
 Software-as-a-Service: The iPlant Foundation API  
 

Rion Dooley, Matthew Vaughn, Dan Stanzione, 
Steve Terry 

Texas Advanced Computing Center 
The University of Texas 

Austin, USA 
[dooley, vaughn, dan, sterry1]@tacc.utexas.edu 

Edwin Skidmore 
iPlant Collaborative 

University of Arizona 
Tucson, USA 

edwin@iplantcollaborative.org

 
 

Abstract—The iPlant Foundation API (fAPI) is a hosted, 
Software-as-a-Service (SaaS) resource for the computational 
biology field. Unlike many other grid-based approaches to 
distributed infrastructure, the fAPI provides a holistic view of 
core computing concepts such as security, data, applications, 
jobs, and systems. It also provides the support services, such as 
unified accounting, provenance, metadata, and global events, 
needed to bind the core concepts together into a cohesive 
interface. Operating as a set of RESTful web services, the fAPI 
bridges the gap between the HPC and web worlds by supporting 
synchronous and asynchronous interfaces, web-based callbacks, 
unified access control lists (ACL), and a publication- subscription 
(pubsub) model that allows modern applications to interact with 
the underlying infrastructure using technologies and access 
patterns familiar to them. In its first year of operation, the fAPI 
has grown to support thousands of users across both the Plant 
and Animal Science domains. In this paper we describe the fAPI, 
its underlying architecture, and briefly describe its adoption 
before concluding with future plans. 

Keywords— cloud; biology; cyberinfrastructure; iplant; data; 
api; saas; web service; rest 

I.  INTRODUCTION 
The iPlant Collaborative (iPlant) is a United States National 

Science Foundation (NSF) funded project that has created an 
innovative, comprehensive, and foundational 
cyberinfrastructure (CI) in support of plant biology research 
[1]. iPlant is developing cyberinfrastructure that uniquely 
enables scientists throughout the diverse fields that comprise 
plant biology to address Grand Challenges in new ways, to 
stimulate and facilitate cross-disciplinary research, to promote 
biology and computer science research interactions, and to train 
the next generation of scientists on the use of 
cyberinfrastructure in research and education. The iPlant 
cyberinfrastructure design is based on an unprecedented period 
of research community input. It leverages developments in 
high-performance computing, data storage, and 
cyberinfrastructure for the physical sciences, and is an open-
source project with application programming interfaces that 
allow the community to extend the infrastructure to meet its 
needs. 

iPlant provides a wide range of computational resources, 
aimed at supporting different use cases. The iPlant Data Store 
is a persistent, high performance, distributed storage solution 
built upon iRODS[2].  Atmosphere is a highly customized, on-
demand virtualization solution built upon Eucalyptus [3][4]. 

Multiple high performance computing (HPC) resources 
through allocations on XSEDE [5], FutureGrid [6], the Open 
Science Grid (OSG) [7], and the University of Texas System 
[8] are provided free of charge.  iPlant also manages its own 
high throughput computing (HTC) resources at the University 
of Arizona. Each of these resources comes with its own set of 
interfaces, allocations, and access mechanisms.  

To lower the barrier of entry to these resources and 
facilitate broader adoption, community-led iPlant steering 
committees identified a need for a programmatic access layer. 
In-person surveys and discussions from over 100 subsequent 
community workshops validated this recommendation and 
provided an initial set of requirements for the desired access 
layer to meet. Obvious capabilities such as the ability to submit 
jobs, track provenance, move data, and share work topped the 
list. Additionally common requests came from the community 
to apply and manage metadata, interoperate with their existing 
private resources, interact with 3rd party services, and support 
ontological discovery. Other, larger development projects 
requested some developer-friendly features such as a 
Representational State Transfer (REST) [9] interface, callback 
notifications, token-based access, and support for asynchronous 
communication. 

Driven by this initial set of requirements, the development 
team conducted an evaluation of current technologies to 
identify projects they could adopt or extend to provide such an 
access layer. This evaluation is discussed as background 
material in Section II.  

