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My history in many task computing

= Early work on OS and storage systems
— Early SMP mainframe UNIX system at Bell Labs — UNIX 370

— Open Storage Manager hierarchical storage system

" Language design and implementation for
“programming in the large” — 5ESS and beyond
— C-Talk (a C-flavored language with Smalltalk semantics)

= First experience in scientific HPC was on NSF-
supported Grid Physics Network project “GriPhyN”

= |nvolved in design and application of 3 generations

of many-task technology

— Virtual Data System — started 2001
— Swift Parallel Scripting System — started 2006
— Swift “Turbine” implementation — started 2010

www.ci.uchicago.edu/swift
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A view of Many Task Computing

.. and why its related to dataflow
= By “many tasks” we typically mean “very many”

= By tasks, we typically mean run-to-completion (before
communicating results to other tasks)

= More precisely: a task is a function call !

= Running a lot of tasks fast and efficiently raises interesting
research and engineering problems

— Research: hierarchical scheduling, load balancing, service
architectures

— Engineering: speed, reliability, recoverability
= Data dependencies yield task dependencies, and challenges
— How to express and manage dependencies?

— What programming model?
— How to describe and pass data?



Where we started:
The Grid Physics Network

Enhance scientific productivity through discovery
and processing of datasets, using the grid as a

scientific workstation

Focused on ATLAS, CMS, LIGO, and SDSS

Theme of GriPhyN was Virtual Data: how to express
the processes by which data is derived, so that it can
be recreated on demand

Approach: Create datasets from workflow “recipes”
and record their provenance (ala “memoization”)
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Virtual Data Scenario

simulate -t10...

<

A

A
v

file1 psearch -t10 ... > file8
reformat —ffz ... -

summarize -t10...

conv -l esd -0 aod

N— -
T~
Update . Manage workflow; . On-demand
Explain provenance, e.qg. for file8:
workflow et T . data
following psearch —t 10 —i file3 file4 file5 —o file8 generation
summarize —t 10 —i file6 —o file7
changes

reformat —f fz —i file2 —o file3 file4 file5
conv —| esd —o aod —i file 2 —o fileb
simulate —t 10 —o file1 file2



Virtual Data
Describes analysis workflow

] S—

file psearch -t 10 ... —> fleg

simulate -t 10 ... >_< - o .
()

D Requested
reformat —ffz ... W I I dataset
conv -l esd —o aod summarize -t 10 ...

= The recorded virtual data “recipe” here is:
— Files: 8 <(1,3,4,5,7), 7 <6, (3,4,5,6) < 2

— Programs: 8 < psearch, 7 < summarize,
(3,4,5) < reformat, 6 < conv, (1,2) < simulate




Virtual Data

Describes analysis workflow

simulate -t10...

reformat ffz ...

conv -l esd -0 aod

psearch -t10 ...

[
# i

= To recreate file 8: Step 1
— simulate > file1, file2

summarize -t10...

Requested
dataset



Virtual Data
Describes analysis workflow

v Rty
file1 psearch -t10 ... —> file8
simulate -t 10 ... >_< .........................
<¥/ d
flez | Requeste

a ooteset

conv -l esd —o aod summarize -t 10 ...

= To re-create file8: Step 2
— files 3, 4, 5, 6 derived from file 2
— reformat > file3, file4, file5
— conv > file 6
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Virtual Data

Describes analysis workflow

simulate -t10...

<

reformat ffz ...

psearch —t10... file8
am™ ||
«IQ | Requested
m ﬁ dataset

conv -l esd -0 aod

= To re-create file 8: step 3
— File 7 depends on file 6
— Summarize > file 7
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Virtual Data
Describes analysis workflow

Q o
file1 “
simulate -t 10 ... <5
i Requested
file2
\ reformat —ffz ...

dataset

conv -l esd -o aod summarize -t 10 ...

