A Hybrid Scheduling Approach for Scalable Heterogeneous Hadoop Systems

Authors: Aysan Rasooli Douglas G. Down

McMaster University

November 2012

- Introducing the Hadoop System
- Heterogeneity and Scalability in Hadoop
- Performance Issues of Existing Hadoop Schedulers
- Proposed Hybrid Scheduling System
- Evaluation
- Conclusion

MapReduce

Hadoop System

McMaster University

Hadoop Schedulers

- FIFO
- Fair Sharing
- COSHH

- Assign each pool a guaranteed *minimum share*
- Divide excess capacity evenly between pools

Fair Sharing

- Goal: fast response times for small jobs, guaranteed service levels for long jobs
- Considers Minimum Share satisfaction, Fairness

Drawbacks:

- Does not take into account locality
- Does not take into account heterogeneity

COSHH Scheduler

COSHH Scheduler

- Considering the heterogeneity in the Hadoop system
- Improves Mean Completion Time
- Considers:
 - Minimum Share Satisfaction
 - Fairness
 - Locality

Performance Issues of Existing Schedulers

Problem I. Small Jobs Starvation

FIFO :

Performance Issues of Existing Schedulers

Problem II. Sticky Slots

Fair Sharing:

Job	Fair Share	Running Tasks	
Job 1	2	1	\bigtriangledown
Job 2	2	2	

McMaster

University

Performance Issues of Existing Schedulers McMaster

Problem I. Small Jobs Starvation

FIFO :

	User1:	Job1	(consists	of	10	Task1
--	--------	------	-----------	----	----	-------

- User2: Job3 (consists of 10 Task3)
- User3: Job2 (consists of 5 Task2)

$$m_t = \begin{bmatrix} 2.5 & 2.5 & 10 & 10\\ 2.5 & 2.5 & 5 & 5\\ 10 & 10 & 2.5 & 2.5 \end{bmatrix}$$

Problem II. Sticky Slots

Fair Sharing :

Problem III. Resource and Job Mismatch

COSHH:

User1:Job1 (consists of 10 Task1)
User2: m_t $\begin{bmatrix} 2.5 & 2.5 & 10 & 10 \\ 2.5 & 2.5 & 5 & 5 \\ 10 & 10 & 2.5 & 2.5 & 5 \end{bmatrix}$ User3:Job2 (consists of 5 Task2) m_t $\begin{bmatrix} 2.5 & 2.5 & 10 & 10 \\ 2.5 & 2.5 & 5 & 5 \\ 10 & 10 & 2.5 & 2.5 \end{bmatrix}$

Performance Issues of Existing Schedulers

L

Scheduler	Job	Completion Time	Average Completion Time
	J1	10	
FIFO	J2	15	19.17
	J3	32.5	
Fair	J1	37.5	
Sharing	J2	20	33.33
	J3	42.5	
	J1	17.5	
соѕнн	J2	10	15
	J3	17.5	

McMaster

University

Experimental Environment

Resources		Slot	Mem		
	slot#	execRate	Capacity	RetriveRate	
R_1	1	500MHz	4GB	40Mbps	
R_2	1	500MHz	4TB	100Gbps	
R_3	1	500MHz	4TB	100Gbps	
R_4	8	500MHz	4GB	40 M b p s	
R_5	8	500MHz	4GB	40Mbps	
R_6	8	4.2GHz	4TB	100Gbps	

Real Hadoop Workloads

(*Chen et al., 2011*)

Job Categories	Duration (sec)	Job	Input	Shuffle	Output	Map Time	Reduce Time	
Facebook trace								
Small jobs	32	126	21KB	0	871 <i>KB</i>	20	0	
Fast data load	1260	25	381KB	0	1.9GB	6079	0	
Slow data load	6600	3	10 KB	0	4.2GB	26321	0	
Large data load	4200	10	405 KB	0	447GB	66657	0	
Huge data load	18300	3	446 KB	0	1.1TB	125662	0	
Fast aggregate	900	10	230 GB	8.8GB	491MB	104338	66760	
Aggregate and expand	1800	6	1.9 TB	502MB	2.6GB	348942	76736	
Expand and aggregate	5100	2	418 GB	2.5TB	45GB	1076089	974395	
Data transform	2100	14	255 GB	788GB	1.6GB	384562	338050	
Data summary	3300	1	7.6 TB	51GB	104KB	4843452	853911	
Yahoo! trace								
Small jobs	60	114	174 MB	73MB	6MB	412	740	
Fast aggregate	2100	23	568 GB	76GB	3.9GB	270376	589385	
Expand and aggregate	2400	10	206 GB	1.5TB	133MB	983998	1425941	
Transform expand	9300	5	806 GB	235GB	10TB	257567	979181	
Data summary	13500	7	4.9 TB	78GB	775MB	4481926	1663358	
Large data summary	30900	4	31 TB	937GB	475MB	33606055	31884004	
Data transform	3600	36	36 GB	15GB	4.0GB	15021	13614	
Large data transform	16800	1	5.5 TB	10TB	2.5TB	7729409	8305880	

Scalability Analysis- Results Job Number Scalability

McMaster University

Scalability Analysis- Results Resource Number Scalability

McMaster University

21

Scalability Analysis- Hybrid Scheduler

McMaster University

Scalability Analysis- Hybrid Scheduler Job Number Scalability

Scalability Analysis- Hybrid Scheduler Resource Number Scalability

McMaster University

Conclusion

- Performance Issues of Hadoop Schedulers:
 - Small Jobs Starvation
 - Sticky Slots
 - Resource and Jobs Mismatch

• Propose a Hybrid Hadoop Scheduler