II. BACKGROUND 
The evaluation began with hosted services. Globus Online 

[10] provided a production quality, hosted data movement 
service, but at the time of this writing, required separate 
authentication mechanisms, provided no metadata support, and 
could not be embedded into existing services and applications. 
There is hope that these features will be provided in the near 
future, but until then, deep integration is not possible. The 
Cyberaide project [11] showed great potential as a hosted job 
submission service, however the project is currently 
unsupported, the software suffers from scalability issues 
associated with large input data, and the model of wrapping 
each individual application in a virtual appliance doesn’t match 
well with usage scenarios involving users leveraging the 
service as a mechanism for rapid application development. 
Airavata [12] is a well supported workflow orchestration and 



execution service, but currently lacks key permission and data 
access concepts requested by the iPlant community. Several 
discussions with the Airavata project team indicated that 
significant refactoring would be required  to support these 
concepts and such work was not in the scope of their current 
roadmap. 

Next, the development team looked at Infrastructure-as-a-
Service (IaaS) solutions. Commercial companies such as 
Amazon, Rackspace, and Microsoft provided solutions with 
mature web service offerings that allowing customers to 
interact with their infrastructure. However the primary focus of 
their web services was the administration of the resources they 
own. VMWare, OpenStack, Nimbus, and Eucalyptus all 
provided IaaS solutions solutions similar to the hosted 
commercial offerings, but run on local systems. These were 
attractive solutions iPlant could, and did adopt to expose their 
underlying cloud resource, but neither the hosted nor private 
IaaS solutions provide services of sufficient abstraction or 
breadth to meet the requirements of the user community. 

Finally, the development team turned their evaluation focus 
to popular "middleware" projects such as the Globus 
Toolkit[13], Grisu[14], Newt[15], SAGA[16], and Unicore 
[17]. Each project had its own advantages, but the focus was 
generally on a subset of the functionality desired by the iPlant 
user community. The Globus Toolkit provided solutions for 
cross-site authentication, data movement, job submission, and 
information management, but worked in a way largely 
disconnected from the underlying compute and data systems. 
Exposing the Globus GRAM scheduler as an outward facing 
service to iPlant users would create the possibility of a 
discrepancy between queue status reported by the system 
schedulers and the Globus scheduler. The development team 
learned that in other projects, this led to accounting and 
monitoring difficulties that could never be completely worked  
out. Another roadblock to adopting the Globus Toolkit as a top 
level solution was that interaction with the Globus services 
required a separate technology stack. This technology stack 
would be required on every system communicating with iPlant. 
Though much improved in the past year, the installation of this 
software is still challenging for novice users to install and 
configure. Given the 7000 users iPlant currently supports, the 
burden that adoption of the Globus Toolkit would potentially 
add to the iPlant support staff weighed significantly in the final 
decision to leverage some of the lower level Globus 
components such as GridFTP for internal use, but refrain from 
exposing any at the user-facing level. 

Grisu is an open source project developed by the Australian 
Research Collaborative Service's National Grid. It provides 
SOAP, REST, and GUI interfaces for job submission. The 
approach of Grisu was in line with community requirements, 
however the scope of the project was much smaller than that of 
iPlant and the underlying technology was aging. Several of its 
core dependencies had been deprecated and no effort was being 
made to update to alternative technologies. At the time of the 
initial review the Grisu development team was phasing out 
support of the project due to lack of interest and funding. As a 
result, there was little opportunity to collaborate. 

NEWT is a web service that allows users to access 
computing resources at the National Energy Research 
Scientific Computing Center (NERSC) through a simple REST 
API. NEWT exposes services for authentication, system 
monitoring, file uploads and downloads, directory listings, 
running commands, submitting jobs to batch queues, obtaining 
accounting information, and accessing a persistent object 
storage. NEWT is an internal project at NERSC and, as such, is 
deeply tied to the underlying NERSC infrastructure. After 
evaluating the NEWT architecture, it was found that while it 
did meet many of the requirements, it would require nearly a 
complete rewrite to port NEWT onto the iPlant 
cyberinfrastructure.  

The Simple API for Grid Applications (SAGA) is a 
programmatic interface for managing jobs and data on a 
computational grid. It currently has bindings in Java, C++, and 
Python, however it lacks any web service iterface.  