= To re-create file 8: final step
— File 8 depends on files 1, 3,4, 5,7
— psearch < file1, file3, file4, file5, file 7 > file 8




VDL: Virtual Data Language
Describes Data Transformations

= Transformation
— Abstract template of program invocation
— Similar to "function definition"

= Derivation
— “Function call” to a Transformation
— Store past and future:

e Arecord of how data products were generated
e A recipe of how data products can be generated

" |nvocation

— Record of a Derivation execution

= These XML documents reside in a “virtual data catalog’
VDC - a relational database

13



VDL contribution: encapsulation enables
distributed parallelism

Application program

Files expected
or produced
by application program

Encapsulation is the key to transparent distribution, parallelization, and automatic
provenance capture

Critical in a world of scientific, engineering, technical and analytical applications

14
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VDL Describes Workflow
via Data Dependencies

TR tr1(in a1, out a2) {
argument stdin = ${al};
argument stdout = S{a2}; }

TR tr2(in al, out a2) {
argument stdin = S{al};
argument stdout = S{a2}; }

DV x1->trl(al=@{in:filel}, a2=@{out:file2});
DV x2->tr2(al=@{in:file2}, a2=@{out:file3});

15



Workflow example

preprocess

findrang fmdran

f.e1

analyze

¢

= Graph structure
— Fan-in
— Fan-out
— "left" and "right" can run in parallel

= Needs external input file
— Located via replica catalog

= Data file dependencies
— Form graph structure

16



Complete VDL workflow

= Generate appropriate derivations
DV top->preprocess( b=[ @{out:"f.b1"}, @{ out:"f.b2"}], a=@{in:"f.a"});
DV left->findrange( b=@{out:"f.c1"}, a2=@{in:"f.b2"}, al=@{in:"f.b1"},
name="left", p="0.5");
DV right->findrange( b=@{out:"f.c2"}, a2=@{in:"f.b2"}, al=@{in:"f.b1"},
name="right" );
DV bottom->analyze( b=@{out:"f.d"}, a=[ @{in:"f.c1"}, @{in:"f.c2"});

17



Compound Transformations
Enable Functional Abstractions

= Compound TR encapsulates an entire sub-graph:
TR rangeAnalysis (in fa, p1, p2,
out fd, io fcl,
io fc2, io fbl, io fb2,)
{
call preprocess( a=${fa}, b=[ S{out:fb1}, S{out:fb2}]);
call findrange( al=5{in:fb1}, a2=5{in:fb2}, name="LEFT", p=${p1}, b=S
{out:fcl});
call findrange( al1=5{in:fb1}, a2=5{in:fb2}, name="RIGHT", p=${p2}, b=5
{out:fc2});
call analyze( a=[ S{in:fc1}, S{in:fc2} ], b=S{fd});

}

18



Derivation scripts

= Representation of virtual data provenance:

DV d1->diamond( fd=@{out:"f.00005"}, fcl=@{io:"f.00004"}, fc2=@{io:"f.
00003"},
fbl=@{io:"f.00002"}, fb2=@{io:"f.00001"},
fa=@{io:"f.00000"}, p2="100", p1="0");

DV d2->diamond( fd=@{out:"f.0000B"}, fc1=@{io:"f.0000A"}, fc2=@{io:"f.
00009"},
fbl=@{io:"f.00008"}, fb2=@{io:"f.00007"},
fa=@{io:"f.00006"}, p2="141.42135623731", p1="0");

DV d70->diamond( fd=@{out:"f.001A3"}, fc1=@{io:"f.001A2"},
fc2=@{io:"f.001A1"},
fbl=@{io:"f.001A0"}, fb2=@{io:"f.0019F"},
fa=@{io:"f.0019E"}, p2="800", p1="18");

19



VDL Workflow:

1: Sloan Image Data
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VDL Workflow: Finding Galaxy Clusters S

Drawback of virtual data
language:

For almost any application of
modest complexity,
application-specific
derivation graph generators
were needed.

DS

Figure 6: A basic DAG for cluster identification workflow.

The graph shown below is for one specific stripe of the survey (stripe 34). It uses 123 nodes to process
110x12 fields, and illustrates how larger workflows can be composed of many overlapping invocations of
the workflow of the basic DAG pattern shown above.

Figure 7: DAG for stripe 34 showing composition from a basic pattern.

