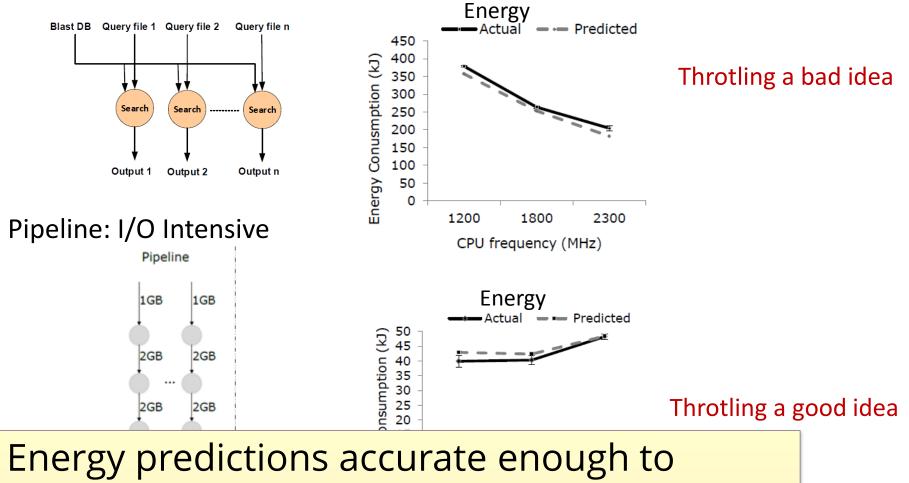
	P_i^{idle}	91.6W
	$P_i^{App} - P_i^{idle}$	33.6W
า	$P_i^{storage} - P_i^{idle}$	$37.4\mathrm{W}$
•	$P_i^{net} - P_i^{idle}$	$36.1 \mathrm{W}$

- Sagittaire Cluster (16 nodes) two 2.4GHz AMD Opteron CPUs (each with one core), 2GB RAM and 1 Gbps NIC
- SME Omegawatt power-meter per Node 0.01W power resolution at 1Hz sampling rate

Evaluation sample: What is the energy and performance impact of CPU throttling? Is it application-specific?

BLAST: CPU Intensive

Frequency Levels: 1200MHz, 1800MHz, 2300MHz



support configuration decisions

Summary

Intermediate Storage System Configuration and provisioning for one application Our prototype: MosaStore

Minimalist Model + Simple seeding Leverages applications' characteristics Easy to use, Low-runtime

Accuracy adequate to support correct configuration and provisioning decisions

Code & papers at: NetSysLab.ece.ubc.ca¹⁹

Contributions

Performance Prediction Mechanisms: Models and Seeding Procedures

TPDS 'Sub; ICS '14; PDSW '13; Grid '10

Opportunity Study on Storage Techniques JoGC '14; CCGrid '12 Storage System Design FAST 'Sub

Storage System Prototype (MosaStore) code

Collaborations and Publications

- Support for Provisioning and Configuration of Intermediate Storage Systems. <u>L. B. Costa</u>, S. Al-Kiswany, H. Yang and M. Ripeanu. IEEE TPDS Submission. Oct. 2014.
- Energy Prediction for I/O Intensive Workflows. H. Yang, <u>L. B.</u> <u>Costa</u>, and M. Ripeanu. MTAGS '14. SC Workshop. ACM. Sep. 2014.
- Experience with Using a Performance Predictor During Development: a Distributed Storage System Tale. <u>L. B. Costa</u>, J. Brunet, and L. Hattori. SEHPC '14. SC Workshop. ACM. To Appear. Nov. 2014.
- Supporting Storage Configuration for I/O Intensive Workflows. <u>L. B. Costa</u>, S. Al-Kiswany, H. Yang and M. Ripeanu, 28th ACM ICS. Jun. 2014
- Predicting Intermediate Storage Performance for Workflow Applications. <u>L. B. Costa</u>, S. Al-Kiswany, A. Barros, H. Yang, M. Ripeanu, 8th PDSW '13 (SC Workshop). ACM. Nov. 2013
- 6. Assessing Data Deduplication Trade-offs from an Energy Perspective. L. B. Costa, S. Al-Kiswany, R. V. Lopes and M. Ripeanu. ERSS (Green Computing Workshop). IEEE. Jul. 2011
- 7. Towards Automating the Configuration of a Distributed Storage System. L. B. Costa and M. Ripeanu. 11th ACM/IEEE 2010. Oct. 2010

- The Case for Cross-Layer Optimizations in Storage: A Workflow-Optimized Storage System.
 S. Al-Kiswany, <u>L. B. Costa</u>, H. Yang, E. Vairavanathan and M. Ripeanu. Journal Submission. In preparation.
- 10.A Software Defined Storage for Scientific
 Workflow Applications. S. Al-Kiswany, <u>L. B. Costa</u>,
 H. Yang, E. Vairavanathan and M. Ripeanu. FAST
 'Submission. Submitted in October 2014.
- 11. The Case for Workflow-Aware Storage: An Opportunity Study. L. B. Costa, H. Yang, E. Vairavanathan, A. Barros, K. Maheshwari, G. Fedak, D. Katz, M. Wilde, M. Ripeanu and S. Al-Kiswany. Journal of Grid Computing. Accepted in Jun. 2014
- 12.A Workflow-Aware Storage System: An Opportunity Study. E. Vairavanathan, S. Al-Kiswany, <u>L. B. Costa</u>, Z. Zhang, D. Katz, M. Wilde and M. Ripeanu 12th IEEE/ACM CCGrid'12. May 2012

21

Prediction

- **13.Efficient Large-Scale Graph Processing on Hybrid CPU and GPU Systems**. A. Gharaibeh, E. Santos-Neto, <u>L. B. Costa</u> and M. Ripeanu. ACM Transactions on Parallel Computing. Under Review. January 2014
- **14. The Energy Case for Graph Processing on Hybrid CPU and GPU Systems.** A. Gharaibeh, E. Santos-Neto, <u>L. B. Costa</u> and M. Ripeanu. IA³ (SC Workshop). ACM. Nov. 2013
- **15.On Graphs, GPUs, and Blind Dating: A Workload to Processor Matchmaking Quest.** A. Gharaibeh, <u>L. B. Costa</u>, E. Santos-Neto and M. Ripeanu. 27th IEEE IPDPS. May 2013
- **16.A Yoke of Oxen and a Thousand Chickens for Heavy Lifting Graph Processing.** A. Gharaibeh, <u>L. B. Costa</u>, E. Santos-Neto and M. Ripeanu. IEEE/ACM 21st PACT. Sep. 2012
- **17.GPU Support for batch oriented workloads.** <u>L. B. Costa</u>, S. Al-Kiswany and M. Ripeanu. 28th IPCCC. IEEE. Dec. 2009 **18.Nodewiz: Fault-tolerant grid information service**. S. Basu, <u>L. B. Costa</u>, F. V. Brasileiro, S. Banerjee, P. Sharma, and S-J

Lee. Journal of Peer-to-Peer Networking and Applications, 2(4):348--366. Springer, Dec. 2009.

Contributions

Performance Prediction Mechanisms: Models and Seeding Procedures

TPDS 'Sub; ICS '14; PDSW '13; Grid '10

Opportunity Study on Storage Techniques JoGC '14; CCGrid '12 Storage System Design FAST 'Sub

Storage System Prototype (MosaStore) code

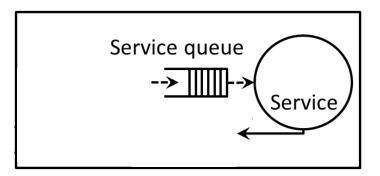
Backup Slides

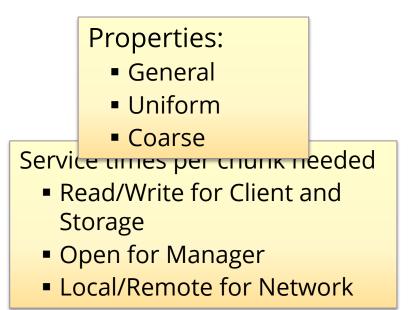
- <u>Synthetic</u>
 <u>Benchmarks</u>
- Real Applications
- Other Scenarios
- Scalability
- Energy Prediction
- Limitations
- Related Work
- Future Work

- <u>Supporting</u>
 <u>Development</u>
- Data Deduplication
- Data Deduplication
 Energy
- <u>Methodology:</u>
 <u>Development</u>
- More on MosaStore

