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Architecture and Missed Opportunities

@ Parallel Programming is difficult (still, again, yet).

e Coding is via Pthreads, MPI, OpenMP, UPC, etc.
e User handles complexities of coding,
scheduling, execution, etc.

@ Efficient and scalable programming is hard
e Often get undesired synchronization points.
e Fork-join wastes cores and reduces
performance.
e We need to access more of provided
parallelism.
@ Larger multicore architectures
@ More inactive cores = more waste
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Productivity, Efficiency, Scalability

@ Productivity in Programming

e Have a simple, serial API for programming.
@ Runtime environment handles all the details.

e Efficiency and Scalability

e Tasks have data dependencies.
e Tasks can execute as soon as data is ready
(async).

Uses available cores in shared memory.

Transfers data as required in distributed memory

This results in a task-DAG (directed acyclic graph).
Nodes are tasks; edges are data dependencies
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Related Projects

@ PaRSEC [UTK] : Framework for distributed memory task
execution. Requires specialized parameterized compact task
graph description; parameterized task graphs are hard to express.
Very high performance is achievable. Implements DPLASMA.

@ SMPss [Barcelona] : Shared memory. Compiler-pragma based,
runtime-system with data locality and task-stealing, emphasis on
data replication. MP| available via explicit wrappers.

@ StarPU [INRIA] : Shared and distributed memory. Library API
based, emphasis on heterogeneous scheduling (GPUs), smart
data management, - similar to this work.

@ Others: Charm++, Jade, Cilk, OpenMP, SuperMatrix, FLAME,
ScalAPACK, ...
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Driving Applications: Tile Linear Algebra Algorithms

@ Block algorithms

e Standard linear algebra libraries il_ \jﬁ \_ﬁ Nﬁ
(LAPACK, ScaLAPACK) gain parallelism —
i

p1 —> stp2 — > step3 —> stey

from BLAS-3 interspersed with less m T T
parallel operations. enn Bl s Hi

e Execution is fork-join (or block
synchronous parallel).

@ Tile algorithms

e Rewrite algorithms as tasks acting on
data tiles.

o Tasks using data — data
dependencies — DAG

o Want to execute DAGs asynchronously
and in parallel = runtime.

@ QUeuing and Runtime for Kernels for
Distributed Memory
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for k = 0 ... TILES—1

geqrt( A, T4 )
for n = k+1..TILES—1
unmar( Al 0. Thes A )
for m = k+1..TILES—1
tsqrt( Ay . Al The)
for n = k+1..TILES-1
tsmqr( A’ T, AW A

mk >’ "mk>’ kn ’

List of tasks as they are generated by the loops
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Tile QR Factorization: Data Dependencies

FO geqrt( AR, Tt )

F1 unmqr( AL, TS, AY )

F2 unmar( Ay, Ty, A% )

F3 tsqrt( A, A%, TG )
w w r r

Eg :zmg:z 29‘)‘,’ :}JV :}0’ ;1,0 ; Qata depend.encies from the .firs.t
02+ M2 o T10 five tasks in the QR factorization

F6 tsqrt( Aly, AY, Ty ) Ago: FO™:F17:F2r:F3m

F7 tsmar( AR, A%y, ALy, Ty ) Agi: F1W:F4w

F8 tsmar( ARy, A%, A, T3 ) Ago: F2™:F5™

F9 geqrt( Aq‘q’, T1V'1’ ) Aig: F3™:F4':F5"

F10 unmagr( A7, T%, A% ) Aip: FA™

F11 tsqri( A, AW, T¥ ) Az F5™

F12 tsmar( A%, AX, AL, T ) 7

F13 geqrt( A%, T¥ ) AZ
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Tile QR Factorization: Dependencies to Execution

First step in execution - Run task
(function) FO.

(
F1  unmaqr(
F2 unmgqr(
F3 tsqrt(
F4 tsmaqr(
F5 tsmqr(

Second step in execution - Remove

; )
Ao Too-
Ao Too -
AT
ALY
ATY

)
)
)

r r
A10 T10
r r
A10 T1O

FO; Now F1 and F2 are ready.

(
(
F3 tsqrt(
F4 tsmqr(
F5 tsmqr(
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QUARK-D API and Runtime

@ QUARK-D
e QUeuing and Runtime for Kernels in Distributed Memory

@ Simple serial task insertion interface.

