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Data Intensive Text Processing

 The fourth paradigm of science: Data-intensive computing

 Data-intensive text processing (NLP: Nature Language Processing 

and IR: Information Retrieval) faces big challenge

 Workflows are widely used to solve text processing applications
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Workflow 

 A DAG of  coarse-grained jobs and 

their dependency

 Each job is typically an existing binary 

or executable (e.g. sentence splitters, 

parsers and named entity recognizers in 

NLP)

 Data are normally stored in and 

transferred via files

 Many workflow systems: GXP make, 

Swift, Dryad…
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Problems in workflow with files

 Low-level description 

– workflow is very complex with many steps

– a large number of intermediate files

 Inflexible selection of data

– tedious and inefficient to select a subset of data

 workflow engine-dependent job execution
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MapReduce-enabled workflows   

 get wide interests

 a heavy task can be expressed as Map and Reduce jobs or a 

whole workflow composition is created as MapReduce style

 provide simple programming model and good scalability 

across hundreds of nodes

 However, MapReduce model has some shortcomings

 low-level expression (use algorithm to state the 

requirement)

 integrating third-party executables is not 

straightforward and flexible
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Database-based Workflows
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 simplify description of workflows by completing simple data 

processing entirely within a SQL query

 allow flexible selection of data

 have better performance in data selection, join and aggregation 

[Andrew Pavlo et al.2009] 

 However, databases have a limited support for 

 integrating external executable into data processing 

pipeline

 optimizing data transfers between data nodes and parallel 

clients that process large query results



This paper targets to

 built three real-world text-processing workflows on 

top of MapReduce (Hadoop, Hive), database system 

(ParaLite) and general Files

 discuss their strength/weaknesses both in terms of 

programmability and performance for the workflows

 reveal the trade-offs that all these systems entail for 

workflows and provide a guiding information to users
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Hadoop [http://hadoop.apache.org/]

 an open-source incarnation of MapReduce model

 provides users easy programming model with Map and 

Reduce functions

 uses HDFS as the data storage layer

 takes MapReduce as the data processing layer

 to reuse map/reduce  function, Hadoop Streaming (HS) is 

developed 

 allows you to create and run 

map/reduce jobs with any 

executable or script as the 

mapper and/or the reducer
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Hive [A. Thusoo et al. 2009]

Hadoop
Layer

Hive
Layer

External Interface

Query Compiler 

Executor

Meta-
store

 a data warehouse system built on top of Hadoop

 projects structured data files to relational database tables and 

supports queries on the data
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 use a SQL-like language HiveQL to 

express queries and compiles them 

into MapReduce jobs

 allows users’ own mappers and 

reducers (executables written in any 

language ) to be plugged in the query

Hadoop



ParaLite [Ting Chen et al. 2012]

A Workflow-oriented parallel database system

Basic idea

 Provides a coordinate layer to connect single-node database 

systems (SQLite) and parallelize SQL query across them 
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New features for workflows

 Extension of SQL syntax to embed 

an arbitrary command line (User-

Defined Executables or UDX)

 Parallelization of UDX across 

multiple computing clients by 

collective query (CQ)

CQ

Computing 
Client

CQ

CQ

Data Node

D
at

a 
D

is
tr

ib
u

ti
o

n

UDX

UDX

UDX



WordCount Task

This is a test!
It is sunny today.