Jim Annis, Steve Kent, Vijay Sehkri,
Fermilab, Michael Milligan, Yong Zhao,
University of Chicago



DAX format: derivation DAG in XML

<job namespace="diamond" name="preprocess" version="2.0" id="ID000001">
<argument>-a preprocess -T60 -i <file name="f.a" /> -o <file name="f.b1" /> <file name="f.b2" /></argument>
<uses name="f.b2" link="output" register="false" transfer="false" />
<uses name="f.b1" link="output" register="false" transfer="false" />
<uses name="f.a" link="input" />

</job>

<job namespace="diamond" name="findrange" version="2.0" id="1D000002">
<argument>-a findrange -T60 -i <file name="f.b1" /> -o <file name="f.c1" /></argument>
<uses name="f.b1" link="input" register="false" transfer="false" />
<uses name="f.c1" link="output" register="false" transfer="false" />

</job>

<job namespace="diamond" name="findrange" version="2.0" id="1D000003">
<argument>-a findrange -T60 -i <file name="f.b2" /> -o <file name="f.c2" /></argument>
<uses name="f.c2" link="output" register="false" transfer="false" />
<uses name="f.b2" link="input" register="false" transfer="false" />

</job>

<job namespace="diamond" name="analyze" version="2.0" id="ID000004">
<argument>-a analyze -T60 -i <file name="f.c1" /> <file name="f.c2" /> -o <file name="f.d" /></argument>
<uses name="f.c2" link="input" register="false" transfer="false" />
<uses name="f.d" link="output" register="false" transfer="true" />
<uses name="f.c1" link="input" register="false" transfer="false" />

</job>

<l-- part 3: list of control-flow dependencies -->

<child ref="1D000002">
<parent ref="1D000001" />

</child>

<child ref="1D000003">
<parent ref="1D000001" />

</child>

<child ref="1D000004">
<parent ref="1D000002" />
<parent ref="1D000003" />

</child>

www.ci.uchicago.edu/swift



But what if you have many simple tasks?

Example application: protein-ligand docking for drug screening

0(10) X 0(100K) m@(
proteins drug o” O};—?Sw
implicated candidates

in a disease
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Problem: How to code such applications?

1,000,000
runs of the
“dock”
application

... and repeat this pattern

& many times — often pipelined
& 24



Solution: Compact, portable scripting

Swift code excerpt:

foreach p, 1 1n proteins {
foreach ¢, j in ligands {
(structure[1i,3], log[i,]]) =
dock(p, ¢, minRad, maxRad);

}

scatter plot = analyze(structure)
To run:

swift —site stampede,trestles \

docksweep.swift
S http://swift-lang.org



What is Swift? A powerful but “little”
scripting language

Swift is a parallel scripting language
Composes applications linked by files
Easy to write: a simple, high-level language

Small Swift scripts can do large-scale work

Easy to run: on clusters, clouds and grids
Sends work to XSEDE, Amazon, OSG, Cray

Fast and highly parallel
Runs a million tasks on thousands of cores
hundreds of tasks per second*

* thousands to billions per second on petascale supercomputers (Blue Waters and Mira)
http://swift-lang.org
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Swift does 4 important things for you:

Makes parallelism more transparent
implicitly parallel functional dataflow programming

Makes computing location more transparent

runs your script on multiple distributed sites and
diverse computing resources (desktop to petascale)

Makes basic failure recovery transparent
Retries/relocates failing tasks
Can restart failing runs from point of failure
Records provenance of data derivation
Made possible through functional encapsulation

27
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Swift programming model

= Data types

int i=4;
int All;
string s = "hello world";

= Mapped data types

file image<"snapshot.jpg">;

= Structured data
image A[]<array mapper..>;
type protein ({
file pdb;
file docking pocket;
}

protein p<ext; exec=protein.map>;

= Conventional expressions
if (x == 3) {
y = x+2;

s = strcat("y: ", y);

= Parallel loops
foreach £,1 in A {

B[i] = convert(A[i])

=  Composition and Data flow
= analyze(B[0], B[1l]):;
= analyze (B[2], B[3]):
= compare (a,b)

Qo w

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011

Coasters: uniform resource provisioning

12/6/2011
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app( ) functions specify command line arg passing

To run:
psim -s 1ubg.fas -pdb p -t 100.0 -d 25.0 >log

In Swift code:

app (PDB pg, Text log) predict (Protein seq,
Float t, Float dt)
{
psim "-c" "-s" @pseq.fasta "-pdb" @pg
ll_tll temp ll_dll dt;
PSim application }

Protein p <ext; exec="Pmap", id="1ubg">;
PDB structure;
Text log;

(structure, log) = predict(p, 100., 25.);

oﬁ\\]fhi 29
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Functional composition in Swift

