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Data Intensive Text Processing

 The fourth paradigm of science: Data-intensive computing

 Data-intensive text processing (NLP: Nature Language Processing 

and IR: Information Retrieval) faces big challenge

 Workflows are widely used to solve text processing applications
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Workflow 

 A DAG of  coarse-grained jobs and 

their dependency

 Each job is typically an existing binary 

or executable (e.g. sentence splitters, 

parsers and named entity recognizers in 

NLP)

 Data are normally stored in and 

transferred via files

 Many workflow systems: GXP make, 

Swift, Dryad…
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Problems in workflow with files

 Low-level description 

– workflow is very complex with many steps

– a large number of intermediate files

 Inflexible selection of data

– tedious and inefficient to select a subset of data

 workflow engine-dependent job execution
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MapReduce-enabled workflows   

 get wide interests

 a heavy task can be expressed as Map and Reduce jobs or a 

whole workflow composition is created as MapReduce style

 provide simple programming model and good scalability 

across hundreds of nodes

 However, MapReduce model has some shortcomings

 low-level expression (use algorithm to state the 

requirement)

 integrating third-party executables is not 

straightforward and flexible
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Database-based Workflows
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 simplify description of workflows by completing simple data 

processing entirely within a SQL query

 allow flexible selection of data

 have better performance in data selection, join and aggregation 

[Andrew Pavlo et al.2009] 

 However, databases have a limited support for 

 integrating external executable into data processing 

pipeline

 optimizing data transfers between data nodes and parallel 

clients that process large query results



This paper targets to

 built three real-world text-processing workflows on 

top of MapReduce (Hadoop, Hive), database system 

(ParaLite) and general Files

 discuss their strength/weaknesses both in terms of 

programmability and performance for the workflows

 reveal the trade-offs that all these systems entail for 

workflows and provide a guiding information to users
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Hadoop [http://hadoop.apache.org/]

 an open-source incarnation of MapReduce model

 provides users easy programming model with Map and 

Reduce functions

 uses HDFS as the data storage layer

 takes MapReduce as the data processing layer

 to reuse map/reduce  function, Hadoop Streaming (HS) is 

developed 

 allows you to create and run 

map/reduce jobs with any 

executable or script as the 

mapper and/or the reducer

MapReduce
Layer

HDFS
Layer

Job
Tracker

Name 
Node

Master Node Worker Node n

Task Tracker

Data Node

Worker Node 2

Task Tracker

Data Node

Worker Node 1

Task Tracker

Data Node

10



Hive [A. Thusoo et al. 2009]

Hadoop
Layer

Hive
Layer

External Interface

Query Compiler 

Executor

Meta-
store

 a data warehouse system built on top of Hadoop

 projects structured data files to relational database tables and 

supports queries on the data
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 use a SQL-like language HiveQL to 

express queries and compiles them 

into MapReduce jobs

 allows users’ own mappers and 

reducers (executables written in any 

language ) to be plugged in the query

Hadoop



ParaLite [Ting Chen et al. 2012]

A Workflow-oriented parallel database system

Basic idea

 Provides a coordinate layer to connect single-node database 

systems (SQLite) and parallelize SQL query across them 
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New features for workflows

 Extension of SQL syntax to embed 

an arbitrary command line (User-

Defined Executables or UDX)

 Parallelization of UDX across 

multiple computing clients by 

collective query (CQ)
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WordCount Task

This is a test!
It is sunny today.