I am a student.
I am working now.

text  

Table: data  

It  1  

is  2 
am  2 

1 test
… … 

word count  

select  word, count(*)  from( 
select F(text) as word from data
with F= ”wc_mapper”)

group by word

Hadoop jar hadoop-streaming.jar
-input myInputDirs
-output myOutputDir
-mapper wc_mapper.py
-reducer wc_reducer.py

select mapout.word, count(*) 
from (

map text using ’wc_mapper.py’ as word from data
) mapout 
group by mapout.word

Hadoop Streaming

ParaLite

Hive
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Text-Processing Workflows

 Natural Language Processing

 Japanese Word Count

 Sentence-Chunking Problem

 Event-Recognition Application

 GXP Make [Kenjiro Taura et al. 2010]

 uses make to describe the whole workflow and provides the 

parallelization of jobs across clusters

 performs each single job by the four different systems
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Text-Processing Workflows

Japanese Word Count

Sentence-Chunking Problem

Event-Recognition Application
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Japanese Word Count

Calculate the occurrence of Japanese words from crawled 
Japanese web pages.

html2sf: crawled data  standard format

sf2rs: extraction of plain text

juman: a morphological analyzer for Japanese

word count: calculation of occurrences of words

input: web pages in Japanese

output: word, count

1

2

3

4

…

五輪日本 91

民主党 27

地震 1874
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Discussion of JAWC Workflow
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 This workflow is a simple pipeline style

 Hadoop use a HS script to express each job since it cannot pipe 
multiple mappers/reducers

 Hive performs the workflow by only one query

 ParaLite uses a single query to perform the first three jobs followed 
by another aggregation query 

 With file-based systems, split/merge files for parallelization is 
required

select tokens.word, count(*) as count  from ( 

map rst.rs using ‘juman’ as word from (

map sft.sf using ’sf2rs’ as rs from (

map html.con using ’html2sf_wrap’ as sf from 

html) sft) rst) tokens 

group by tokens.word;

create table tokens as

select T(S(H(con))) as word from html

with H="html2sf  html_file" input ’html_file’

S="sf2rs" 

T="juman"

partition by word ;

select word, count(*) from token group by word;
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Discussion of JAWC Workflow (Cont.)

ParaLite

Hive

Hadoop

# of
intermediate file

# of 
wrappers

No

No

No

A lot!

3

1

0

0File     

 Two difficulties

 File-based executable : html2sf (which can only takes file 
as the input)

 Input data with complicated format, e.g. multiple lines 
per record



Text-Processing Workflows

Japanese Word Count

Event-Recognition Application

Sentence-Chunking Problem

20



Event Recognition Application [M. Miwa, et al. 2010]

To recognize complex bimolecular relations (bio-events) among 
biomedical entities (i.e. proteins and genes)

The phosphorylation of  TRAF2   inhibits   binding to the   CD40 domain.
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Workflow of Event-Recognition

input: articles from MEDLINE database

1

2

3

4

5

6

xml2text: extraction of abstract for articles

geniass: split abstract into sentecnes

ner: recognition for bio-medical entities

enju: syntactic/semantic parser for sentences

gdep: : dependency parser for biomedical text.

event-recog: recognition for complex events

output: event structure
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 It is a typical NLP workflow with both 
data access patterns of pipeline and reduce

 It firstly applies several existing tools to 
each document/sentence 

 With files, Hadoop or Hive , it would be 
tedious to track the association between 
input and output

 With ParaLite,  it is easy to trace the 
association using the SQL query:

2

3

4

5ner_so

SID Sentence

SID ner

SID enju
SID gdep

select SID, X(sentence) from ...

Discussion of ER Workflow

SID Sentence

SID Result

enju/gdep/ner
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FileHadoop Hive ParaLite

# of 
wrappers

12 10 5 10



 Then the workflow joins the three results for 
event detection

 With files or Hadoop, it is not straightforward 
to join several files

 With Hive and ParaLite,  it is easy to join 
several tables by SQL query:

3

4

5

6

SID ner

SID enju

SID event

SID gdep

select F(abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene) as (SID, event)

from abst, enju_so, ksdep_so, gene_so

where abst.SID = enju_so.SID

and abst.SID = ksdep_so.SID

and abst.SID = gene_so.SID

with F="event-detector" 

output_row_delimiter EMPTY_LINE

Discussion of ER Workflow (Cont.)
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select out.SID, out.event

from (map abst.SID, abst.sentence, enju_so.enju,

ksdep_so.ksdep, gene_so.gene

using ’event-detector’ as (SID, event)

from abst

join enju_so on (abst.SID = enju_so.SID)

join ksdep_so on (abst.SID = ksdep_so.SID)

join gene_so on (abst.SID = gene_so.SID)

) out



Text-Processing Workflows

Japanese Word Count

Event-Recognition Application

Sentence-Chunking Problem
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Sentence Chunking Problem [A. S. Balkir et al. 2011]

 To find a best way to chunk a sentence to get meaningful 
chunks, e.g. technical term, named entities and relations.