Modeling: Life is a trade-off

Storage System Model





Model Parameters

System Deployment		
Number of Storage Nodes	N sm	
Number of Client Nodes	N ^{cli}	
Collocation of Storage and Client Modules	Colloc	
Performance		
Manager Service Time	μ ^{ma}	
Storage Module Read Service Time	µ ^{smRead}	
Storage Module Write Service Time	µ ^{smWrite}	
Client Service Time	μ ^{cli}	
Remote Network Service Time	µ ^{remNet}	
Local Network Service Time	µ ^{locNet}	

Workload Description

Input

- I/O trace per task (reads, writes)
- Task dependency graph

Preprocessing

- Aggregates I/O operations
- Infers computing time
- Infers scheduling overhead

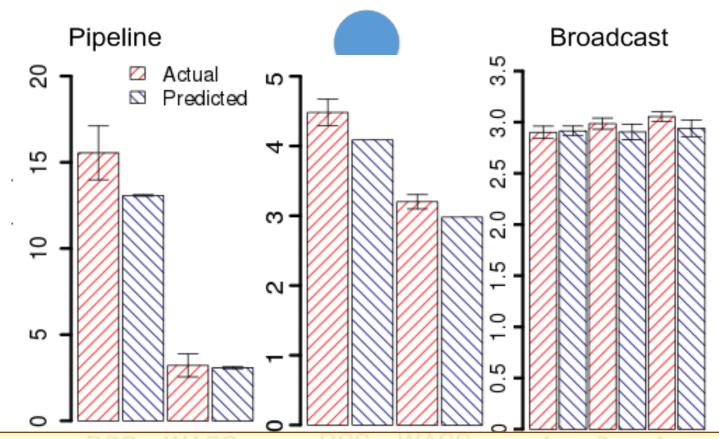
Evaluation

Success Metrics Accuracy (time, cost) Time to predict

Workloads Synthetic benchmarks Real applications

Testbed NetSysLab - 20 nodes Grid 5K - 101 nodes

Synthetic Benchmarks



Predicted time error: Underprediction Average ~8%
 Common patterns in the structure of workflows
 I/O only to stress the storage system

What about a real application?

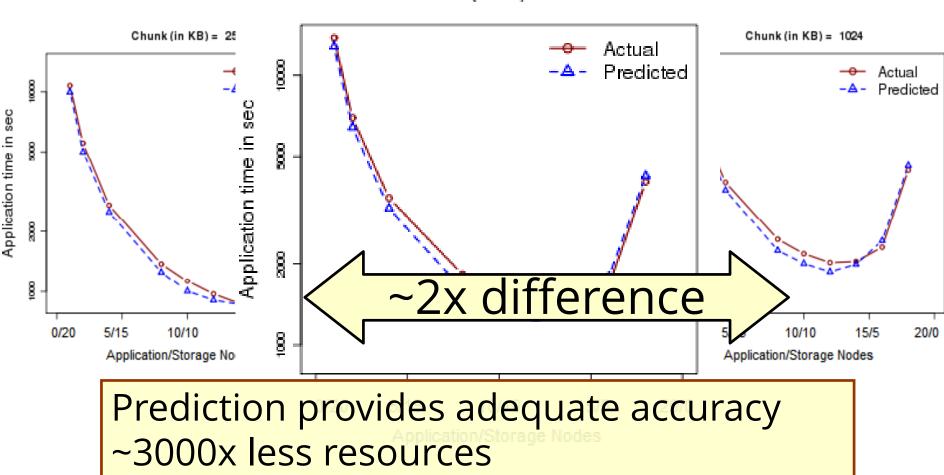
Simple Application

BLAST

200 queries (tasks) over a DNA database file, then reduce

Impact of different parameters # of storage nodes, # of clients chunk size

BLAST Performance

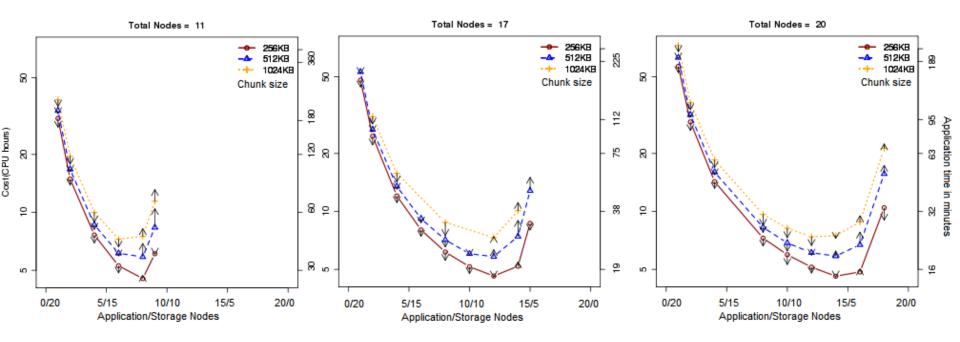


Similar accuracy with other configurations

Chunk (in KB) = 1024

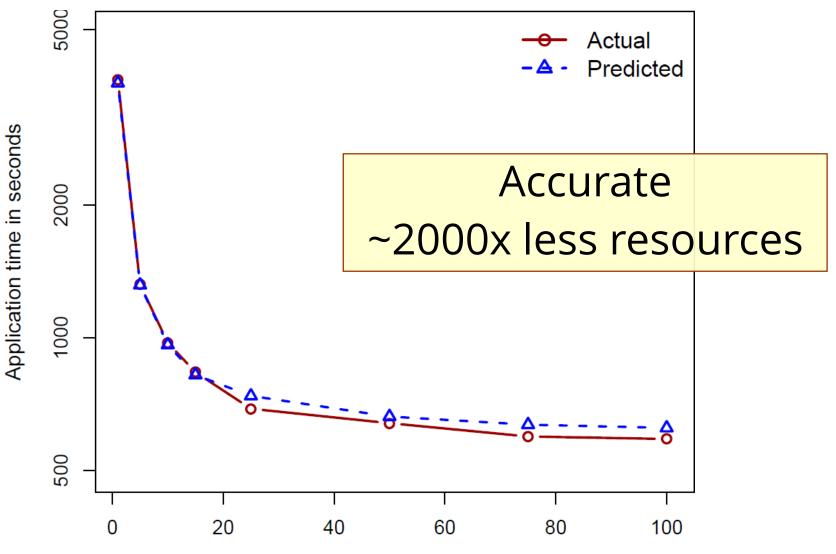
32

BLAST Time vs. Cost

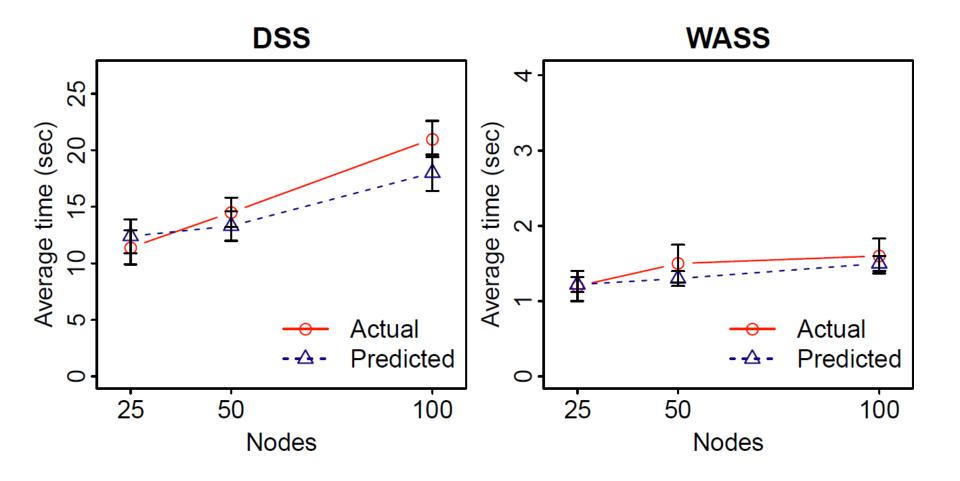


What is the impact of handling a complex application at large scale?

