Lightweight Superscalar Task Execution in
Distributed Memory

Asim YarKhan' and Jack Dongarra'-23

"Innovative Computing Lab, University of Tennessee, Knoxville, TN
20ak Ridge National Lab, Oak Ridge, TN
SUniversity of Manchester, Manchester, UK

MTAGS 2014
7th Workshop on Many-Task Computing on Clouds, Grids, and Supercomputers
New Orleans, Lousiana

Nov 16 2014

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 1/24

Architecture and Missed Opportunities

@ Parallel Programming is difficult (still, again, yet).

e Coding is via Pthreads, MPI, OpenMP, UPC, etc.
e User handles complexities of coding,
scheduling, execution, etc.

@ Efficient and scalable programming is hard
e Often get undesired synchronization points.
e Fork-join wastes cores and reduces
performance.
e We need to access more of provided
parallelism.
@ Larger multicore architectures
@ More inactive cores = more waste

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution

uuuuuuuuuuuuuuuu

Nov 16 2014 2/24

Productivity, Efficiency, Scalability

@ Productivity in Programming

e Have a simple, serial API for programming.
@ Runtime environment handles all the details.

e Efficiency and Scalability

e Tasks have data dependencies.
e Tasks can execute as soon as data is ready
(async).

Uses available cores in shared memory.

Transfers data as required in distributed memory

This results in a task-DAG (directed acyclic graph).
Nodes are tasks; edges are data dependencies

i":!_'.-"f_ﬁ'_ e e NS
s s pETE oF TR

= TE -2

- i —
Thpe " S ey, e l'"-l.- - ——

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution

Related Projects

@ PaRSEC [UTK] : Framework for distributed memory task
execution. Requires specialized parameterized compact task
graph description; parameterized task graphs are hard to express.
Very high performance is achievable. Implements DPLASMA.

@ SMPss [Barcelona] : Shared memory. Compiler-pragma based,
runtime-system with data locality and task-stealing, emphasis on
data replication. MP| available via explicit wrappers.

@ StarPU [INRIA] : Shared and distributed memory. Library API
based, emphasis on heterogeneous scheduling (GPUs), smart
data management, - similar to this work.

@ Others: Charm++, Jade, Cilk, OpenMP, SuperMatrix, FLAME,
ScalAPACK, ...

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 4/24

Driving Applications: Tile Linear Algebra Algorithms

@ Block algorithms

e Standard linear algebra libraries il_ \jﬁ _ﬁ Nﬁ
(LAPACK, ScaLAPACK) gain parallelism —
i

p1 —> stp2 — > step3 —> stey

from BLAS-3 interspersed with less m T T
parallel operations. enn Bl s Hi

e Execution is fork-join (or block
synchronous parallel).

@ Tile algorithms

e Rewrite algorithms as tasks acting on
data tiles.

o Tasks using data — data
dependencies — DAG

o Want to execute DAGs asynchronously
and in parallel = runtime.

@ QUeuing and Runtime for Kernels for
Distributed Memory

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 5/24

for k = 0 ... TILES—1

geqrt(A, T4)
for n = k+1..TILES—1
unmar(Al 0. Thes A)
for m = k+1..TILES—1
tsqrt(Ay . Al The)
for n = k+1..TILES-1
tsmqr(A’ T, AW A

mk >’ "mk>’ kn ’

List of tasks as they are generated by the loops
| _HEEEEEEEREEEREREEEEE | EEEN

Tile QR Factorization: Data Dependencies

FO geqrt(AR, Tt)

F1 unmqr(AL, TS, AY)

F2 unmar(Ay, Ty, A%)

F3 tsqrt(A, A%, TG)
w w r r

Eg :zmg:z 29‘)‘,’ :}JV :}0’ ;1,0 ; Qata depend.encies from the .firs.t
02+ M2 o T10 five tasks in the QR factorization

F6 tsqrt(Aly, AY, Ty) Ago: FO™:F17:F2r:F3m

F7 tsmar(AR, A%y, ALy, Ty) Agi: F1W:F4w

F8 tsmar(ARy, A%, A, T3) Ago: F2™:F5™

F9 geqrt(Aq‘q’, T1V'1’) Aig: F3™:F4':F5"

F10 unmagr(A7, T%, A%) Aip: FA™

F11 tsqri(A, AW, T¥) Az F5™

F12 tsmar(A%, AX, AL, T) 7

F13 geqrt(A%, T¥) AZ

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 7124

Tile QR Factorization: Dependencies to Execution

First step in execution - Run task
(function) FO.

