
Ting Chen, Kenjiro Taura

The University of Tokyo

2012/11/12 @ MTAGS

A Comparative Study of Data Processing
Approaches for Text Processing Workflows

Data Intensive Text Processing

 The fourth paradigm of science: Data-intensive computing

 Data-intensive text processing (NLP: Nature Language Processing

and IR: Information Retrieval) faces big challenge

 Workflows are widely used to solve text processing applications

2

Workflow

 A DAG of coarse-grained jobs and

their dependency

 Each job is typically an existing binary

or executable (e.g. sentence splitters,

parsers and named entity recognizers in

NLP)

 Data are normally stored in and

transferred via files

 Many workflow systems: GXP make,

Swift, Dryad…

3

Problems in workflow with files

 Low-level description

– workflow is very complex with many steps

– a large number of intermediate files

 Inflexible selection of data

– tedious and inefficient to select a subset of data

 workflow engine-dependent job execution

4

MapReduce-enabled workflows

 get wide interests

 a heavy task can be expressed as Map and Reduce jobs or a

whole workflow composition is created as MapReduce style

 provide simple programming model and good scalability

across hundreds of nodes

 However, MapReduce model has some shortcomings

 low-level expression (use algorithm to state the

requirement)

 integrating third-party executables is not

straightforward and flexible

5

Database-based Workflows

6

 simplify description of workflows by completing simple data

processing entirely within a SQL query

 allow flexible selection of data

 have better performance in data selection, join and aggregation

[Andrew Pavlo et al.2009]

 However, databases have a limited support for

 integrating external executable into data processing

pipeline

 optimizing data transfers between data nodes and parallel

clients that process large query results

This paper targets to

 built three real-world text-processing workflows on

top of MapReduce (Hadoop, Hive), database system

(ParaLite) and general Files

 discuss their strength/weaknesses both in terms of

programmability and performance for the workflows

 reveal the trade-offs that all these systems entail for

workflows and provide a guiding information to users

7

8

Background

Motivation

Review of Several Approaches

 Hadoop, Hive and ParaLite

Real-World Text-Processing Workflows

Evaluation

Conclusion

Outline

9

Background

Motivation

Review of Several Approaches

 Hadoop, Hive and ParaLite

Real-World Text-Processing Workflows

Evaluation

Conclusion

Outline

Hadoop [http://hadoop.apache.org/]

 an open-source incarnation of MapReduce model

 provides users easy programming model with Map and

Reduce functions

 uses HDFS as the data storage layer

 takes MapReduce as the data processing layer

 to reuse map/reduce function, Hadoop Streaming (HS) is

developed

 allows you to create and run

map/reduce jobs with any

executable or script as the

mapper and/or the reducer

MapReduce
Layer

HDFS
Layer

Job
Tracker

Name
Node

Master Node Worker Node n

Task Tracker

Data Node

Worker Node 2

Task Tracker

Data Node

Worker Node 1

Task Tracker

Data Node

10

Hive [A. Thusoo et al. 2009]

Hadoop
Layer

Hive
Layer

External Interface

Query Compiler

Executor

Meta-
store

 a data warehouse system built on top of Hadoop

 projects structured data files to relational database tables and

supports queries on the data

11

 use a SQL-like language HiveQL to

express queries and compiles them

into MapReduce jobs

 allows users’ own mappers and

reducers (executables written in any

language) to be plugged in the query

Hadoop

ParaLite [Ting Chen et al. 2012]

A Workflow-oriented parallel database system

Basic idea

 Provides a coordinate layer to connect single-node database

systems (SQLite) and parallelize SQL query across them

12

New features for workflows

 Extension of SQL syntax to embed

an arbitrary command line (User-

Defined Executables or UDX)

 Parallelization of UDX across

multiple computing clients by

collective query (CQ)

CQ

Computing
Client

CQ

CQ

Data Node

D
at

a
D

is
tr

ib
u

ti
o

n

UDX

UDX

UDX

WordCount Task

This is a test!
It is sunny today.

I am a student.
I am working now.

text

Table: data

It 1

is 2
am 2

1 test
… …

word count

select word, count(*) from(
select F(text) as word from data
with F= ”wc_mapper”)

group by word

Hadoop jar hadoop-streaming.jar
-input myInputDirs
-output myOutputDir
-mapper wc_mapper.py
-reducer wc_reducer.py

select mapout.word, count(*)
from (

map text using ’wc_mapper.py’ as word from data
) mapout
group by mapout.word

Hadoop Streaming

ParaLite

Hive

13

14

Background

Motivation

Review of Several Approaches

 Hadoop, Hive and ParaLite

Real-World Text-Processing Workflows

Evaluation

Conclusion

Outline

Text-Processing Workflows

 Natural Language Processing

 Japanese Word Count

 Sentence-Chunking Problem

 Event-Recognition Application

 GXP Make [Kenjiro Taura et al. 2010]

 uses make to describe the whole workflow and provides the

parallelization of jobs across clusters

 performs each single job by the four different systems

15

Text-Processing Workflows

Japanese Word Count

Sentence-Chunking Problem

Event-Recognition Application

16

Japanese Word Count

Calculate the occurrence of Japanese words from crawled
Japanese web pages.