Montage Performance



Pipeline on 100 nodes



Spinning Disks

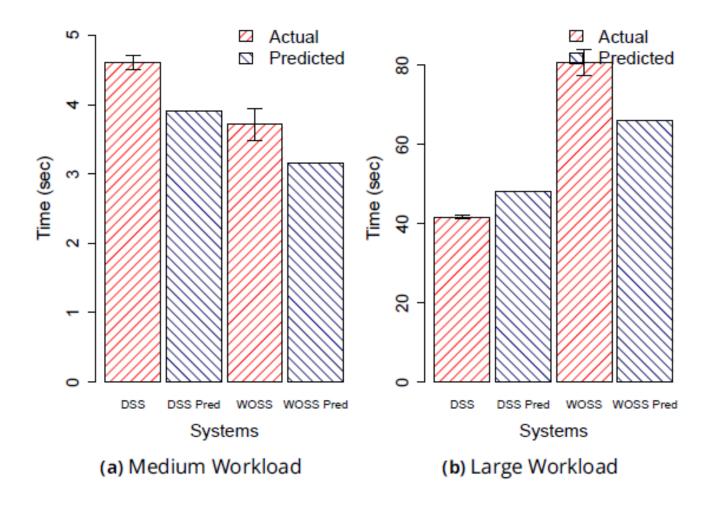
[Add summary from thesis]

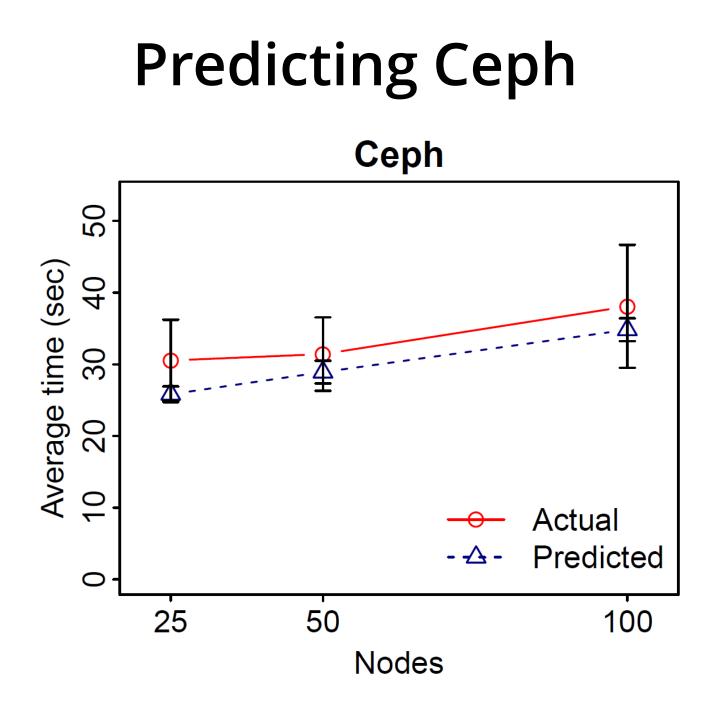
SDD trend

Supercomputers have no HDDs

Other solutions for RAM-based – E.g., Tachyon has grown

Spinning Disks: Worst Case





Other Scenarios

Various testbeds and benchmarks – Similar results

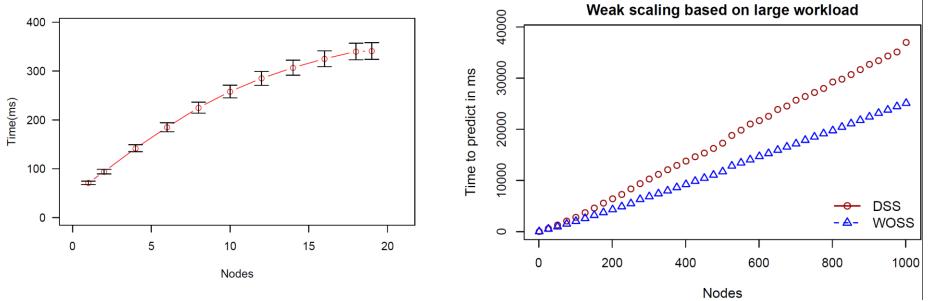
Online enabling data deduplication for checkpointing applications

Energy Prediction

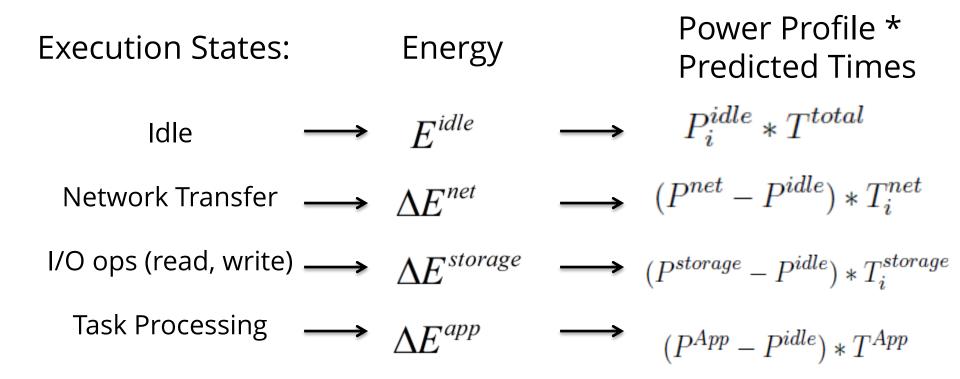
- Power consumption profile approach
- Workflow: Synthetic benchmarks have ~13% error; smaller Montage, ~26%
- Deduplication: Misprediction costs up to 10%

Predictor Scalability

• Summary of the text



Energy Model



How to seed the energy model?

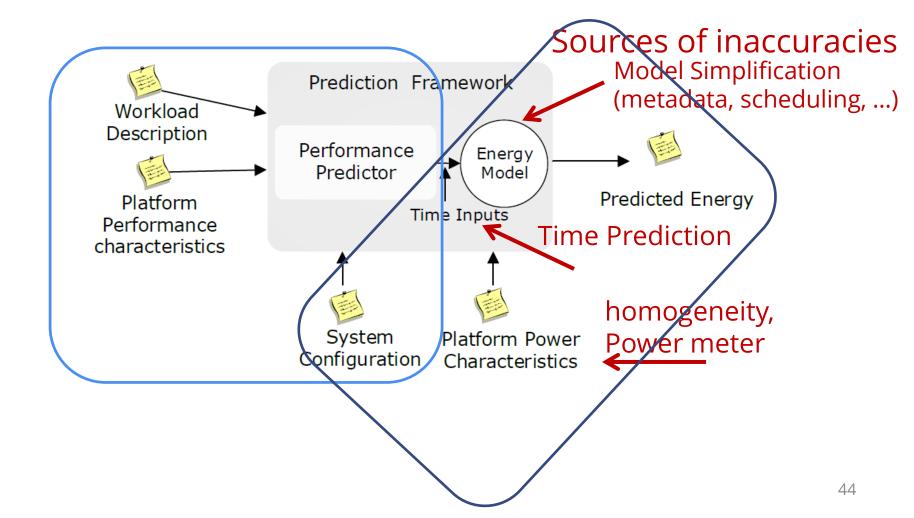
Power states

- uses synthetic benchmarks to get the power consumption in each state

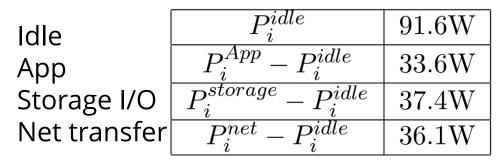
Time estimates

- augments a performance predictor to track the time spent in each state.