QUARKD_Insert_Task( quark, xfunction, xtaskflags,
a_flags, size_a, =xa, a_home_process, a_key,
b_flags, size_b, *b, b_home_process, b_key,
., 0);

@ Manage the distributed details for the user.

Scheduling tasks (where should tasks run)

Data dependencies and movement (local and remote).
Transparent communication.

No global knowledge or coordination required.
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Productivity: QUARK-D QR Implementation

-

for k = 0 ... TILES—1
?eqrt( AR T
rn=%k+1..TILES—1
The code matches the pseudo-code ® nmar o ST;K, A
for m = k+1..TILES—1
tsqrt( Ai"k"fup, AV THY
for n = k+1..TILES—1
#define A(m,n) ADDR(A) ,HOME(m,n) ,KEY(A,m,n) ( Ao T,
#define T(m,n) ADDR(T) ,HOME(m,n) ,KEY(T,m,n)\

r w w
mk > Akn' Amn )

)

)

void plasma_pdgeqrf(A, T,.) {

for (k = 0; k < M; k++) {
TASK_dgeqrt(quark,. ,A(k,k),T(k,k));
for (n = k+1; n < N; n++)
TASK_dormgr(quark,.. ,A(k,k),T(k,k),A(k,n));
for (m = k+1; m < M; m++) {
TASK_dtsqrt(quark,. ,A(k,k) ,A(m,k),T(m,k));
for (n = k+1; n < N; n++)

TASK_dtsmar(quark,. ,A(k,n) ,A(m,n),
A(m, k), T(m,k)); }}}
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Productivity: QUARK-D QR Implementation

The task is inserted into the runtime and held till data is ready.

void TASK_dgeqrt(
Quark =xquark,.,int m,int n,
double +A,int A_home,key xA_key,
double «T,int T_home,key «T_key )

QUARKD_Insert_Task(quark , CORE_dgeqrt, ... ,
VALUE, sizeof (int),&m,
VALUE, sizeof (int),&n,
INOUT | LOCALITY, sizeof (A) ,A,A_home, A_key,
OUTPUT, sizeof (T),T,T_home, T_key,.,0);

)

}

When the task is eventually executed, the dependencies are
unpacked, and the serial core routine is called.

void CORE_dgeqrt(Quark xquark)
{
int m,n,ib,lda,Idt;
double *A,xT,xTAU,*WORK;
quark_unpack_args_9(quark ,m,n,ib A,
Ida, T, Idt , TAU,WORK) ;
CORE_dgeqgrt(m,n,ib ,A,lda,T, Idt ,TAU,WORK) ;
}
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Distributed Memory Algorithm

This pseudocode manages the distributed details for the user.

// running at each distributed node
for each task T as it is inserted
// determine Pexe based on dependency to be kept local
Pexe = process that will run task T
for each dependency A; in T
if (I am Pexe ) && ( A; is invalid here )
insert receive tasks (Aj")
else if ( Pexe has invalid A ) && ( | own A; )
insert send tasks (A])
// track who is current owner, who has valid copies
update dependency tracking
if (| am Pexe )
insert task T into shared memory runtime
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QUARK-D Running the Distributed Memory Algorithm

A00 | AD1

A02

A10 | AN1

A12

FO geqrt
F1  unmgqgr
F2 unmgqr
F3 tsqrt
F4 tsmqr
F5 tsmqr

F7 tsmqr
F8 tsmqr
F9 geqrt
F10 unmqr
F11 tsqrt
F12 tsmqr

F13 geqrt( Ay,

(
(
(
(
(
(
F6 tsqrt( Ay, A,
(
(
(
(
(
(
(

w
Ta2

(a) PO (b) P1 (c) P2
Execution of a small QR factorization (DGEQRF). Three processes (P0, P1, P2) are running the

factorization on 3x3 tile matrix using a 1 x 3 process grid. Note that TSQRT and TSMQR have

locality on second RW parameter.
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QUARK-D'’s principles of operation. Scheduling
the DAG of the distributed memory QR
factorization. Three distributed memory
processes are running the factorization
algorithm on a 3x3 tile matrix. One
multi-threaded process runs all the blue tasks,
another multi-threaded process runs the green
tasks, and a third runs the purple tasks. Colored
links show local task dependencies. Black
arrows show inter-process communications.
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QUARK-D: Key Developments

@ Distributed scheduling

e A function tells us which process is going to run a task; usually
based on data distribution (2D block cyclic) but any function that will
evaluate the same on all processes.

e Execution within a multi-threaded process is completely dynamic.