(
F1 unmaqr(
F2 unmgqr(
F3 tsqrt(
F4 tsmaqr(
F5 tsmqr(

Second step in execution - Remove

;)
Ao Too-
Ao Too -
AT
ALY
ATY

)
)
)

r r
A10 T10
r r
A10 T1O

FO; Now F1 and F2 are ready.

(
(
F3 tsqrt(
F4 tsmqr(
F5 tsmqr(

Asim YarKhan & Jack Dongarra (UTK)

i i

w
00 ’

o1 ;

A
AW
A

w

02 » ’

)
)

-:F4’W
:F5™
1F4" . F5"

CF1r:F2r: F3™
T F4w

:F5™

1FA4T: F5"

CF17: F2r
:F4" . F5"

T F3™

1F4T: F5"

Lightweight Superscalar Task Execution

8/24

QUARK-D API and Runtime

@ QUARK-D
e QUeuing and Runtime for Kernels in Distributed Memory

@ Simple serial task insertion interface.

QUARKD_Insert_Task(quark, xfunction, xtaskflags,
a_flags, size_a, =xa, a_home_process, a_key,
b_flags, size_b, *b, b_home_process, b_key,
., 0);

@ Manage the distributed details for the user.

Scheduling tasks (where should tasks run)

Data dependencies and movement (local and remote).
Transparent communication.

No global knowledge or coordination required.

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014

9/24

Productivity: QUARK-D QR Implementation

-

for k = 0 ... TILES—1
?eqrt(AR T
rn=%k+1..TILES—1
The code matches the pseudo-code ® nmar o ST;K, A
for m = k+1..TILES—1
tsqrt(Ai"k"fup, AV THY
for n = k+1..TILES—1
#define A(m,n) ADDR(A) ,HOME(m,n) ,KEY(A,m,n) (Ao T,
#define T(m,n) ADDR(T) ,HOME(m,n) ,KEY(T,m,n)\

r w w
mk > Akn' Amn)

)

)

void plasma_pdgeqrf(A, T,.) {

for (k = 0; k < M; k++) {
TASK_dgeqrt(quark,. ,A(k,k),T(k,k));
for (n = k+1; n < N; n++)
TASK_dormgr(quark,.. ,A(k,k),T(k,k),A(k,n));
for (m = k+1; m < M; m++) {
TASK_dtsqrt(quark,. ,A(k,k) ,A(m,k),T(m,k));
for (n = k+1; n < N; n++)

TASK_dtsmar(quark,. ,A(k,n) ,A(m,n),
A(m, k), T(m,k)); }}}

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014

10/24

Productivity: QUARK-D QR Implementation

The task is inserted into the runtime and held till data is ready.

void TASK_dgeqrt(
Quark =xquark,.,int m,int n,
double +A,int A_home,key xA_key,
double «T,int T_home,key «T_key)

QUARKD_Insert_Task(quark , CORE_dgeqrt, ... ,
VALUE, sizeof (int),&m,
VALUE, sizeof (int),&n,
INOUT | LOCALITY, sizeof (A) ,A,A_home, A_key,
OUTPUT, sizeof (T),T,T_home, T_key,.,0);

)

}

When the task is eventually executed, the dependencies are
unpacked, and the serial core routine is called.

void CORE_dgeqrt(Quark xquark)
{
int m,n,ib,lda,Idt;
double *A,xT,xTAU,*WORK;
quark_unpack_args_9(quark ,m,n,ib A,
Ida, T, Idt , TAU,WORK) ;
CORE_dgeqgrt(m,n,ib ,A,lda,T, Idt ,TAU,WORK) ;
}

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014

11/24

Distributed Memory Algorithm

This pseudocode manages the distributed details for the user.