Building Energy Predictor



Energy Evaluation: Testbed

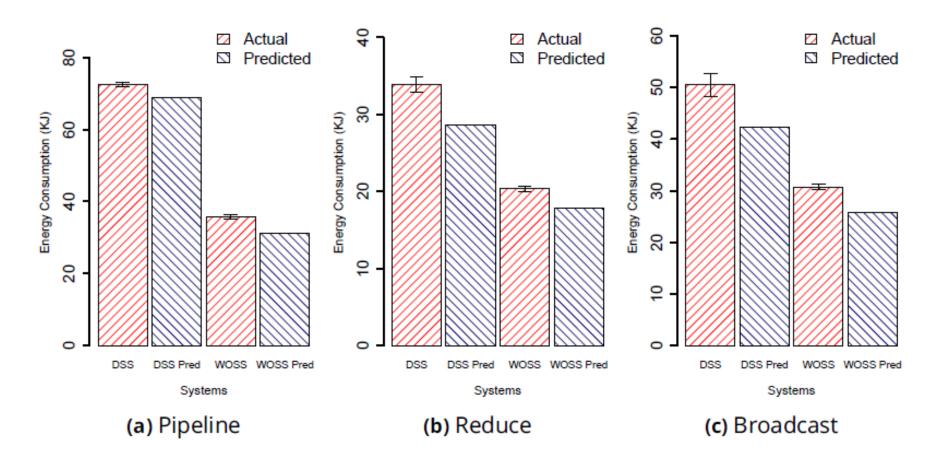


Taurus Cluster (11 nodes) two 2.3GHz Intel Xeon E5-2630 CPUs (each with 6 cores), 32GB memory, 10 Gbps NIC

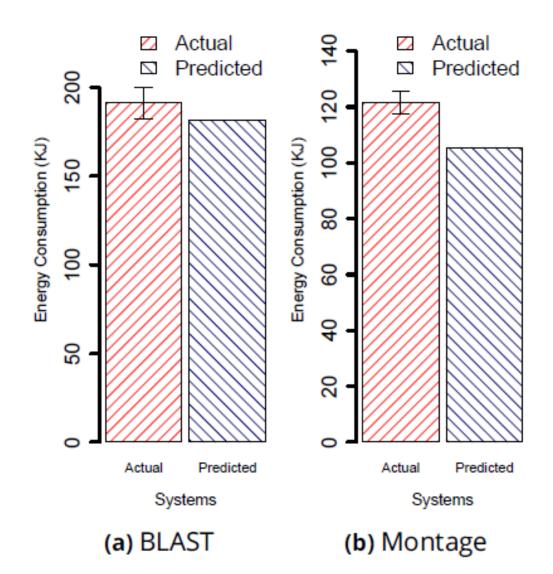
Sagittaire Cluster (16 nodes) two 2.4GHz AMD Opteron CPUs (each with one core), 2GB RAM and 1 Gbps NIC

SME Omegawatt power-meter per Node 0.01W power resolution at 1Hz sampling rate

Energy Prediction Evaluation



Energy Prediction Evaluation



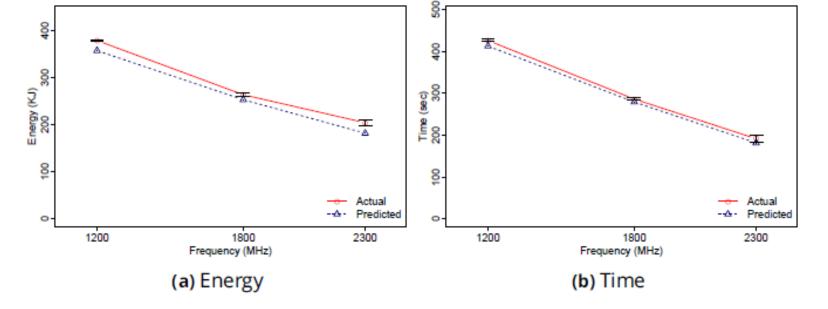


Figure 3.20: Actual and predicted average energy consumption and execution time for *BLAST* for various CPU frequencies.

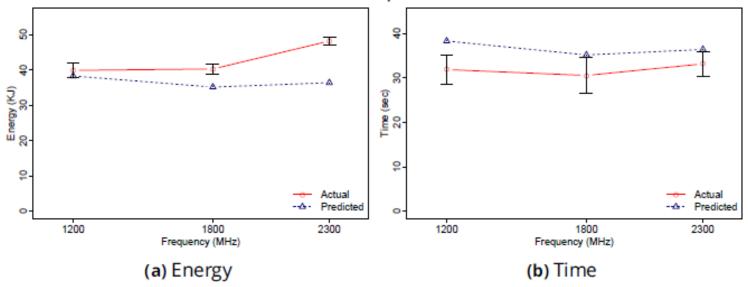
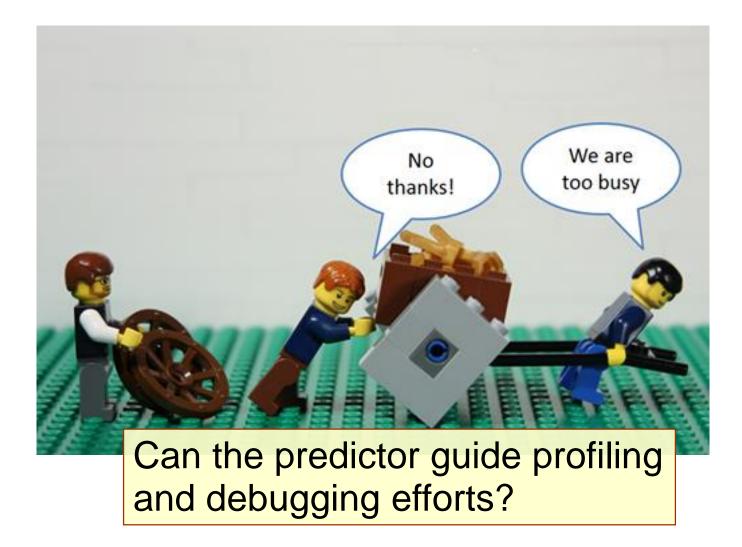
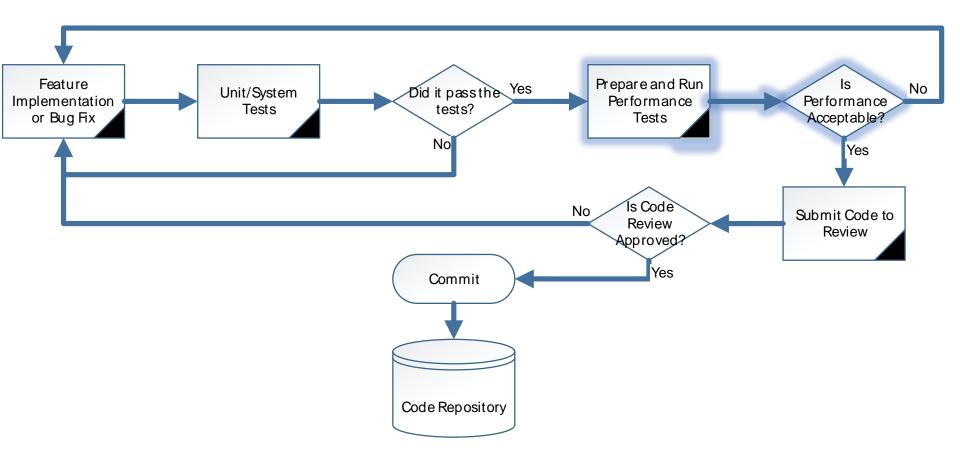


Figure 3.21: Actual and predicted average energy consumption and execution 48 time for the *pipeline benchmark* for various CPU frequencies.

Supporting Development



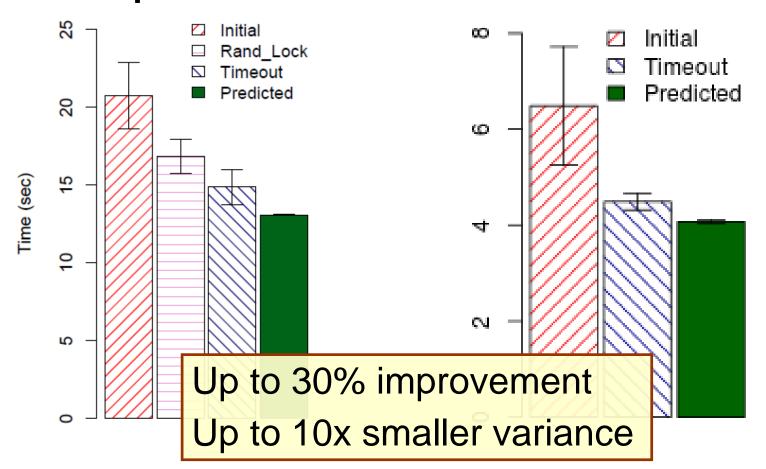
Development Flow



Development Evolution

Pipeline

Reduce



Future Work

Enhance Automation for Workflows

Heterogeneous Environment

Virtual Machines

Study on Support for Development

Applications out of Comfort Zone

GPU and Content-Based Chunking for Deduplication

Limitations

"Short" tasks

Sensitive to any 'noise' or scheduling overhead e.g., up to 40% error in a Montage phase