I am a student.
I am working now.

text  

Table: data  

It  1  

is  2 
am  2 

1 test
… … 

word count  

select  word, count(*)  from( 
select F(text) as word from data
with F= ”wc_mapper”)

group by word

Hadoop jar hadoop-streaming.jar
-input myInputDirs
-output myOutputDir
-mapper wc_mapper.py
-reducer wc_reducer.py

select mapout.word, count(*) 
from (

map text using ’wc_mapper.py’ as word from data
) mapout 
group by mapout.word

Hadoop Streaming

ParaLite

Hive
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Text-Processing Workflows

 Natural Language Processing

 Japanese Word Count

 Sentence-Chunking Problem

 Event-Recognition Application

 GXP Make [Kenjiro Taura et al. 2010]

 uses make to describe the whole workflow and provides the 

parallelization of jobs across clusters

 performs each single job by the four different systems
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Text-Processing Workflows

Japanese Word Count

Sentence-Chunking Problem

Event-Recognition Application
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Japanese Word Count

Calculate the occurrence of Japanese words from crawled 
Japanese web pages.

html2sf: crawled data  standard format

sf2rs: extraction of plain text

juman: a morphological analyzer for Japanese

word count: calculation of occurrences of words

input: web pages in Japanese

output: word, count

1

2

3

4

…

五輪日本 91

民主党 27

地震 1874
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Discussion of JAWC Workflow
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 This workflow is a simple pipeline style

 Hadoop use a HS script to express each job since it cannot pipe 
multiple mappers/reducers

 Hive performs the workflow by only one query

 ParaLite uses a single query to perform the first three jobs followed 
by another aggregation query 

 With file-based systems, split/merge files for parallelization is 
required

select tokens.word, count(*) as count  from ( 

map rst.rs using ‘juman’ as word from (

map sft.sf using ’sf2rs’ as rs from (

map html.con using ’html2sf_wrap’ as sf from 

html) sft) rst) tokens 

group by tokens.word;

create table tokens as

select T(S(H(con))) as word from html

with H="html2sf  html_file" input ’html_file’

S="sf2rs" 

T="juman"

partition by word ;

select word, count(*) from token group by word;
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Discussion of JAWC Workflow (Cont.)

ParaLite

Hive

Hadoop

# of
intermediate file

# of 
wrappers

No

No

No

A lot!

3

1

0

0File     

 Two difficulties

 File-based executable : html2sf (which can only takes file 
as the input)

 Input data with complicated format, e.g. multiple lines 
per record



Text-Processing Workflows

Japanese Word Count

Event-Recognition Application

Sentence-Chunking Problem

20



Event Recognition Application [M. Miwa, et al. 2010]

To recognize complex bimolecular relations (bio-events) among 
biomedical entities (i.e. proteins and genes)

The phosphorylation of  TRAF2   inhibits   binding to the   CD40 domain.
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Workflow of Event-Recognition

input: articles from MEDLINE database

1

2

3

4

5

6

xml2text: extraction of abstract for articles

geniass: split abstract into sentecnes

ner: recognition for bio-medical entities

enju: syntactic/semantic parser for sentences

gdep: : dependency parser for biomedical text.

event-recog: recognition for complex events

output: event structure
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 It is a typical NLP workflow with both 
data access patterns of pipeline and reduce

 It firstly applies several existing tools to 
each document/sentence 

 With files, Hadoop or Hive , it would be 
tedious to track the association between 
input and output

 With ParaLite,  it is easy to trace the 
association using the SQL query:

2

3

4

5ner_so

SID Sentence

SID ner

SID enju
SID gdep

select SID, X(sentence) from ...

Discussion of ER Workflow

SID Sentence

SID Result

enju/gdep/ner

23
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 Then the workflow joins the three results for 
event detection

 With files or Hadoop, it is not straightforward 
to join several files

 With Hive and ParaLite,  it is easy to join 
several tables by SQL query:

3

4

5

6

SID ner

SID enju

SID event

SID gdep

select F(abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene) as (SID, event)

from abst, enju_so, ksdep_so, gene_so

where abst.SID = enju_so.SID

and abst.SID = ksdep_so.SID

and abst.SID = gene_so.SID

with F="event-detector" 

output_row_delimiter EMPTY_LINE

Discussion of ER Workflow (Cont.)
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select out.SID, out.event

from (map abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene

using ’event-detector’ as (SID, event)

from abst

join enju_so on (abst.SID = enju_so.SID)

join ksdep_so on (abst.SID = ksdep_so.SID)

join gene_so on (abst.SID = gene_so.SID)

) out



Text-Processing Workflows

Japanese Word Count

Event-Recognition Application

Sentence-Chunking Problem
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Sentence Chunking Problem [A. S. Balkir et al. 2011]

 To find a best way to chunk a sentence to get meaningful 
chunks, e.g. technical term, named entities and relations.