Sweep(Protein pSet[ ])

{
int nSim = 1000;

int maxRounds = 3;
float startTemp[ ] =[ 100.0, 200.0 |;
float delT[]=[ 1.0, 1.5, 2.0, 5.0, 10.0 |;

foreach p, pnin pSet {
foreach t in startTemp {

foreach d in delT {
lterativeFixing(p, nSim, maxRounds, t, d);

}
} 10 proteins x 1000 simulations x

} } 3 rounds x 2 temps x 5 deltas
= 300K tasks

30



-

Spatial normalization of functional MRI runs

Dataset-level workflow

reorient
reorient
alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

http://swift-lang.org

i

Expanded (10 volume) workflow
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Complex scripts can be well-structured

programming in the large: fMRI spatial normalization script example

(Run or) reorientRun ( Run ir, string direction)
(Run snr) functional ( Run r, NormAnat a, {
Air shrink )

{ RunyroRun =reorientRun(r,"y" );< ¥
Run roRun = reorientRun( yroRun , "x"); }

foreach Volume iv, i in ir.v {
or.v[i] = reorient(iv, direction);

Volume std = roRun][0];

Run rndr = random_select( roRun, 0.1 );

AirVector rndAirVec = align_linearRun( rndr, std, 12, 1000, 1000, "81 3 3" );
Run reslicedRndr = resliceRun( rndr, rndAirVec, "0", "k" );

Volume meanRand = softmean( reslicedRndr, "y", "null" );

Air mnQAAIr = alignlinear( a.nHires, meanRand, 6, 1000, 4, "81 3 3" );
Warp boldNormWarp = combinewarp( shrink, a.aWarp, mnQAAir );

Run nr = reslice_warp_run( boldNormWarp, roRun );

Volume meanAll = strictmean( nr, "y", "null" )

Volume boldMask = binarize( meanAll, "y" );

snr = gsmoothRun( nr, boldMask, "6 6 6" ),

32
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Benefit of implicit pervasive parallelism: Analysis
& visualization of high-resolution climate models

40.1850.track1.1deg.006 (yrs 971)
precipitotion mean= 106,58

8235 BREREELER2HER

BEBUYREROEREYREFFFYYE

.0
s oS s o 3N L

= Diagnostic scripts for each climate
model (ocean, atmospehere, land,
ice) were expressed in complex
shell scripts I -

= Recoded in Swift, the CESM A e
community has benefited from |
significant speedups and more
modular scripts

t'v‘—.L.LL.'-'f-'?ﬁ'“?fti’g".‘;:,—,—ﬂ
BEeiuphRobansarzhzlEd

Work of: J Dennis, M Woitasek, S
Mickelson, R Jacob, M Vertenstein

S http://swift-lang.org



Swift runs across diverse parallel platforms

‘ Data server <:>
A

/

Swift ,
script -

\_/ %]
E pplication

Programs

@bmlt host (login node, laptop, Linux server

Swift runtime system has drivers and algorithms to efficiently
support and aggregate vastly diverse runtime environments

http://swift-lang.org
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Pervasive parallel data flow

parent task a
spawns .
child task b

a writes data

d waits for
data

Q Task

Shared
L] data item

-.~ Tlask spawn
dependency
Data
dependency

Fig. 1: Task and data dependenciés in data-driven task paral-
lelism, forming a spawn tree rooted at task a. Data dependen-
cies on shared data defer execution of tasks until the variables

are finalized.

http://swift-lang.org
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Implicitly parallel functional dataflow -
tracing our way back to the future

Seminal work and visions
— Future construct for Lisp (1977) and Act 1 (1981)

— Jack Dennis’s vision of Project X (later, Fresh Breeze) — 1975:
pervasive implicit parallelism

— VAL -> Sisal (Streams and Iteration in a single assighnment language)

Programming language models for productive parallel programming
— Strand (lan Foster, Stephen Taylor, 1988)
— Program Composition Notation (PCN)

Globus CoG
— Karajan
— Occam-like; used channels (futures were internal)
GriPhyN
— Virtual data model & language for data derivation recipes and provenance
tracking
— Pegasus workflow engine
Swift

36
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The future

a = f(b) X

Name: a

Type: float | Value: unset

Waiting evals

__~

v_

x=a+f(v)

y =f(a)