At least one whole execution Limits heterogeneity exploration

Potentially, different network topologies

Old spinning disks

Sources of Inaccuracies

Source	Examples			
Storage system	Fine granularity for the activity inside each			
	component, detailed execution path, or			
	maintenance services such as failure detection and			
	garbage collection.			
Infrastructure	Contention at the network fabric level, complex			
	network topology, or detailed scheduling overhead.			
Application	Tasks launched at the same time, absence of faults			
	by crash, or machines with degraded performance.			
System	Assumptions about client and storage service times.			
identification				

Related Work: Different Target

Storage enclosure focused vs. distributed (e.g., HP Minerva)

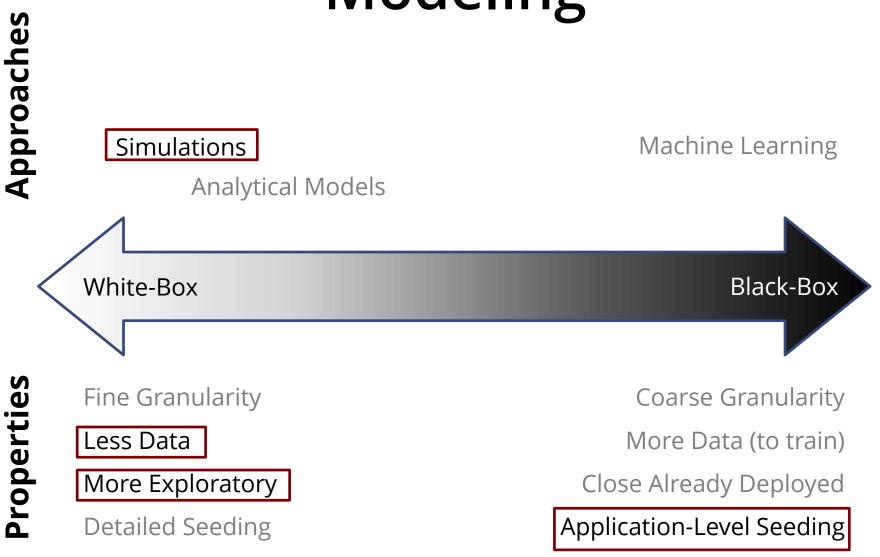
Focus on per I/O request (e.g., average of many)

Lack prediction on the total execution time

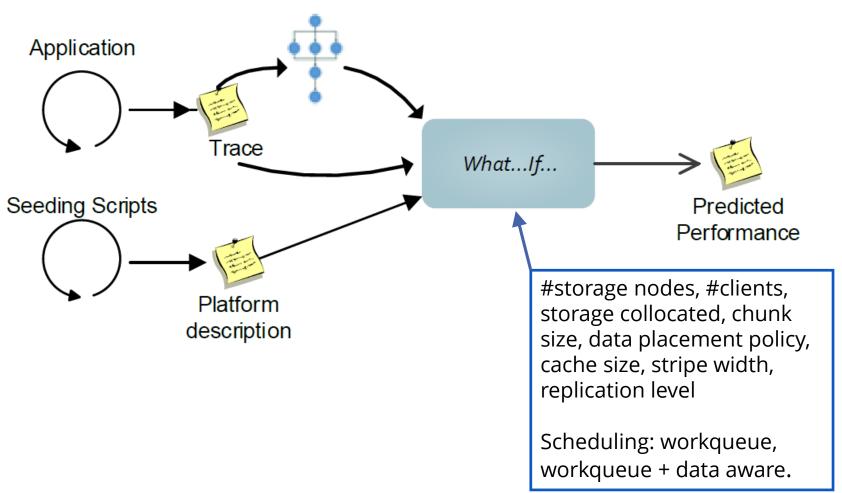
Not on workflow applications, or data deduplication (e.g., Herodotou '11)

Guide configuration using actual executions or 'machinelearning' models (e.g., Behzad '13, ACIC '14)

Modeling



Architecture



Data Deduplication

 Storage technique to save storage space and improve performance

- Space savings can be as high as:
 - 60% for a generic archival workload¹
 - 85% for application checkpointing²
 - 95% for a VM repository³

- ² S. Al-Kiswany *et al.* "stdchk: A checkpoint storage system for desktop grid computing," ICDCS, 2008.
- ³ A Liguori, E V Hensbergen. "Experiences with content addressable *storage and virtual disks*, (WIOV), 2008.58

¹S. Quinlan and S. Dorward, "Venti: A new approach to archival data storage," FAST '02.

Data Deduplication

- It performs hash computations over data to detect data similarity
 - Saving storage space

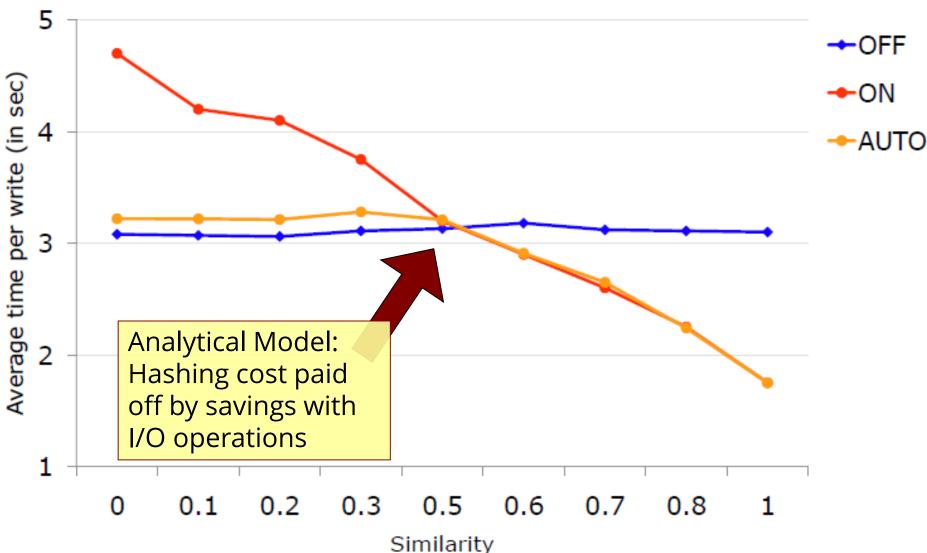
- It has computational overhead, but it can reduce I/O operations
 - Improving performance
 - Impact on energy?

Deduplication for Checkpointing?

Checkpointing writes multiple snapshots Snapshots may have high data similarity

Deduplication detects similarity to save storage space and network bandwidth, but has high computational cost

Optimizing for Time



¹L.B. Costa and M. Ripeanu, "Towards automating the configuration of a distributed storage system," 2010 11th IEEE/ACM International Conference on Grid Computing, IEEE, 2010, pp. 201-208.

What cases will lead to energy savings, if any?

What is the performance impact of energy-centric tuning?

What is the impact of more energy proportional hardware?

Energy Study - Methodology

- Empirical evaluation on a distributed storage system
- Identify break-even points for performance and energy
- Provide a simple analytical model

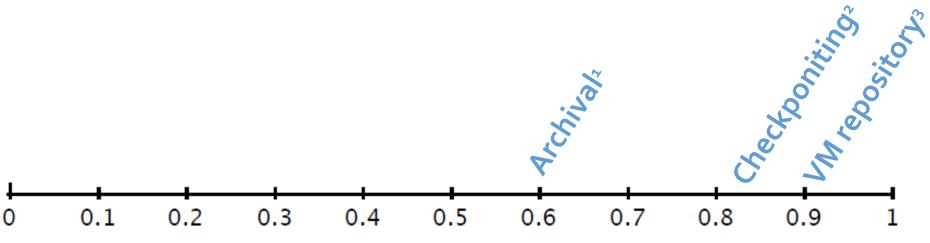
Test Bed

	Processor Launched	Processor	Memory	Power Idle	Power Peak
Old	Q4'06	Xeon E5395 (Clovertown) @ 2.66GHz	8GB	188W	262W
New	Q1′09	Xeon E5540 (Nehalem) @ 2.53GHz	48GB	86W	290W

Both: Similar NIC 1Gbps and 7200 rpm SATA disks

Synthetic Workload

- It varies similarity ratios
- It covers similarity ratios of several applications