MapReduce and Parallel database system may  be  good  
choices  for  text processing workflows. 

 Method: statistical model

For example, a sentence S with 3 words (A B C)

(1) , get fi the probability of phrase i based on its frequency

(2) , calculate the likelihood of each sentence

(3) , train the whole corpus and 

maximize its likelihood
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Workflow of Sentence-Chunking

freqGen: calculation the occurrences of 
all phrases  

filter:  filter phrases with frequencies 
greater than one

probGen: calculation of probability of  
phrases based on their frequencies

likelihoodCal: calculation of likelihood 
of the whole corpus 

input: articles from MEDLINE database
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Discussion of SC Workflow

 One iteration of this workflow is simple pipeline style as 

JAWC workflow, but aggregate jobs appears alternately with 

general jobs

 This workflow is easily expressed by Hadoop, Hive and 

ParaLite

 But to perform data selection job (filter) and aggregation jobs 

Hadoop still requires more efforts (an extra mapper or 

reducer) than Hive and ParaLite 

 File-based method is not appropriate for such workflow in 

which most jobs perform aggregations to all data
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Environment

a 32-node cluster

2.40 GHz Intel Xeon processor with 8 cores

24GB RAM

HDD:  500GB, SATA 3Gbps
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System Configurations

 Hadoop v1.0.3 on Java 1.6.0

 the maximum number of mappers/reducers on each node : 6

 allow JVM to be reused

 # of mappers and reducers 

 for time-consuming jobs, make sure that the execution time of 
each job is no more than 10 or 30 minutes. 

 replica = 1

 Hive 0.8.1 : same configuration as Hadoop 

 ParaLite

 SQLite 3.7.3

 # of computing clients / node: <=6

 File system: NFS3
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Data Preparation
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 Hadoop

 directly loads a big input file by Hadoop command line

$ hadoop fs –put input_file input_dir_on_hdfs

 Splits the input file into sub-files distributed on all data 

nodes and runs the above command in parallel

 Hive

 loads data to table from either local disk or HDFS by 

Hive Data Definition Language (DDL): $ load data …

 ParaLite

 provides the same API with SQLite and loads data to the 

database by the “.import …”command line

 File 

 splits the input file into a number of sub-files



JAWC
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 104 GB crawled data  62 GB useful information

 Hadoop is about 15% slower than Hive and ParaLite

File     Hadoop Hive     ParaLite

Data Preparation
Time(sec) 1280 126 1310 131

Hadoop
(parallel)     

Hive
(parallel)     

432 980



Event-Recognition
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eventDetect
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 ParaLite outperforms Hadoop and Hive about 10%

 less data parsing operations 

 better performance on join operation due to 

data partitioning



Sentence-Chunking
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 60GB data from MEDLINE database produces 145GB phrases

 ParaLite outperforms Hadoop and Hive about 18%
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Conclusion

 We studied three real-world text processing workflows and 

developed them on top of Hadoop, Hive, ParaLite and Files.

 We compared the programmability and performance of these 

workflows

 high-level query languages (SQL of ParaLite, HiveQL of 

Hive) are helpful for expressing the workflows elegantly 

 ParaLite is especially useful in the reuse of existing NLP tools

 Each system has similar performance in the execution of 

overall workflows but ParaLite shows some potential 

superiority on typical SQL tasks (e.g. aggregation and join)
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Thank you!