Z =atb

www.ci.uchicago.edu/swift
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The promise of the Future

= “future” construct coined Henry Lieberman — 1977, MIT, for Lisp
= Led to new language, Act 1 — 1980

Parailellism In Act 1 2.1 Dynamic allocation of processes parallels dynamic allocation of storage

Aprll 16, 1981 at 0:09 Page 4 Henry Lieberman

We propose that parallel processes be allocated dynamically rather than statically.
We will introduce actors called furures which represent parallel computations. There
is a primitive which magically creates them whenever you need them. When they're
no longer necessary, they get garbage collected, when they become inaccessible. The
number of processes need not be bounded in advance, and if there are too many
processes for the number of real physical processors you have on your computer
system, they are automatically time shared. Thus the user can pretend that processor
resources are practically infinite.

www.ci.uchicago.edu/swift



Inspiration: Jack Dennis

General purpose parallel machines based on a
dataflow graph model of computation

Inspired all the major
players in dataflow during
seventies and eighties,
including Kim Gostelow and
I @ UC Irvine

] . ... from Dataflow talk by
CSAIL ISCA, Madison, WI, June 6, 2005 .
Arvind (MIT)



Sisal

Developed 1983, revised 1985 by
James McGraw and collaborators
at Manchester, CSU, LLNL and Dec

Pascal-inspired syntax

Full implicit parallelism through
single assignment

Impressively high quality compiler
(as assessed by WPI students in
2010 vs. gcc)

Extended for distributed shared
memory at Arizona

Derived from Val by Jack Dennis

define main

type OneDim = array [ real ];
type TwoDim = array [ OneDim );

function generate( n : integer
returns TwoDim, TwoDim )

for 1i in 1, ncross j in 1, n
returns array of real(i)/real(j)
array of real(i)*real(3j)
end for
end function % generate

function doit( n : integer; A, B : TwoDim
returns TwoDim )

for i in 1, n cross
3 in 1, n
c := for k in 1, n
t := A[i,k] * B[k,]]
returns value of sum t
end for
returns array of c
end for
end function % doit

function main( n : integer returns TwoDim )
let A, B := generate( n )

in doit( n, A, B )

end let

end function % main



Strand

1988 By lan Foster

Logic programming model
ala Prolog

Supported productive
composition and parallelism

align chunk(Sequences,Alignment) :-
pins(Chunks,BestPin),
divide(Sequences,BestPin,Alignment).

pins(Chunk,BestPin) :-
cps (Chunk,CpList),
c_form pins(CpList,PinList),
best_pin(Chunk,PinList ,BestPin).

cps([Seq|Sequences] ,CpList) :-
CpList := [CPs|CpListi],
ccritical points(Seq,CPs),
cps (Sequences,CpListl).

cps([],CpList) :- CpList := [].

divide(Seqs,Pin,Alignment) :-
Pin =\= [] |

split(Seqs,Pin,Left ,Right ,Rest),
align chunk(Left,LAlign) @ random,
align chunk(Right ,RAlign) @ random,
align chunk(Rest ,RestAlign) Qrandom,
combine(LAlign,RAlign,RestAlign,Alignment) .

divide(Seqs, [],Alignment) :-
c_basic_align(Seqs,Alignment).

Figure 4: Genetic Sequence Alignment Algorithm
a1



PCN

Developed 1990 by Argonne and
Caltech (Stephen Taylor, lan Foster,
and collaborators)

Supported composition of external
code (C, Fortran)

Lightweight threads, easy-to-
express parallelism,

align_chunk(sequences,alignment)
{Il pins(chunks,bestpin),
divide(sequences,bestpin,alignment)

¥

pins(chunk,bestpin)

{I'l cps(chunk,cplist),
c_form_pins(cplist,pinlist),
best_pin(chunk,pinlist,bestpin)

¥

cps(sequences,cplist)
{ ? sequences ?= [seql|sequencesl] ->
{Il cplist = [cpslcplisti],
c_critical_points(seq,cps),
cps (sequencesl,cplistl)
.
sequences 7= [] -> cplist = []

¥

divide(seqs,pin,alignment)
{7 pin '= [] ->
{1] split(seqs,pin,left,right, rest),
align_chunk(left,lalign),
align_chunk(right,ralign),
align_chunk(rest,restalign),
combine(lalign,ralign,restalign,alignment)
.
pin == [] ->
c_basic_align(seqs,alignment)

Figure 8: PCN Version of Figure 4
42



Problem: Centralized evaluation can be a
bottleneck!