@ Decentralized data coherency protocol

e Processes coordinate the data movement without any control
messages.

e Coordination is enabled by a data coherency protocol, where each
process knows who is the current owner of a piece of data, and
which processes have valid copies of that data.

@ Asynchronous data transfer

e Data movement is initiated by tasks, then the message passing
continues asynchronously without blocking other tasks.

e The data movement protocol is an eager protocol initiated by a
send-data task. The receive-data task is activated by the message
passing engine, and can get the data asynchronously (from
temporary storage if necessary).
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QUARK-D: QR Trace

Figure: Trace of a QR factorization of a matrix consisting of 16x16 tiles on 4
(2x2) distributed memory nodes using 4 computational threads per node. An
independent MPI communication thread is also maintained. Color coding:
MPI (pink); GEQRT (green); TSMQR (yellow); TSQRT (cyan); UNMQR (red).
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QUARK-D: QR Weak Scaling: Small Cluster

Dist Mem nodes (2x4-core) 2.27 GHz Xeon [dancer]
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Figure: Weak scaling performance of QR factorization on a small cluster.
Factorizing a matrix (5000x5000/per core) on up to 16 distributed memory
nodes with 8 cores per node. Comparing QUARK-D, PaRSEC and
ScalLAPACK (MKL).
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QUARK-D: QR Weak Scaling: Large Cluster

QR factorization with weak scaling (5000x5000/core)
100 nodes with 2x6 2.6GHz Opteron Istanbul cores/node [kraken]

14000 — . . .
Theoretical Peak Performance

DGEMM Peak Performance (single core)

12000 PARSEC (NB=260)

ScalLAPACK (proc per core,NB=180)
QUARKD (NB=468)

10000

8000

GFlops
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Number of cores (12 cores/node)

Figure: Weak scaling performance for QR factorization (DGEQRF) of a matrix
(5000x5000/per core) on 1200 cores (100 distributed memory nodes with 12
cores per node). Comparing QUARK-D, PaRSEC and ScalLAPACK (libSCl).
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QUARK-D: Cholesky Weak Scaling: Small Cluster

Dist Mem - 16 nodes (2x4-core) 2.27 GHz Xeon [dancer]

1200 T T T T
Theoretical Peak Performance
PARSEC/DPLASMA (nb=240)
1000 F QUARKD (nb=312) =—+—
ScalLAPACK (nb=96) -
800
12}
s AL S e
I BOO [ A
0] X
400
200
0
0 20 40 60 80 100 120 140

Number of cores (8 cores/node)

Figure: Weak scaling performance of Cholesky factorization (DPOTRF) of a
matrix (5000x5000/per core) on 16 distributed memory nodes with 8 cores
per node. Comparing QUARK-D, PaRSEC and ScaLAPACK (MKL).

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 19/24



QUARK-D: Cholesky Weak Scaling: Large Cluster

Cholesky factorization with weak scaling (5000x5000/core)
100 nodes with 2x6 2.6GHz Opteron Istanbul cores/node [kraken]
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Figure: Weak scaling performance for Cholesky factorization (DPOTRF) of a
matrix (7000x7000/per core) on 1200 cores (100 distributed memory nodes
with 12 cores per node). Comparing QUARK-D, PaRSEC and ScaLAPACK
(libSCI).
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DAG Composition: Cholesky Inversion

@ Cholesky Inversion

e POTRF, TRTRI, LAUUM
@ DAG composition can
compress DAGs substantially
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QUARK-D: Composing Cholesky Inversion
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Figure: Trace of the distributed memory Cholesky inversion of a matrix with
three DAGs that are composed (POTRF, TRTRI, LAUUM)
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QUARK-D Summary

@ Designed and implemented a runtime system for task based
applications on distributed memory architectures.

@ Uses serial task insertion interface with automatic data
dependency inference.

@ No global coordination for task scheduling.

@ Distributed data coherency protocol manages copies of data.
@ Fast communication engine transfers data asynchronously.

@ Focus on productivity, scalability and performance.
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The End
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