Unicore is a comprehensive middleware solution similar to 
the Globus Toolkit, but exposed as a set of SOAP web services. 
One benefit of Unicore is its use of community established 
protocols for job submission, information management, and 
authentication. The primary drawbacks to Unicore are the large 
buy-in required to leverage it, the technology stack required by 
clients to interact with the SOAP services, and the system-level 
installations required by both the clients and resource 
providers. Given iPlant's lack of administrative access to the 
underlying HPC hardware and the requirement for REST and 
web-accessible services, Unicore could not be an outward-
facing technology in the desired iPlant programmatic access 
layer.  

After completing the evaluation process, the development 
team determined that, for lack of a better description, there was 
abundant plumbing, but no kitchen sink. Despite the needs of 
the community, there was no solution that allowed significant 
re-use of existing code bases to meet the needs of the plant 
science community, and so the development team designed and 
created the Foundation API (fAPI). The remainder of this paper 
is organized as follows. Section 2 gives an overview of the 
fAPI design. Section 3 describes the individual services 
comprising the API. Section 4 provides usage and adoption 
metrics from the fAPI's first year of operation. Section 5 
concludes with a brief roadmap for future development. 

III. DESIGN AND ARCHITECTURE 
The Foundation API is designed to operate as a multitenant, 

cloud-based, Software-as-a-Service (SaaS) solution. Two 
physical instances of the fAPI services sit behind an Apache 
Load Balancer and direct requests between the primary 
instance at Texas Advanced Computing Center and the mirror 
instance at the University of Arizona. This single logical 
instance of the fAPI is available at 
https://foundation.iplantcollaborative.org and serves iPlant 
users and partner projects alike.  

The fAPI services are implemented in Java and PHP as 
RESTful web services. The Java services leverage the Restlet 
[18] framework and run in a Tomcat 6 container. Hibernate is 
used to handle the ORM to a shared MySQL database [19]. 



The PHP services leverage portions of the CodeIgniter 
framework and utilize the native PHP 5 PDO support [20]. 

The fAPI has both public and protected interfaces 
depending on the nature of the data they expose. The protected 
endpoints are accessible via HTTP Basic over SSL. While 
iPlant uses LDAP as the backing identity store for the entire 
projects, the fAPI does not expose this directly, but rather 
supports token-based authentication. Consumers request a 
token from the Auth service using their client credentials and 
use that token to interact with the rest of the API until it 
expires. 

Supporting the front-end services is an elastic set of worker 
services. These workers handle the lengthy task requests made 
to the front-end services such as file staging, job submission, 
and data transformation. The workers are implemented in Java 
as headless services running on distributed virtual machines. 
The workers do not directly communicate with the front-end 
services. The front-end services submit tasks to the underlying 
queue service and the workers watch their respective queues 
and claim tasks as they appear. The queue service is 
implemented in Java using the Quartz scheduling framework 
backed by a MySQL database [21]. A separate Event service 
complements the queue service and provides publication-
subscription (pubsub) functionality to the API.  

As the overall workload on the fAPI increases, scaling up is 
trivial. Additional worker services are started as new virtual 
machines (VM) are spun up. When the overall workload 
decreases, the VM can be shut down. If a worker fails or 
becomes unresponsive, another worker will claim the lost task 
and carry on. Fig. 1 illustrates the overall fAPI architecture. 

As mentioned above, the fAPI services support both 
synchronous and asynchronous interaction. This allows client 
applications to fire and forget long running tasks such as job 

submission and data movement. Fig. 2 illustrates a typical flow 
of execution when the IO service is invoked. The scenario 
shown occurs when a user requests that the IO service fetch a 
file from an external data source, preprocess or convert it in 
some way, and store it in the iPlant Data Store. While fulfilling 
the request, the task will pass through several queues, keeping 
the front-end service aware of its progress. Once completed, an 
optional notification will be sent to the user via email or web 
hook alerting them that their file staging request has completed.  