MapReduce and Parallel database system may  be  good  
choices  for  text processing workflows. 

 Method: statistical model

For example, a sentence S with 3 words (A B C)

(1) , get fi the probability of phrase i based on its frequency

(2) , calculate the likelihood of each sentence

(3) , train the whole corpus and 

maximize its likelihood
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Workflow of Sentence-Chunking

freqGen: calculation the occurrences of 
all phrases  

filter:  filter phrases with frequencies 
greater than one

probGen: calculation of probability of  
phrases based on their frequencies

likelihoodCal: calculation of likelihood 
of the whole corpus 

input: articles from MEDLINE database
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Discussion of SC Workflow

 One iteration of this workflow is simple pipeline style as 

JAWC workflow, but aggregate jobs appears alternately with 

general jobs

 This workflow is easily expressed by Hadoop, Hive and 

ParaLite

 But to perform data selection job (filter) and aggregation jobs 

Hadoop still requires more efforts (an extra mapper or 

reducer) than Hive and ParaLite 

 File-based method is not appropriate for such workflow in 

which most jobs perform aggregations to all data
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Environment

a 32-node cluster

2.40 GHz Intel Xeon processor with 8 cores

24GB RAM

HDD:  500GB, SATA 3Gbps
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System Configurations

 Hadoop v1.0.3 on Java 1.6.0

 the maximum number of mappers/reducers on each node : 6

 allow JVM to be reused

 # of mappers and reducers 

 for time-consuming jobs, make sure that the execution time of 
each job is no more than 10 or 30 minutes. 

 replica = 1

 Hive 0.8.1 : same configuration as Hadoop 

 ParaLite

 SQLite 3.7.3

 # of computing clients / node: <=6

 File system: NFS3
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Data Preparation
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 Hadoop

 directly loads a big input file by Hadoop command line

$ hadoop fs –put input_file input_dir_on_hdfs

 Splits the input file into sub-files distributed on all data 

nodes and runs the above command in parallel

 Hive

 loads data to table from either local disk or HDFS by 

Hive Data Definition Language (DDL): $ load data …

 ParaLite

 provides the same API with SQLite and loads data to the 

database by the “.import …”command line

 File 

 splits the input file into a number of sub-files



JAWC
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Hadoop Hive ParaLite File
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 104 GB crawled data  62 GB useful information

 Hadoop is about 15% slower than Hive and ParaLite

File     Hadoop Hive     ParaLite

Data Preparation
Time(sec) 1280 126 1310 131

Hadoop
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Hive
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432 980



Event-Recognition
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eventDetect
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 ParaLite outperforms Hadoop and Hive about 10%

 less data parsing operations 

 better performance on join operation due to 

data partitioning



Sentence-Chunking
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 60GB data from MEDLINE database produces 145GB phrases

 ParaLite outperforms Hadoop and Hive about 18%
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Conclusion

 We studied three real-world text processing workflows and 

developed them on top of Hadoop, Hive, ParaLite and Files.

 We compared the programmability and performance of these 

workflows

 high-level query languages (SQL of ParaLite, HiveQL of 

Hive) are helpful for expressing the workflows elegantly 

 ParaLite is especially useful in the reuse of existing NLP tools

 Each system has similar performance in the execution of 

overall workflows but ParaLite shows some potential 

superiority on typical SQL tasks (e.g. aggregation and join)
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Thank you!


