
Ting Chen, Kenjiro Taura

The University of Tokyo

2012/11/12 @ MTAGS

A Comparative Study of Data Processing
Approaches for Text Processing Workflows

Data Intensive Text Processing

 The fourth paradigm of science: Data-intensive computing

 Data-intensive text processing (NLP: Nature Language Processing

and IR: Information Retrieval) faces big challenge

 Workflows are widely used to solve text processing applications

2

Workflow

 A DAG of coarse-grained jobs and

their dependency

 Each job is typically an existing binary

or executable (e.g. sentence splitters,

parsers and named entity recognizers in

NLP)

 Data are normally stored in and

transferred via files

 Many workflow systems: GXP make,

Swift, Dryad…

3

Problems in workflow with files

 Low-level description

– workflow is very complex with many steps

– a large number of intermediate files

 Inflexible selection of data

– tedious and inefficient to select a subset of data

 workflow engine-dependent job execution

4

MapReduce-enabled workflows

 get wide interests

 a heavy task can be expressed as Map and Reduce jobs or a

whole workflow composition is created as MapReduce style

 provide simple programming model and good scalability

across hundreds of nodes

 However, MapReduce model has some shortcomings

 low-level expression (use algorithm to state the

requirement)

 integrating third-party executables is not

straightforward and flexible

5

Database-based Workflows

6

 simplify description of workflows by completing simple data

processing entirely within a SQL query

 allow flexible selection of data

 have better performance in data selection, join and aggregation

[Andrew Pavlo et al.2009]

 However, databases have a limited support for

 integrating external executable into data processing

pipeline

 optimizing data transfers between data nodes and parallel

clients that process large query results

This paper targets to

 built three real-world text-processing workflows on

top of MapReduce (Hadoop, Hive), database system

(ParaLite) and general Files

 discuss their strength/weaknesses both in terms of

programmability and performance for the workflows

 reveal the trade-offs that all these systems entail for

workflows and provide a guiding information to users

7

8

Background

Motivation

Review of Several Approaches

 Hadoop, Hive and ParaLite

Real-World Text-Processing Workflows

Evaluation

Conclusion

Outline

9

Background

Motivation

Review of Several Approaches

 Hadoop, Hive and ParaLite

Real-World Text-Processing Workflows

Evaluation

Conclusion

Outline

Hadoop [http://hadoop.apache.org/]

 an open-source incarnation of MapReduce model

 provides users easy programming model with Map and

Reduce functions

 uses HDFS as the data storage layer

 takes MapReduce as the data processing layer

 to reuse map/reduce function, Hadoop Streaming (HS) is

developed

 allows you to create and run

map/reduce jobs with any

executable or script as the

mapper and/or the reducer

MapReduce
Layer

HDFS
Layer

Job
Tracker

Name
Node

Master Node Worker Node n

Task Tracker

Data Node

Worker Node 2

Task Tracker

Data Node

Worker Node 1

Task Tracker

Data Node

10

Hive [A. Thusoo et al. 2009]

Hadoop
Layer

Hive
Layer

External Interface

Query Compiler

Executor

Meta-
store

 a data warehouse system built on top of Hadoop

 projects structured data files to relational database tables and

supports queries on the data

11

 use a SQL-like language HiveQL to

express queries and compiles them

into MapReduce jobs

 allows users’ own mappers and

reducers (executables written in any

language) to be plugged in the query

Hadoop

ParaLite [Ting Chen et al. 2012]

A Workflow-oriented parallel database system

Basic idea

 Provides a coordinate layer to connect single-node database

systems (SQLite) and parallelize SQL query across them

12

New features for workflows

 Extension of SQL syntax to embed

an arbitrary command line (User-

Defined Executables or UDX)

 Parallelization of UDX across

multiple computing clients by

collective query (CQ)

CQ

Computing
Client

CQ

CQ

Data Node

D
at

a
D

is
tr

ib
u

ti
o

n

UDX

UDX

UDX

WordCount Task

This is a test!
It is sunny today.

I am a student.
I am working now.

text

Table: data

It 1

is 2
am 2

1 test
… …

word count

select word, count(*) from(
select F(text) as word from data
with F= ”wc_mapper”)

group by word

Hadoop jar hadoop-streaming.jar
-input myInputDirs
-output myOutputDir
-mapper wc_mapper.py
-reducer wc_reducer.py

select mapout.word, count(*)
from (

map text using ’wc_mapper.py’ as word from data
) mapout
group by mapout.word

Hadoop Streaming

ParaLite

Hive

13

14

Background

Motivation

Review of Several Approaches

 Hadoop, Hive and ParaLite

Real-World Text-Processing Workflows

Evaluation

Conclusion

Outline

Text-Processing Workflows

 Natural Language Processing

 Japanese Word Count

 Sentence-Chunking Problem

 Event-Recognition Application

 GXP Make [Kenjiro Taura et al. 2010]

 uses make to describe the whole workflow and provides the

parallelization of jobs across clusters

 performs each single job by the four different systems

15

Text-Processing Workflows

Japanese Word Count

Sentence-Chunking Problem

Event-Recognition Application

16

Japanese Word Count

Calculate the occurrence of Japanese words from crawled
Japanese web pages.