// running at each distributed node
for each task T as it is inserted
// determine Pexe based on dependency to be kept local
Pexe = process that will run task T
for each dependency A; in T
if (I am Pexe) && (A; is invalid here)
insert receive tasks (Aj")
else if (Pexe has invalid A) && (| own A;)
insert send tasks (A])
// track who is current owner, who has valid copies
update dependency tracking
if (| am Pexe)
insert task T into shared memory runtime

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014

12/24

QUARK-D Running the Distributed Memory Algorithm

A00 | AD1

A02

A10 | AN1

A12

FO geqrt
F1 unmgqgr
F2 unmgqr
F3 tsqrt
F4 tsmqr
F5 tsmqr

F7 tsmqr
F8 tsmqr
F9 geqrt
F10 unmqr
F11 tsqrt
F12 tsmqr

F13 geqrt(Ay,

(
(
(
(
(
(
F6 tsqrt(Ay, A,
(
(
(
(
(
(
(

w
Ta2

(a) PO (b) P1 (c) P2
Execution of a small QR factorization (DGEQRF). Three processes (P0, P1, P2) are running the

factorization on 3x3 tile matrix using a 1 x 3 process grid. Note that TSQRT and TSMQR have

locality on second RW parameter.

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 13/24

QUARK-D'’s principles of operation. Scheduling
the DAG of the distributed memory QR
factorization. Three distributed memory
processes are running the factorization
algorithm on a 3x3 tile matrix. One
multi-threaded process runs all the blue tasks,
another multi-threaded process runs the green
tasks, and a third runs the purple tasks. Colored
links show local task dependencies. Black
arrows show inter-process communications.

Nov 16 2014 14 /24

QUARK-D: Key Developments

@ Distributed scheduling

e A function tells us which process is going to run a task; usually
based on data distribution (2D block cyclic) but any function that will
evaluate the same on all processes.

e Execution within a multi-threaded process is completely dynamic.

@ Decentralized data coherency protocol

e Processes coordinate the data movement without any control
messages.

e Coordination is enabled by a data coherency protocol, where each
process knows who is the current owner of a piece of data, and
which processes have valid copies of that data.

@ Asynchronous data transfer

e Data movement is initiated by tasks, then the message passing
continues asynchronously without blocking other tasks.

e The data movement protocol is an eager protocol initiated by a
send-data task. The receive-data task is activated by the message
passing engine, and can get the data asynchronously (from
temporary storage if necessary).

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 15/24

QUARK-D: QR Trace

Figure: Trace of a QR factorization of a matrix consisting of 16x16 tiles on 4
(2x2) distributed memory nodes using 4 computational threads per node. An
independent MPI communication thread is also maintained. Color coding:
MPI (pink); GEQRT (green); TSMQR (yellow); TSQRT (cyan); UNMQR (red).

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 16/24

QUARK-D: QR Weak Scaling: Small Cluster

Dist Mem nodes (2x4-core) 2.27 GHz Xeon [dancer]

1200
Theoretical Peak Performance
PARSEC (nb=240,ib=48)
1000 QUARKD (nb=260/ib=52) ——
ScaLAPACK (nb=128) « ae
800
[%2]
S
£ 600
O]
400
200
0

0 20 40 60 80 100 120 140
Number of cores (8 cores/node)

Figure: Weak scaling performance of QR factorization on a small cluster.
Factorizing a matrix (5000x5000/per core) on up to 16 distributed memory
nodes with 8 cores per node. Comparing QUARK-D, PaRSEC and
ScalLAPACK (MKL).

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 17 /24

QUARK-D: QR Weak Scaling: Large Cluster

QR factorization with weak scaling (5000x5000/core)
100 nodes with 2x6 2.6GHz Opteron Istanbul cores/node [kraken]

14000 — . . .
Theoretical Peak Performance

DGEMM Peak Performance (single core)

12000 PARSEC (NB=260)

ScalLAPACK (proc per core,NB=180)
QUARKD (NB=468)

10000

8000

GFlops

6000

4000

2000

400 600 800 1000 1200
Number of cores (12 cores/node)

Figure: Weak scaling performance for QR factorization (DGEQRF) of a matrix
(5000x5000/per core) on 1200 cores (100 distributed memory nodes with 12
cores per node). Comparing QUARK-D, PaRSEC and ScalLAPACK (libSCl).