 
Figure 2. A typical flow of execution when an asynchronous call is made to 
the fAPI. In this figure, the user requests a file be staged in from an external 

data source, transformed, and stored in the iPlant Data Store. 

Because iPlant does not own the underlying HPC, storage, 
or network resources needed to conduct much of the science it 
enables, the quickest time to production came from running the 
fAPI under a single community account and brokering actions 
on behalf of its internally vetted users. The complexity of 
implementing the services in this way was significantly less 
than supporting authentication and usage scenarios outside of 
the project. Using a community account also made provenance 
achievable across the entire enterprise, and allowed for a much 
smaller burden on the system administrators. The primary 
disadvantage of this approach was that it placed a significant 
security responsibility on the development team and increased 
the level of reporting needed at all levels of the system. It is 
also not a sustainable approach from a resource utilization 

Figure 1. Conceptual overview of the Foundation API architecture. 



standpoint. This was one of the lessons learned from the 
CIPRES project [22]. When useful software is available to the 
community, community requests will quickly and forevermore 
out-pace the available resources. Given the already 
oversubscribed state of the underlying shared HPC resources, it 
is not possible to continue to grant larger and larger 
percentages of the available cycles to a single project. Thus, in 
the long term, the fAPI must move to enable users to charge 
work to their individual system allocations when appropriate. 
This topic is addressed more in the section on future work. 

Three other considerations influenced the overall design of 
the fAPI without impacting the architecture. One of the most 
frequently requested features from the community during the 
requirements gathering phase was collaborative support. Users 
wanted a "share anything" model that would allow them to 
work with past, present, and future colleagues regardless of 
their affiliation with iPlant. As a result of this requirement, 
flexible access control lists (ACL) were built into all relevant 
pieces of the fAPI allowing users to share anything at any time 
with anyone.   

Second, the importance of a clean, friendly API became 
readily apparent for a variety of reasons. A 2008 study of 
nearly 2000 researchers found that over 96% of those surveyed 
said that self-study was important when learning how to 
develop software while only 30% could say the same for 
formal education. That same study shows that 84% of the 
researchers surveyed claim that software development is 
critical to their research, yet they were only able to allocate 
30% of their time to software development. [23]. Two things 
jump out from this study. First, the vast majority of users will 
not be professional programmers and will not have significant 
experience nor the time to learn new techniques and 
methodologies. In many cases users are scientists who are 
simply programming out of necessity. For these researchers, 
the learning curve required to begin building their software can 
be daunting. They first need to discover what services are 
available to them. Next, given a set of disjoint services, they 
must decipher how to piece them together using different 
communication protocols, authentication mechanisms, and 
access patterns. Once they figure that out, they must then 
familiarize themselves with several different APIs in order to 
write the necessary integration code. Once all that is in place, 
they can then begin debugging the idiosyncrasies of each 
scheduler, compute, and storage system to find out why their 
integration code doesn’t work as advertised. Finally, after all 
that is in place, they can begin building the application they 
originally set out to build. Given the prevalence of graduate 
students doing much of the work and the inherent turnover rate 
of such employees, setting the barrier to entry that high is 
detrimental to the goal of advancing science.  

The results of that study corresponded with observations 
made by the iPlant User Support and Engagement teams during 
the first 2.5 years of the project. Thus, as part of the design 
process, the development team took lessons from other popular 
APIs used in the commercial space such as Yelp, Dropbox, 
Flickr, Facebook, Amazon, and Paypal. User stories were 
constructed around mobile, web, desktop, and command-line 
usage scenarios. The result was an API that erred on the side of 
usability rather than compliance. It promoted progressive user 

buy-in rather than forcing vendor lock-in. It promoted a 
grocery store approach to adoption by allowing users to take 
what they need and leave the rest for later.  

Lastly, the development team, though many conversations 
with the Discovery Environment development team as well as 
external projects, identified great value in providing a solution 
that, from a user perspective, worked the way the rest of the 
web worked. It should be designed in such a way that it could 
be easily consumed and mashed up with other services in a 
short amount of time. It should realize that polling for 
information is a bad design pattern and allow users to utilize 
better access patterns when they were ready. It should 
understand that every application has its own concept of 
"fresh" information and allow them to access information at 
whatever rate and level they felt necessary. 