html2sf: crawled data  standard format

sf2rs: extraction of plain text

juman: a morphological analyzer for Japanese

word count: calculation of occurrences of words

input: web pages in Japanese

output: word, count

1

2

3

4

…

五輪日本 91

民主党 27

地震 1874

17

Discussion of JAWC Workflow

18

 This workflow is a simple pipeline style

 Hadoop use a HS script to express each job since it cannot pipe
multiple mappers/reducers

 Hive performs the workflow by only one query

 ParaLite uses a single query to perform the first three jobs followed
by another aggregation query

 With file-based systems, split/merge files for parallelization is
required

select tokens.word, count(*) as count from (

map rst.rs using ‘juman’ as word from (

map sft.sf using ’sf2rs’ as rs from (

map html.con using ’html2sf_wrap’ as sf from

html) sft) rst) tokens

group by tokens.word;

create table tokens as

select T(S(H(con))) as word from html

with H="html2sf html_file" input ’html_file’

S="sf2rs"

T="juman"

partition by word ;

select word, count(*) from token group by word;

19

Discussion of JAWC Workflow (Cont.)

ParaLite

Hive

Hadoop

of
intermediate file

of
wrappers

No

No

No

A lot!

3

1

0

0File

 Two difficulties

 File-based executable : html2sf (which can only takes file
as the input)

 Input data with complicated format, e.g. multiple lines
per record

Text-Processing Workflows

Japanese Word Count

Event-Recognition Application

Sentence-Chunking Problem

20

Event Recognition Application [M. Miwa, et al. 2010]

To recognize complex bimolecular relations (bio-events) among
biomedical entities (i.e. proteins and genes)

The phosphorylation of TRAF2 inhibits binding to the CD40 domain.

21

TRAF2

phosphorylation

Theme

Event1:
phosphorylation

binding

CD40TRAF2

ThemeTheme

Event2:
binding

inhibits

Cause
Theme

Event3:
Negative Regulation

Workflow of Event-Recognition

input: articles from MEDLINE database

1

2

3

4

5

6

xml2text: extraction of abstract for articles

geniass: split abstract into sentecnes

ner: recognition for bio-medical entities

enju: syntactic/semantic parser for sentences

gdep: : dependency parser for biomedical text.

event-recog: recognition for complex events

output: event structure

22

 It is a typical NLP workflow with both
data access patterns of pipeline and reduce

 It firstly applies several existing tools to
each document/sentence

 With files, Hadoop or Hive , it would be
tedious to track the association between
input and output

 With ParaLite, it is easy to trace the
association using the SQL query:

2

3

4

5ner_so

SID Sentence

SID ner

SID enju
SID gdep

select SID, X(sentence) from ...

Discussion of ER Workflow

SID Sentence

SID Result

enju/gdep/ner

23

FileHadoop Hive ParaLite

of
wrappers

12 10 5 10

 Then the workflow joins the three results for
event detection

 With files or Hadoop, it is not straightforward
to join several files

 With Hive and ParaLite, it is easy to join
several tables by SQL query:

3

4

5

6

SID ner

SID enju

SID event

SID gdep

select F(abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene) as (SID, event)

from abst, enju_so, ksdep_so, gene_so

where abst.SID = enju_so.SID

and abst.SID = ksdep_so.SID

and abst.SID = gene_so.SID

with F="event-detector"

output_row_delimiter EMPTY_LINE

Discussion of ER Workflow (Cont.)

24

select out.SID, out.event

from (map abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene

using ’event-detector’ as (SID, event)

from abst

join enju_so on (abst.SID = enju_so.SID)

join ksdep_so on (abst.SID = ksdep_so.SID)

join gene_so on (abst.SID = gene_so.SID)

) out

Text-Processing Workflows

Japanese Word Count

Event-Recognition Application

Sentence-Chunking Problem

25

Sentence Chunking Problem [A. S. Balkir et al. 2011]

 To find a best way to chunk a sentence to get meaningful
chunks, e.g. technical term, named entities and relations.

MapReduce and Parallel database system may be good
choices for text processing workflows.

