
HOG: Hadoop on the Grid

Derek Weitzel

University of Nebraska – Lincoln

Outline

• Introduction

• Motivations

• HOG Architecture

• Experimental evaluation

• Conclusions

• Future work

• Questions

Introduction

• Combining 2 components:

– Hadoop: Distributed, fault tolerant data intensive
computing framework.

– Open Science Grid (OSG): Nationally distributed
computing centers linked that opportunistically
share resources.

Introduction

• Hadoop MapReduce

Introduction

• Hadoop HDFS

Picture adopted from www.hadoop.com

Introduction

• Open Science Grid – 112 Sites

Introduction

• OSG is large national
grid

• Used by researchers
at universities and
labs.

• Primarily a Data
Intensive Grid

Typical Site in OSG

• User creates executable and
submits jobs

• Job translated from local
submission to generic
submission language.

• Jobs translated from generic
submission language to cluster
specific.

• Jobs execute on the remote
worker nodes

Typical Site in OSG

• User creates executable and
submits jobs

• Job translated from local
submission to generic
submission language, sent to
gatekeeper

• Jobs translated from generic
submission language to cluster
specific.

• Jobs execute on the remote
worker nodes

Typical Site in OSG

• User creates executable and
submits jobs

• Job translated from local
submission to generic
submission language, sent to
gatekeeper

• Jobs translated from generic
submission language to cluster
specific.

• Jobs execute on the remote
worker nodes

Typical Site in OSG

• User creates executable and
submits jobs

• Job translated from local
submission to generic
submission language, sent to
gatekeeper

• Jobs translated from generic
submission language to cluster
specific.

• Jobs execute on the remote
worker nodes

Typical Site in OSG

• User creates executable and
submits jobs

• Job translated from local
submission to generic
submission language, sent to
gatekeeper

• Jobs translated from generic
submission language to cluster
specific.

• Jobs execute on the remote
worker nodes

Typical Site Sizes

• Nebraska – 16k cores on OSG

• Purdue – 20k+ cores

• UCSD, MIT, Caltech – 3k cores

• Wisconsin – 10k cores

• We’re never going to get all of these cores (we
don’t own any), but we could get some small
fraction.

Outline

• Introduction

• Motivation

• HOG Architecture

• Experimental evaluation

• Conclusions

• Future work

• Questions

Motivation

• Create a Opportunistic Hadoop framework for
researchers

• Researchers can run on the OSG for free

• Free Hadoop execution on the OSG

Motivation

• Major infrastructure already existing to run
Scientific Computing

– Grids (US: Open Science Grid, Europe: European
Grid Initiative) can run high throughput, fault
tolerant, data intensive computing.

– Super Computers managed by XSEDE (formally
Teragrid) offer petaflops of HPC to scientists.

– These resources are free (XSEDE has allocations)
for researchers.

Architecture

• Hadoop on the Grid

Sending Jobs to the OSG

• Use GlideinWMS (tinyurl.com/glideinwms) for
grid submission

Job Description

• Each Hadoop worker node is a packaged into a
grid job.

• The grid jobs describe the requirements of the
hadoop worker node

– Public IP address (for internode communication)

– Disk space for data node

Sending Jobs to the OSG

1. Initialize the OSG operating environment

2. Download the Hadoop worker node
executables

3. Extract the worker node executables and set
late binding configurations

4. Start the Hadoop daemons

5. When the daemons shut down, clean up the
working directory.

Sending Hadoop Jobs to OSG

• Jobs are sent with small wrapper to download
Hadoop executable.

• Hadoop executable (75MB) is cached at each
site in their HTTP caches

• Wrapper modifies the Hadoop configuration
and starts Hadoop on the remote worker
node.

Hadoop on the Grid

• The grid job will start the Hadoop datanode
and tasktracker on the worker node.

• Since we are running opportunistically, we can
be preempted at any time

• We must increase the robustness of Hadoop
to survive site preemption and failures

Rack Awareness

• Rack awareness affects both job placement
and data placement.

– Tasks are targeted to racks that have the data

– Data is copied to a node on the same rack, and at
least one other rack for fault tolerance

• We want to use Rack awareness to shield us
from entire cluster failures

Data availability & Fault-tolerance

block-a

block-a

block-a

Node

Rack

Site

Failure Domain

Rack Awareness

• In our definition, we define a rack as a cluster

• Created a script that given an input, can
discern what cluster the IP belongs to

Re-Replicate

Rack Awareness

• Rack awareness also improves our task
placement

• In default Hadoop, it will place tasks on the
same rack as the input data.

• With our extension from a rack as a site, data
locality will consider site-local tasks

Outline

• Introduction

• Motivation

• HOG Architecture

• Experimental evaluation

• Conclusions

• Future work

• Questions

Experiment Setup

• Defined a common workload to compare a
dedicated Hadoop cluster with HOG.

• Varied size of HOG, recording completion
times for the workload.

• Compare response time between the cluster
and HOG

Experiment Workload

• We want to compare performance between a
dedicated Hadoop cluster and HOG

• We used the workload outlined by Facebook

Experiment Setup

• Used a dedicated in-house cluster of 30
nodes, 100 cores.

• Submitted varying number of HOG nodes to
the OSG to compare performance at different
scales.

• Ran at each level 3 times, took average
response time

Experimental Results - Scale

Experimental Results - Instability

• We had preemptions during our executions

• HOG system attempts to replace lost nodes

Experimental Results - Instability

• Due to preemptions and failures, every run
look very different

Unstable Stable Moderately Stable

Problems / Solutions

• During our evaluation found failure cases that
Hadoop did not properly handle

• Abandoned (zombie) datanodes

– Datanode processes that stick around after the
site has preempted the job

– Can cause failures in user jobs due to missing
input data on the datanodes

Zombie Datanodes

Zombie Datanodes

• Site wants to preempt
our HOG job

• Will kill the top level
process, the wrapper

Zombie Datanodes

• Reason of zombie

– New Process trees for

 DN and TT

– No self-checking

Zombie Datanodes

• Site cleanup removed
the data directories

• Datanode daemon
sticks around

Zombie Datanodes

• Solution

– All processes under

 wrapper job

– Periodic self-checking

Conclusions

• Created and evaluated a Hadoop framework on
the OSG

• Since the framework is run on the OSG, it is free
to researchers.

• Site awareness added to increase reliability

• Showed equivalent performance compared with
a dedicated Hadoop Cluster

Future work

• There is still much work to be done.
– Multiple duplicated tasks execution

– Data blocks replication and movement monitoring
during HOG scaling

• Improved security
– Since transfers are happening over the WAN, we need

to authenticate data nodes with each other

– Can use grid certificates to provide PKI security
between nodes

Questions

Backup Slides

Sending Jobs to the OSG

• GlideinWMS Submission File

universe = vanilla

requirements = GLIDEIN_ResourceName =?= "FNAL_FERMIGRID" ||

GLIDEIN_ResourceName =?= "USCMS-FNAL-WC1" || GLIDEIN_ResourceName =?=

"UCSDT2" || GLIDEIN_ResourceName =?= "AGLT2" || GLIDEIN_ResourceName

=?= "MIT_CMS"

executable = wrapper.sh

output = condor_out/out.$(CLUSTER).$(PROCESS)

error = condor_out/err.$(CLUSTER).$(PROCESS)

log = hadoop-grid.log

should_transfer_files = YES

when_to_transfer_output = ON_EXIT_OR_EVICT

OnExitRemove = FALSE

PeriodicHold = false

x509userproxy = /tmp/x509up_u1384

queue 1000