html2sf: crawled data standard format

sf2rs: extraction of plain text

juman: a morphological analyzer for Japanese

word count: calculation of occurrences of words

input: web pages in Japanese

output: word, count

1

2

3

4

…

五輪日本 91

民主党 27

地震 1874

17

Discussion of JAWC Workflow

18

 This workflow is a simple pipeline style

 Hadoop use a HS script to express each job since it cannot pipe
multiple mappers/reducers

 Hive performs the workflow by only one query

 ParaLite uses a single query to perform the first three jobs followed
by another aggregation query

 With file-based systems, split/merge files for parallelization is
required

select tokens.word, count(*) as count from (

map rst.rs using ‘juman’ as word from (

map sft.sf using ’sf2rs’ as rs from (

map html.con using ’html2sf_wrap’ as sf from

html) sft) rst) tokens

group by tokens.word;

create table tokens as

select T(S(H(con))) as word from html

with H="html2sf html_file" input ’html_file’

S="sf2rs"

T="juman"

partition by word ;

select word, count(*) from token group by word;

19

Discussion of JAWC Workflow (Cont.)

ParaLite

Hive

Hadoop

of
intermediate file

of
wrappers

No

No

No

A lot!

3

1

0

0File

 Two difficulties

 File-based executable : html2sf (which can only takes file
as the input)

 Input data with complicated format, e.g. multiple lines
per record

Text-Processing Workflows

Japanese Word Count

Event-Recognition Application

Sentence-Chunking Problem

20

Event Recognition Application [M. Miwa, et al. 2010]

To recognize complex bimolecular relations (bio-events) among
biomedical entities (i.e. proteins and genes)

The phosphorylation of TRAF2 inhibits binding to the CD40 domain.

21

TRAF2

phosphorylation

Theme

Event1:
phosphorylation

binding

CD40TRAF2

ThemeTheme

Event2:
binding

inhibits

Cause
Theme

Event3:
Negative Regulation

Workflow of Event-Recognition

input: articles from MEDLINE database

1

2

3

4

5

6

xml2text: extraction of abstract for articles

geniass: split abstract into sentecnes

ner: recognition for bio-medical entities

enju: syntactic/semantic parser for sentences

gdep: : dependency parser for biomedical text.

event-recog: recognition for complex events

output: event structure

22

 It is a typical NLP workflow with both
data access patterns of pipeline and reduce

 It firstly applies several existing tools to
each document/sentence

 With files, Hadoop or Hive , it would be
tedious to track the association between
input and output

 With ParaLite, it is easy to trace the
association using the SQL query:

2

3

4

5ner_so

SID Sentence

SID ner

SID enju
SID gdep

select SID, X(sentence) from ...

Discussion of ER Workflow

SID Sentence

SID Result

enju/gdep/ner

23

FileHadoop Hive ParaLite

of
wrappers

12 10 5 10

 Then the workflow joins the three results for
event detection

 With files or Hadoop, it is not straightforward
to join several files

 With Hive and ParaLite, it is easy to join
several tables by SQL query:

3

4

5

6

SID ner

SID enju

SID event

SID gdep

select F(abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene) as (SID, event)

from abst, enju_so, ksdep_so, gene_so

where abst.SID = enju_so.SID

and abst.SID = ksdep_so.SID

and abst.SID = gene_so.SID

with F="event-detector"

output_row_delimiter EMPTY_LINE

Discussion of ER Workflow (Cont.)

24

select out.SID, out.event

from (map abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene

using ’event-detector’ as (SID, event)

from abst

join enju_so on (abst.SID = enju_so.SID)

join ksdep_so on (abst.SID = ksdep_so.SID)

join gene_so on (abst.SID = gene_so.SID)

) out

Text-Processing Workflows

Japanese Word Count

Event-Recognition Application

Sentence-Chunking Problem

25

Sentence Chunking Problem [A. S. Balkir et al. 2011]

 To find a best way to chunk a sentence to get meaningful
chunks, e.g. technical term, named entities and relations.

MapReduce and Parallel database system may be good
choices for text processing workflows.