 Method: statistical model

For example, a sentence S with 3 words (A B C)

(1) , get fi the probability of phrase i based on its frequency

(2) , calculate the likelihood of each sentence

(3) , train the whole corpus and

maximize its likelihood

26

Begin End

A B, C

B C

A, B

A, B, C

fA fBC

fB

fCfAB

fABC

ABCCABCBABCA

i

i

ffffffff

fSL




  

)(


s

SLCL)()()(maxarg CLf
f



Workflow of Sentence-Chunking

freqGen: calculation the occurrences of
all phrases

filter: filter phrases with frequencies
greater than one

probGen: calculation of probability of
phrases based on their frequencies

likelihoodCal: calculation of likelihood
of the whole corpus

input: articles from MEDLINE database

27

This 100
This is 56
test sentence 1

100 0.1892
56 0.08183
183 0.17384

sentence1 0.9183
sentence2 0.9293
sentence3 0.1938


s

SLCL)()(

This is a test sentence.
I am a student!
Today is very hot! senSplit: split abstract into sentecnes1

2

4

5C
 >

 b
es

t
o

r
it

er
_n

u
m

 >
 M

A
X

3
This 100
This is 56

Discussion of SC Workflow

 One iteration of this workflow is simple pipeline style as

JAWC workflow, but aggregate jobs appears alternately with

general jobs

 This workflow is easily expressed by Hadoop, Hive and

ParaLite

 But to perform data selection job (filter) and aggregation jobs

Hadoop still requires more efforts (an extra mapper or

reducer) than Hive and ParaLite

 File-based method is not appropriate for such workflow in

which most jobs perform aggregations to all data

28

29

Background

Motivation

Review of Several Approaches

 Hadoop, Hive and ParaLite

Real-World Text-Processing Workflows

Evaluation

Conclusion

Outline

Environment

a 32-node cluster

2.40 GHz Intel Xeon processor with 8 cores

24GB RAM

HDD: 500GB, SATA 3Gbps

30

System Configurations

 Hadoop v1.0.3 on Java 1.6.0

 the maximum number of mappers/reducers on each node : 6

 allow JVM to be reused

 # of mappers and reducers

 for time-consuming jobs, make sure that the execution time of
each job is no more than 10 or 30 minutes.

 replica = 1

 Hive 0.8.1 : same configuration as Hadoop

 ParaLite

 SQLite 3.7.3

 # of computing clients / node: <=6

 File system: NFS3

31

Data Preparation

32

 Hadoop

 directly loads a big input file by Hadoop command line

$ hadoop fs –put input_file input_dir_on_hdfs

 Splits the input file into sub-files distributed on all data

nodes and runs the above command in parallel

 Hive

 loads data to table from either local disk or HDFS by

Hive Data Definition Language (DDL): $ load data …

 ParaLite

 provides the same API with SQLite and loads data to the

database by the “.import …”command line

 File

 splits the input file into a number of sub-files

JAWC

33

Hadoop Hive ParaLite File

1,000

T
im

e
 D

is
tr

ib
u

ti
o

n
 (

se
c)

2,000

3,000

4,000

5,000

6,000

0

all jobs
wordcount
juman + wordcount
html2sf + sf2rs + juman
html2sf + sf2rs
juman
sf2rs
html2sf

 104 GB crawled data  62 GB useful information

 Hadoop is about 15% slower than Hive and ParaLite

File Hadoop Hive ParaLite

Data Preparation
Time(sec) 1280 126 1310 131

Hadoop
(parallel)

Hive
(parallel)

432 980

Event-Recognition

1

2

3 4

5

senSplit
30G

1G

1G
1G

150M 55G
11G

ner

enju

gdep

eventDetect

34

eventDetect

10,000

20,000

30,000

40,000

50,000

60,000

0
senSplit enju gdep ner total

E
x

e
cu

ti
o

n
 T

im
e

(s
e

c) Hadoop
Hive
ParaLite
File

 ParaLite outperforms Hadoop and Hive about 10%

 less data parsing operations

 better performance on join operation due to

data partitioning

Sentence-Chunking

35

 60GB data from MEDLINE database produces 145GB phrases

 ParaLite outperforms Hadoop and Hive about 18%

 147
127

48 666
620

846 323
248

196 504
206

364

senSplit freqGen filter totalprobGen likelihoodCal

5,000

10,000

15,000

25,000

30,000

40,000

0

E
x

e
cu

ti
o

n
 T

im
e

(s
e

c)

20,000

35,000

45,000

Hadoop
Hive
ParaLite

36

Background

Motivation

Review of Several Approaches

 Hadoop, Hive and ParaLite

Real-World Text-Processing Workflows

Evaluation

Conclusion

Outline

Conclusion

 We studied three real-world text processing workflows and

developed them on top of Hadoop, Hive, ParaLite and Files.

 We compared the programmability and performance of these

workflows

 high-level query languages (SQL of ParaLite, HiveQL of

Hive) are helpful for expressing the workflows elegantly

 ParaLite is especially useful in the reuse of existing NLP tools

 Each system has similar performance in the execution of

overall workflows but ParaLite shows some potential

superiority on typical SQL tasks (e.g. aggregation and join)

37

Thank you!