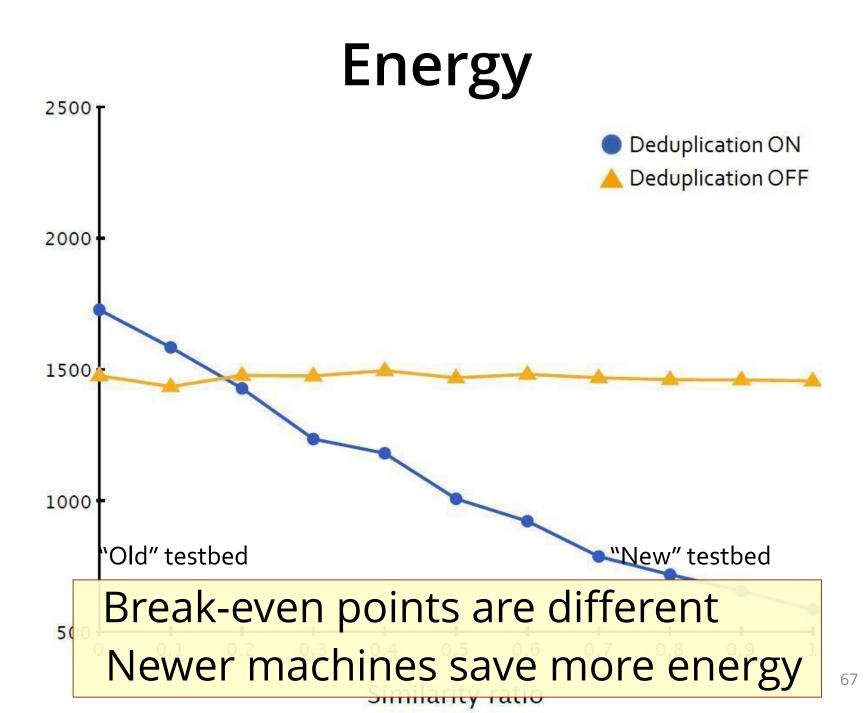


Maximum Similarity ratio

- ¹S. Quinlan and S. Dorward, "Venti: A new approach to archival data storage," FAST '02.
- ² S. Al-Kiswany *et al.* "stdchk: A checkpoint storage system for desktop grid computing," ICDCS, 2008.
- ³ A Liguori, E V Hensbergen. "Experiences with content addressable *storage and virtual disks*, (WIOV), 2008. ⁶⁵

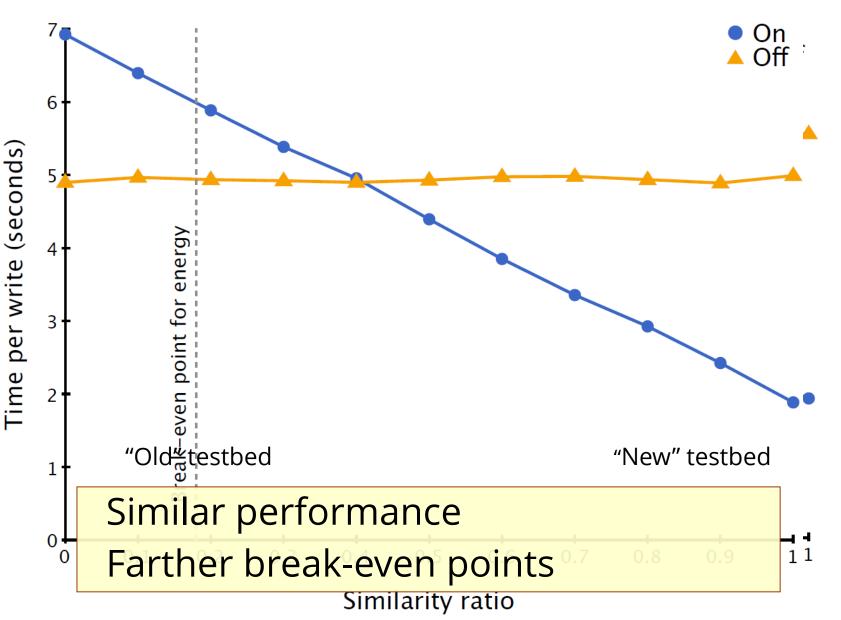
What cases will lead to energy savings, if any?

What is the impact of more energy proportional hardware?



What is the performance impact of energy-centric tuning?

Whiteesitbleed



69

Summary of Evaluation

Deduplication can save energy

Newer machines showed little difference for performance, larger difference for energy

Energy proportional hardware

Break-even points for performance and energy are different

– Trend to be farther

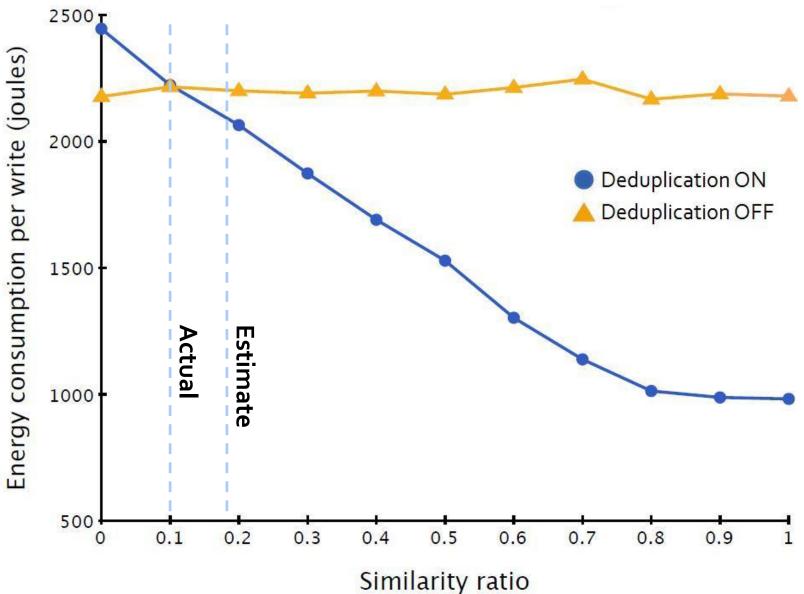
Model Input and Output

Simple benchmarks provide information on:

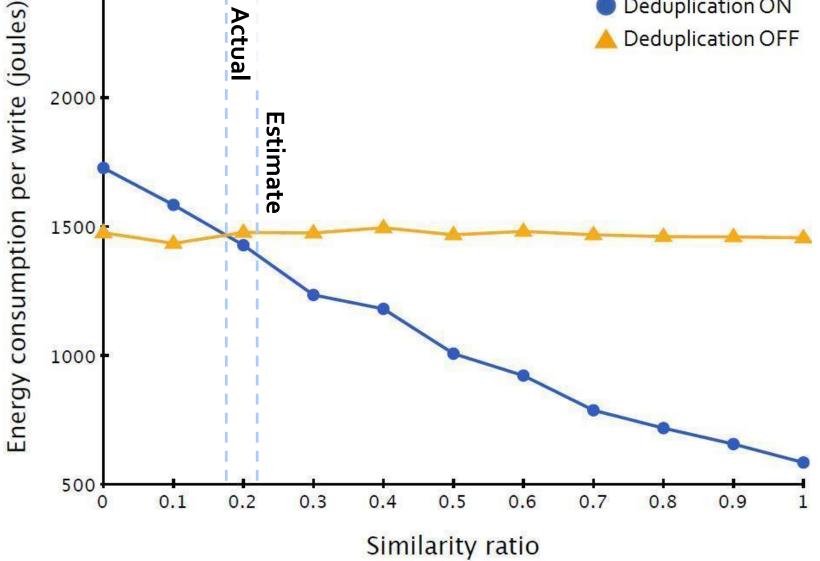
- Time to write and hash a block
- Power to write and hash a block