 Method: statistical model

For example, a sentence S with 3 words (A B C)

(1) , get fi the probability of phrase i based on its frequency

(2) , calculate the likelihood of each sentence

(3) , train the whole corpus and

maximize its likelihood

26

Begin End

A B, C

B C

A, B

A, B, C

fA fBC

fB

fCfAB

fABC

ABCCABCBABCA

i

i

ffffffff

fSL

)(

s

SLCL)()()(maxarg CLf
f

Workflow of Sentence-Chunking

freqGen: calculation the occurrences of
all phrases

filter: filter phrases with frequencies
greater than one

probGen: calculation of probability of
phrases based on their frequencies

likelihoodCal: calculation of likelihood
of the whole corpus

input: articles from MEDLINE database

27

This 100
This is 56
test sentence 1

100 0.1892
56 0.08183
183 0.17384

sentence1 0.9183
sentence2 0.9293
sentence3 0.1938

s

SLCL)()(

This is a test sentence.
I am a student!
Today is very hot! senSplit: split abstract into sentecnes1

2

4

5C
 >

 b
es

t
o

r
it

er
_n

u
m

 >
 M

A
X

3
This 100
This is 56

Discussion of SC Workflow

 One iteration of this workflow is simple pipeline style as

JAWC workflow, but aggregate jobs appears alternately with

general jobs

 This workflow is easily expressed by Hadoop, Hive and

ParaLite

 But to perform data selection job (filter) and aggregation jobs

Hadoop still requires more efforts (an extra mapper or

reducer) than Hive and ParaLite

 File-based method is not appropriate for such workflow in

which most jobs perform aggregations to all data

28

29

Background

Motivation

Review of Several Approaches

 Hadoop, Hive and ParaLite

Real-World Text-Processing Workflows

Evaluation

Conclusion

Outline

Environment

a 32-node cluster

2.40 GHz Intel Xeon processor with 8 cores

24GB RAM

HDD: 500GB, SATA 3Gbps

30

System Configurations

 Hadoop v1.0.3 on Java 1.6.0

 the maximum number of mappers/reducers on each node : 6

 allow JVM to be reused

 # of mappers and reducers

 for time-consuming jobs, make sure that the execution time of
each job is no more than 10 or 30 minutes.

 replica = 1

 Hive 0.8.1 : same configuration as Hadoop

 ParaLite

 SQLite 3.7.3

 # of computing clients / node: <=6

 File system: NFS3

31

Data Preparation

32

 Hadoop

 directly loads a big input file by Hadoop command line

$ hadoop fs –put input_file input_dir_on_hdfs

 Splits the input file into sub-files distributed on all data

nodes and runs the above command in parallel

 Hive

 loads data to table from either local disk or HDFS by

Hive Data Definition Language (DDL): $ load data …

 ParaLite

 provides the same API with SQLite and loads data to the

database by the “.import …”command line

 File

 splits the input file into a number of sub-files

JAWC

33

Hadoop Hive ParaLite File

1,000

T
im

e
 D

is
tr

ib
u

ti
o

n
 (

se
c)

2,000

3,000

4,000

5,000

6,000

0

all jobs
wordcount
juman + wordcount
html2sf + sf2rs + juman
html2sf + sf2rs
juman
sf2rs
html2sf

 104 GB crawled data 62 GB useful information

 Hadoop is about 15% slower than Hive and ParaLite

File Hadoop Hive ParaLite

Data Preparation
Time(sec) 1280 126 1310 131

Hadoop
(parallel)

Hive
(parallel)

432 980

Event-Recognition

1

2

3 4

5

senSplit
30G

1G

1G
1G

150M 55G
11G

ner

enju

gdep

eventDetect

34

eventDetect

10,000

20,000

30,000

40,000

50,000

60,000

0
senSplit enju gdep ner total

E
x

e
cu

ti
o

n
 T

im
e

(s
e

c) Hadoop
Hive
ParaLite
File

 ParaLite outperforms Hadoop and Hive about 10%

 less data parsing operations

 better performance on join operation due to

data partitioning

Sentence-Chunking

35

 60GB data from MEDLINE database produces 145GB phrases

 ParaLite outperforms Hadoop and Hive about 18%

 147
127

48 666
620

846 323
248

196 504
206

364

senSplit freqGen filter totalprobGen likelihoodCal

5,000

10,000

15,000

25,000

30,000

40,000

0

E
x

e
cu

ti
o

n
 T

im
e

(s
e

c)

20,000

35,000

45,000

Hadoop
Hive
ParaLite

36

Background

Motivation

Review of Several Approaches

 Hadoop, Hive and ParaLite

Real-World Text-Processing Workflows

Evaluation

Conclusion

Outline

Conclusion

 We studied three real-world text processing workflows and

developed them on top of Hadoop, Hive, ParaLite and Files.

 We compared the programmability and performance of these

workflows

 high-level query languages (SQL of ParaLite, HiveQL of

Hive) are helpful for expressing the workflows elegantly

 ParaLite is especially useful in the reuse of existing NLP tools

 Each system has similar performance in the execution of

overall workflows but ParaLite shows some potential

superiority on typical SQL tasks (e.g. aggregation and join)

37

Thank you!