-~

Swift ,
script -

\_/ %]
E pplication

Programs

@bmlt host (login node, laptop, Linux server

500 tasks/sec is good for workflow,
but can’t utilize much of a large supercomputer

S http://swift-lang.org 43



Centralized evaluation can be a bottleneck
at extreme scales

Had this (Swift/K): For extreme scale, we need this (Swift/T):

Data flow program Data flow program
. x 1,000
| Y | L4

Data flow engine

500 tiﬁlSKS/ S Control tasks

Task ‘ Task l ’ Task I ‘ Task l

L 500.000 tasks/s -

Engine Engine

Gy

Centralized evaluation Distributed evaluation

44

http://swift-lang.org



Swift/T: High-level model with Turbine runtime

= Script-like global-view programming with “leaf tasks”- function calls in C, C++, Fortran,
Python, R, or Tcl

= Leaf tasks can be MPI programs, etc. Can be separate processes if OS permits.
= Distributed, scalable runtime manages tasks, load balancing, data movement

= User function calls to external code run on 1000’s of worker nodes

= Like master-worker but with the expressive Swift language to control progress

: = Swift worker process
Turbine P P
control < >

processes e > C C++ Fortran
I l

python

powered

http://swift-lar:g.o.ng




( Server O ]

{ Server 1 ]

Tasks: ready

priority: O

defn: £(1, 'foo',<9>)

Tasks: waiting

defn: g(<2>,<9>)
priority: O
Dependencies
—y <3>,<5>,<2>, ..
Data
int readers: 1
ig> writers: 1
value: (unset)
readers: 2
fig:t writers: O
value: 3.14
readers: 1
array writers: 2
<9> value:
{<2>,<3>,<5>}

Work stealing, ",
notifications Tasks waiting
- — Tasks ready
Dependencies
Data
Data
New tasks operations
[ Worker 2 ] *
tate: running
Data | ©
operations | £ (2, 'bar', <9>
[ Worker 3 ]
Tasks to state: idle
execute

Fig. 4: Runtime architecture showing distributed worker pro-
a cesses coordinating through task and data operations.
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Compiler Techniques for Massively Scalable
Implicit Task Parallelism

Timothy G. Armstrong,* Justin M. Wozniak,“'*t Michael Wilde,'* Tan T, Foster* T+
*Dept. of Computer Science, University of Chicago, Chicago, IL, USA
fMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
fComputation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA

Abstract—Swift/T is a high-level language for writing concise,
deterministic scripts that compose serial or parallel codes im-
plemented in lower-level programming models into large-scale
parallel applications. It executes using a data-driven task parallel
execution model that is capable of orchestrating millions of
concurrently executing asynchronous tasks on homogeneous or
heterogeneous resources. Producing code that executes efficiently
at this scale requires sophisticated compiler transformations:
poorly optimized code inhibits scaling with excessive synchro-
nization and communication. We present a comprehensive set of
compiler techniques for data-driven task parallelism, including
novel compiler optimizations and intermediate representations.
We report application benchmark studies, including unbalanced
tree search and simulated annealing, and demonstrate that our
techniques greatly reduce communication overhead and enable
extreme scalability, distributing up to 612 million dynamically
load balanced tasks per second at scales of up to 262,144 cores
without explicit parallelism, synchronization, or load balancing
in application code.

I. INTRODUCTION

In recent years, large-scale computation has become an
indispensable tool in many fields, including those that have
not traditionally used high-performance computing. These in-
clude data-intensive applications such as machine learning and

data-aware task scheduling. Recent work has explored imple-
menting this execution model with libraries and conservative
language extensions to C for distributed-memory and heteroge-
nous systems [3], [8], [9], [28] and has shown that performance
can match or exceed performance of code directly using the
underlying interfaces (e.g., message passing or threads). One
reason for this success is that sophisticated algorithms for
load balancing (e.g., work stealing) or data movement, usually
impractical to reimplement for each application, can be imple-
mented in an application-independent manner. Another reason
is that the asynchronous execution model is effective at hiding
latency and exploiting available resources in applications with
irregular parallelism or unpredictable task runtimes.