Model gives the similarity ratio of the breakeven point

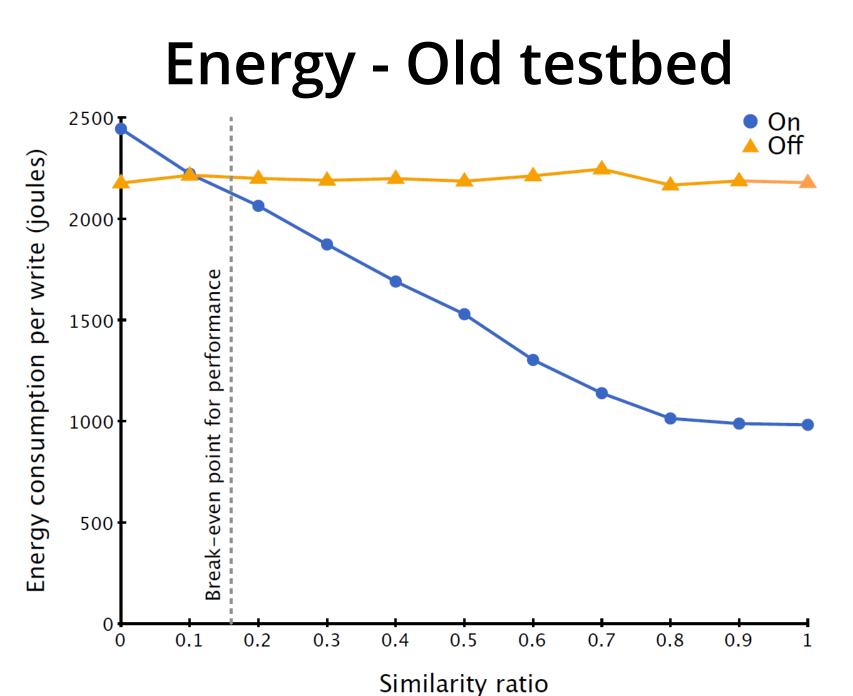
Actual vs. Model – Old test hed

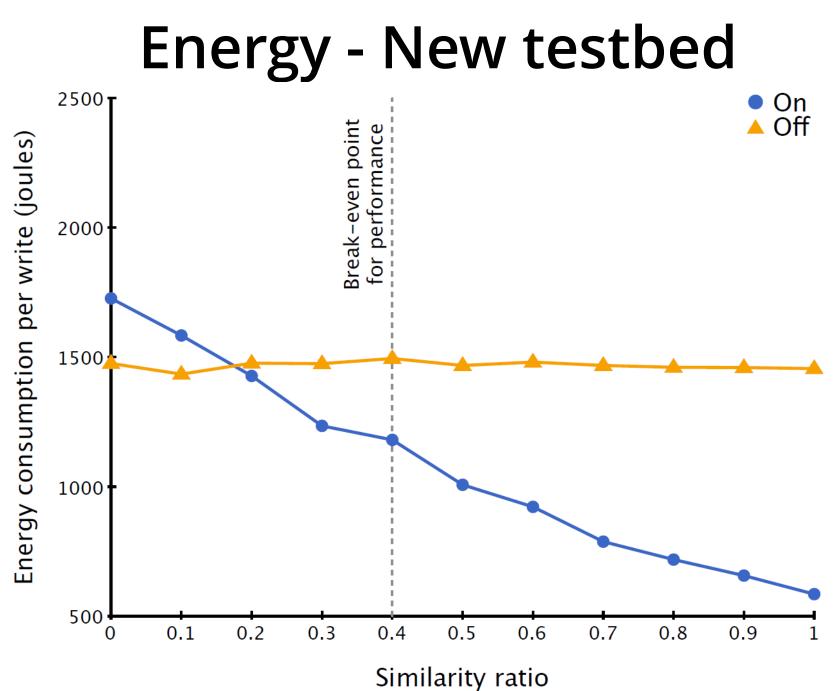


Actual vs. Model – New test hed 2500

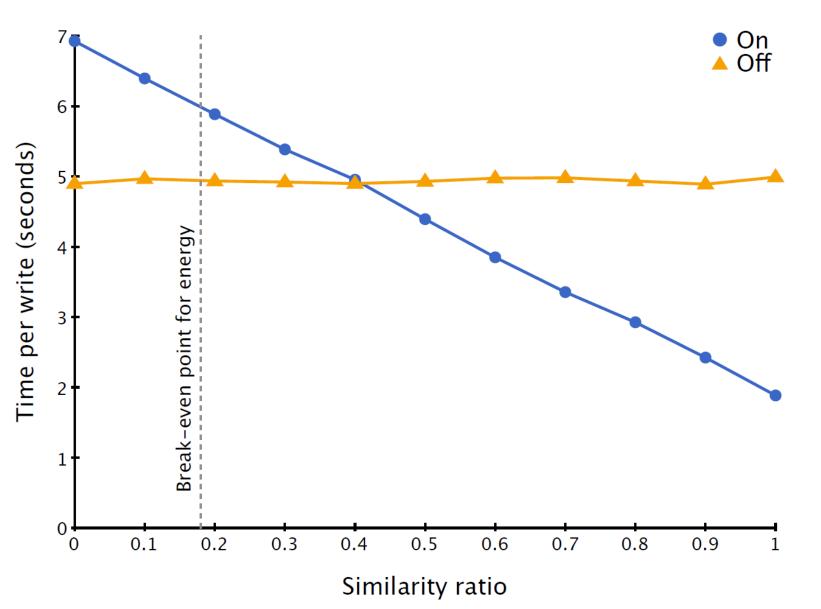


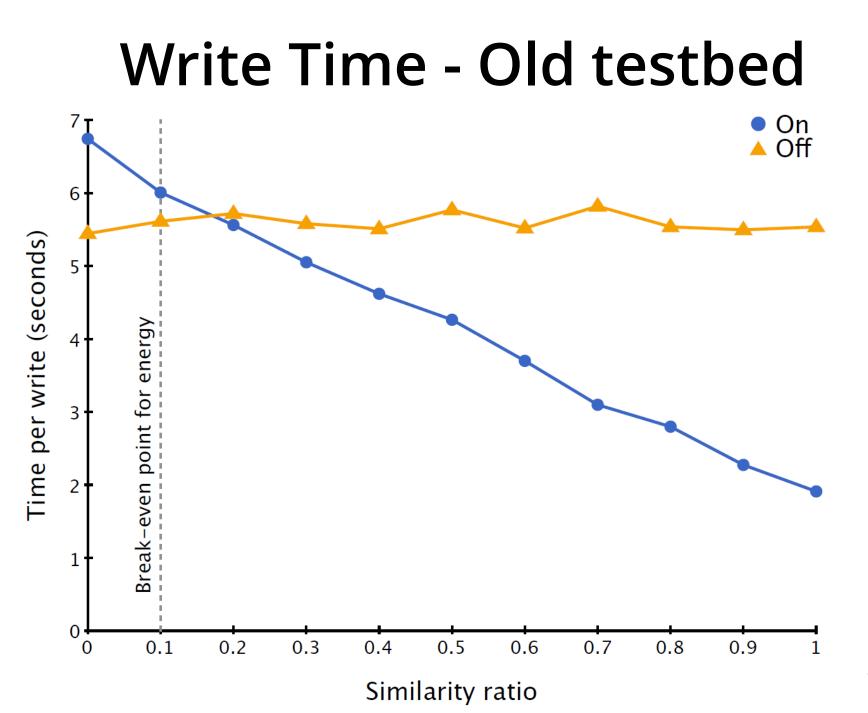
73





Write Time - New testbed





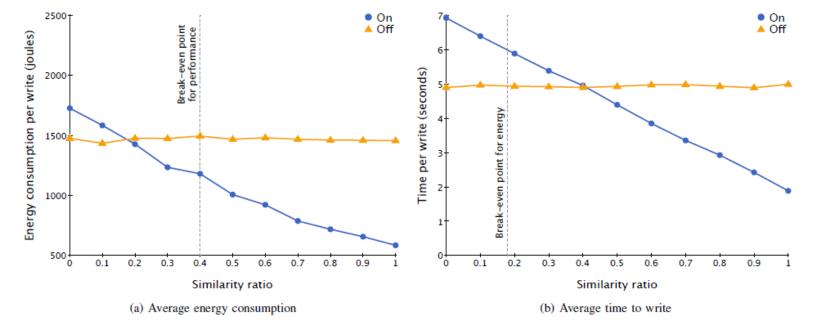


Figure 1. Average energy consumed and time to write a 256MB file for different similarity levels in the 'new' testbed. Note: Y axes do not start at 0.