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 18/24

QUARK-D: Cholesky Weak Scaling: Small Cluster

Dist Mem - 16 nodes (2x4-core) 2.27 GHz Xeon [dancer]

1200 T T T T
Theoretical Peak Performance
PARSEC/DPLASMA (nb=240)
1000 F QUARKD (nb=312) =—+—
ScalLAPACK (nb=96) -
800
12}
s AL S e
I BOO [A
0] X
400
200
0
0 20 40 60 80 100 120 140

Number of cores (8 cores/node)

Figure: Weak scaling performance of Cholesky factorization (DPOTRF) of a
matrix (5000x5000/per core) on 16 distributed memory nodes with 8 cores
per node. Comparing QUARK-D, PaRSEC and ScaLAPACK (MKL).

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 19/24

QUARK-D: Cholesky Weak Scaling: Large Cluster

Cholesky factorization with weak scaling (5000x5000/core)
100 nodes with 2x6 2.6GHz Opteron Istanbul cores/node [kraken]

14000 T T T T
Theoretical Peak Performance
DGEMM Peak Performance (single core)
12000 PARSEC (NB=288)
QUARKD (NB=468) =——
10000 ScalLAPACK (NB=180) -
2 8000
o
[T
O] 6000
4000
2000
0
0 400 600 800 1000 1200

Number of cores (12 cores/node)

Figure: Weak scaling performance for Cholesky factorization (DPOTRF) of a
matrix (7000x7000/per core) on 1200 cores (100 distributed memory nodes
with 12 cores per node). Comparing QUARK-D, PaRSEC and ScaLAPACK
(libSCI).

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 20/24

DAG Composition: Cholesky Inversion

@ Cholesky Inversion

e POTRF, TRTRI, LAUUM
@ DAG composition can
compress DAGs substantially

OO COEETT 0 O 00 S CIO O o OITIITITOIIITID O
PEEE i N
S O e o IR 10 b
IR o e

og
O IO o 0)

ST O] S e B (O O
L I) i (L) (LT
EEmEsEs [s [8 sife s = | = ssmsmesesfl
S B SRS L
S e - - B, T O
[= s e o g jmies am
| mro

G
[tavum

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 21/24

QUARK-D: Composing Cholesky Inversion

 max:]443.5I4

0
N W W[. W | HI
ML TMRRNAAE 1 RMANY I N W | |-
JBMARY T FIBNMOYIR | IO WL IR TR
1]] .| || HIEN)
AN NARRINY | MMM ¥ T JBNRY NN T (MRICWT WY
(]I Wl 1N EEE D

| N[W n(m 5 N

(N[N .

NN MMM Y T T

II JNNRAR Y RURUIRIORR AR JONAE MO RORON T
o e

il iiIIIIIIII ARARARY AN | SORRY oy IIIII\II‘IHI LI o

i
T
T
T
T
T
T
T
T
i
T
T
T
T
T

AUMMRTAT VAN JMY OAVE DO MO AT T WAREY W
RANAN Y NNR Y MARRRRIR VW AT DO W MWL) TN
| IIIIII[IHIIII JRBIRRIE T BY !IIIII IiIIR ill II \lf l
| R | I W
BRI AU MR Mkt 1 fanhy llII IIl I!l
| N N 1] NN O RN

I NORRRIRANR A0 AN ICOORE AN MO | N SN RO | Tl
I RUMEICHURMN ORRMIMART MANRUMAY VSN MMM Il\l
A IAMMAIRU GRMA foununt | TN T 1T
- ﬂll
SORMMARU(RININN (NNRRROUARIN DOANUR UMY THRMRRSA v me T
| BN I N I

Figure: Trace of the distributed memory Cholesky inversion of a matrix with
three DAGs that are composed (POTRF, TRTRI, LAUUM)

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 22/24

QUARK-D Summary

@ Designed and implemented a runtime system for task based
applications on distributed memory architectures.

@ Uses serial task insertion interface with automatic data
dependency inference.

@ No global coordination for task scheduling.

@ Distributed data coherency protocol manages copies of data.
@ Fast communication engine transfers data asynchronously.

@ Focus on productivity, scalability and performance.

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 23/24

The End

Asim YarKhan & Jack Dongarra (UTK) Lightweight Superscalar Task Execution Nov 16 2014 24 /24

	Introduction and Motivation
	Tiled Algorithms
	Distributed Memory Runtime Environment