Swift/T [36] is a high-level implicitly parallel programming
language that aims to make writing massively parallel code
for this execution model as easy and intuitive as sequential
scripting in languages such as Python. Implementing a very
high-level language such as Swift/T efficiently and scalably
is challenging, however, because the programmer only spec-
ifies synchronization and communication implicitly through
function composition or reads and writes to variables and
data structures. Thus, internode data movement, parallel task

Thu 4 PM, 393-94-95
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Swift/T optimizing compiler and IR’s

STC Compiler
IR-1 ¢ N [R_l'/ Post )
imizati processing. —
-—L Optimization /. Ref. Counting & Distributed
Value. Passing Runtime

S

Swift/T i - § = —
Code —’[ Frontend ] L Code Generation }.E’(E_
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Swift/T optimization challenge: distributed vars

| a = fl1(); b = f2(a);
2 c, d= f3(a, b); e = f4(f5(c);
3 f = £f4(£5(4); g = f6(e, f);

(a) Swift/T code fragment

(b) Unoptimized version, passing data as shared data and
perform synchronization

S http://swift-lang.org 49



Swift/T optimizations improve data locality

value of e

value ofa value ofb vg]:;g(fjc " sl
Value of ‘

(c) After wait pushdown and elimination of shared data in favor
of parent-to-child data passing

value of e

(d) After pipeline fusion merges tasks
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Swift/T application benchmarks
on Blue Waters
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Fig. 10: Application speedup and scalability at different optimization levels. X axes show scale in cores. Primary Y axes show
application throughput in application-dependent terms. Secondary Y axes show problem size or degree of parallelism where
applicable.
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GeMTC: GPU-enabled Many-Task Computing

Motivation: Support for MTC on all accelerators!

Goals: Approach:
1) MTC support  2) Programmability Design & implement GeMTC middleware:
3) Efficiency 4) MPMD on SIMD 1) Manages GPU 2) Spread host/device
5) Increase concurrency from 15 to 192 3) Workflow system integration (with
(~13x) Swift/T)

CPU GPU

g M M Task Queue A

G e M TC Warp Warp

1
W W Result Queue
a \_ J

Swift




What’s next?

" Programmability

— New patterns ala Van Der Aalst et al (workflowpatterns.org)
" Fine grained dataflow — programming in the smaller?

— Run leaf tasks on accelerators (CUDA GPUs, Intel Phi)

— How low/fast can we drive this model?

= PowerFlow
— Applies dataflow semantics to manage and reduce energy usage
= Extreme-scale reliability
= Embed Swift semantics in Python, R, Java, shell, make
— Can we make Swift “invisible”? Should we?
= Swift-Reduce

— Learning from map-reduce
— Integration with map-reduce

http://swift-lang.org >3



Conclusion: Implicitly parallel functional
dataflow is useful

= EXpressive

= Portable

= Usable

= Fast

= Applicable over a broad application space

= Not for everything

— best for “programming in the large”
— Supports MPI, OpenMP, GA
= Builds on a long legacy of inspiration

— |Is dataflow programming finally here to stay?
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Swift: A language for distributed parallel scripting

Michael Wilde *>*, Mihael Hategan ?, Justin M. Wozniak®, Ben Clifford ¢, Daniel S. Katz?,
lan Foster #P¢

2 Computation Institute, University of Chicago and Argonne National Laboratory, United States
> Mathematics and Computer Science Division, Argonne National Laboratory, United States
¢Department of Computer Science, University of Chicago, United States
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ARTICLE INFO ABSTRACT
Article history: Scientists, engineers, and statisticians must execute domain-specific application programs
Available online 12 July 2011 many times on large collections of file-based data. This activity requires complex orches-
tration and data management as data is passed to, from, and among application invoca-
Keywords: tions. Distributed and parallel computing resources can accelerate such processing, but
Swift their use further increases programming complexity. The Swift parallel scripting language
Parallel programming reduces these complexities by making file system structures accessible via language con-
SDZrtlfftlglV% structs and by allowing ordinary application programs to be composed into powerful par-

allel scripts that can efficiently utilize parallel and distributed resources. We present
Swift's implicitly parallel and deterministic programming model, which applies external
applications to file collections using a functional style that abstracts and simplifies distrib-
uted parallel execution.
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