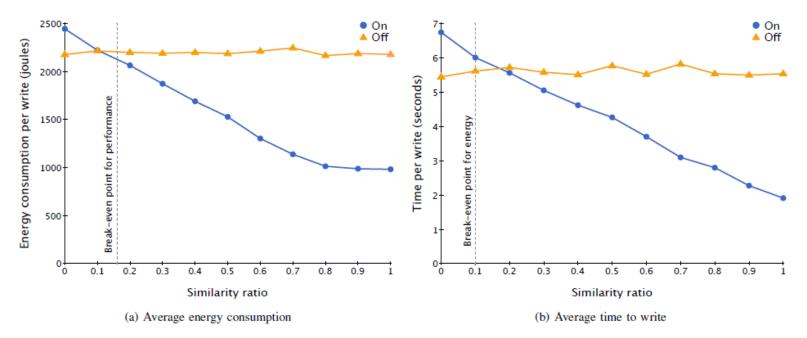


Figure 2. Average energy consumed and time to write a 256MB file for different similarity levels in the 'old' testbed. Note: Y axes do not start at 0

Methodology: Development

Unit tests

System tests

Code reviews

Some TDD

Workflow Applications on a Shared Storage

Simplicity for development, and debugging

 Application can be developed on a single workstation, and deployed on a cluster without changes

Support for legacy applications

 Stages or binaries can be easily integrated, since the communication via POSIX

Support for fault-tolerance

 Keeping the task's input files and launching a new execution of the task, potentially on a different machine

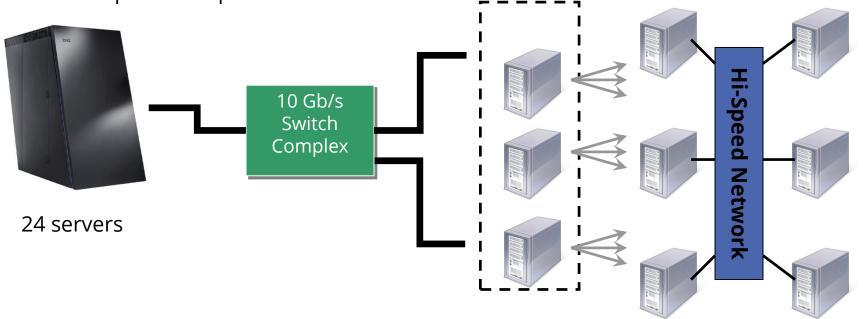
Platform Example – Argonne BlueGene/P

2.5K IO Nodes

160K cores

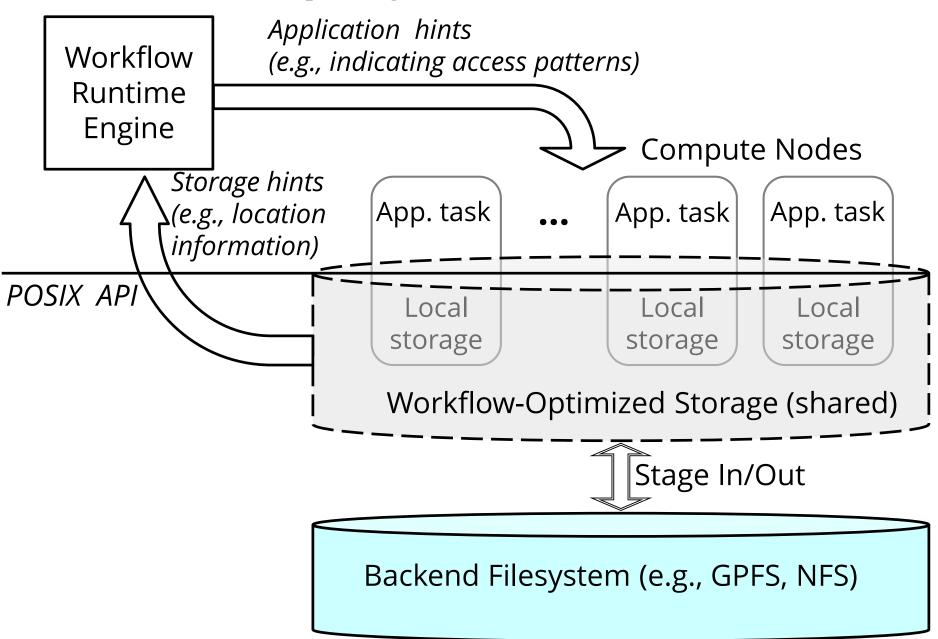
IO rate : 8GBps = 51KBps / core

GPFS

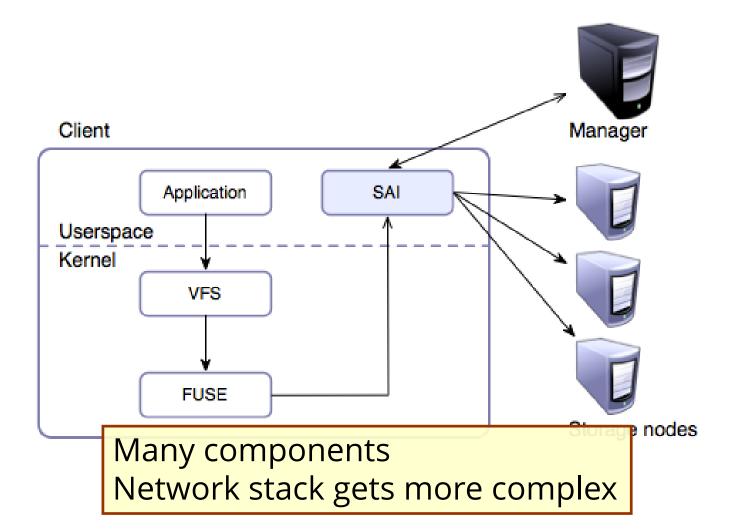


Nodes dedicated to an application Storage system coupled with the application's execution

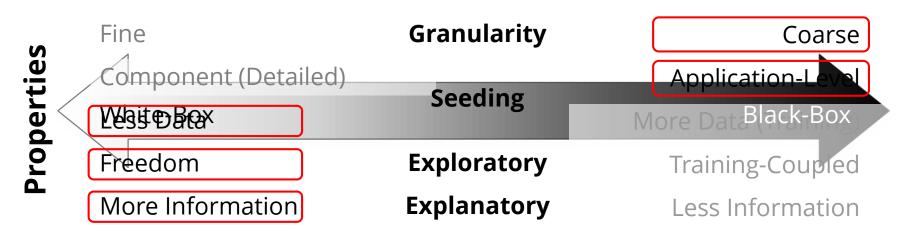
WOSS Deployment



Execution Path: Client Example



Building a Predictor



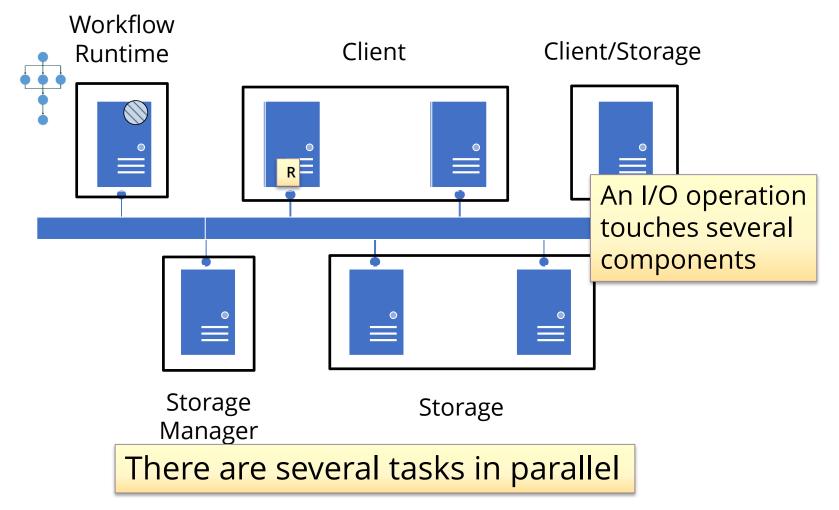
Analytical Models

Simulation

84

Machine Learning

System Working



Modeling: Leveraging the Context

Focus is on application's overall performance

– Per I/O request accuracy is less important

Tasks have distinct phases (read, compute, write)

Aggregate operations

Tasks' I/O operations have coarse granularity

Thanks for the Pictures

Flight deck - <u>prayitno</u> <u>http://www.flickr.com/photos/34128007</u> <u>@N04/5292213279/</u>

http://www.flickr.com/photos/twmlabs/28 2089123/

http://commons.wikimedia.org/wiki/File% 3ABalanced_scale_of_Justice.svg

By Perhelion [CC0], via Wikimedia Commons