These three considerations were major influences on the 
design of the fAPI. In the next section we bring together these 
design decisions along with several more subtle ones to 
describe the individual services of the fAPI. 

IV. FOUNDATION API SERVICES 

A. Authentication Services 
The first interaction users have with the fAPI is with 

authentication. Users access protected endpoints in the API 
using an authentication token. They obtain that token from the 
Auth service. The Auth service uses LDAP to authenticate 
users and issue renewable, short-term credentials in the form of 
tokens. The service supports token revocation, blacklisting, 
delegation, and fixed usage scenarios. Tokens are implemented 
simply as alphanumeric strings and can be used in place of a 
user's password when making HTTP Basic requests to the 
protected service endpoints.  

One use case not addressed by the Auth service is that of 
low-trust scenarios. Often times, user workflows include 
interaction with a third-party services. Granting these services 
unlimited access to the user's account is highly undesirable. 
The Auth service can issue single use tokens, but it does not 
restrict the URL to which that token is valid. As a result, that 
token could be used to invoke any action using the API, not 
just the one intended by the user. The PostIt service was 
created for this purpose. 

The PostIt service is a pre-authenticated URL shortening 
service. Similar to popular URL shortening service such as 
TinURL.com and Bit.ly, the PostIt service creates an 
obfuscated, short URL out of any endpoint in the fAPI. In the 
case of protected endpoints, the user can pre-authenticate the 
URL by authenticating to the PostIt service when creating the 
URL. As with the Auth service, the user can restrict lifetime 
and number of uses of the generated URL, but using the PostIt 
service, that permission will be restricted to the registered 
URL. When the third-party service invokes the PostIt URL, the 
PostIt service add the appropriate authentication token and 
proxies the request to the original URL. Any query parameters, 
form variables, or attachments are forwarded on and the 
response is relayed back. As with the Auth service, PostIt 
URLs can be revoked as needed. 



B. Data Services 
The IO service is the core data movement service of the 

Foundation API. It serves as a value-added abstraction layer on 
top of the iPlant Data Store.. The IO service, like the Data 
Store, provides basic file operations and exposes fine-grained 
ACL. Data can be transferred both synchronously via HTTP 
GET and POST, and asynchronously by requesting a data 
transfer from an external data source using any of a number of 
protocols. Current protocols supported are FTP, GridFTP, 
SFTP, HTTP, IRODS, and Amazon S3. When requesting data 
from the IO service, data can be requested in whole or in part 
using partial data queries. When scheduling long running 
transfers, a callback can be specified. Callbacks can be an 
email address or a web hook in the form of a HTTP endpoint to 
which the service will POST a response. To allow 
customization of the notifications, a template system is 
provided for use in defining the callback URL query. 

The IO service also provides a chained pre-processing 
mechanism that allows users to transform data upon 
upload/import before it reaches its final destination. This 
allows raw data to be imported, yet arrive in a polished form. 
This is particularly useful when importing database dumps, raw 
experimental output, and data from deprecated file formats, but 
also handy for automatically compressing or decompressing 
data and running metadata extraction on datasets as they come 
in.  

The Data service was created in response to the need for 
scientists to collaborate without having to learn many different 
software packages and data formats. The Data service acts as a 
Rosetta stone for plant biologists allowing them to convert their 
existing data from one format to another and stage it to a 
location they specify using any of the protocols supported by 
the IO service. There are currently 49 different data formats 
supported by the Data service. It is not possible to transform in 
every pairwise manner, so the data service provides a 
mechanism to determine the available transformations given a 
source data format. Like the IO service, the Data service 
supports both synchronous and asynchronous requests, 
callbacks, and partial data queries.  

While the IO, Transfer, and Data services exist to aid in the 
management of raw data, the Meta service allows for the 
management of metadata. The Meta service provides metadata 
support for all of the fAPI services. It exists as an unstructured 
data store backed by a column-oriented NoSQL database[24]. 
Because metadata is, by definition, data about data, it has no 
inherent meaning. Thus, the Meta service allows users to 
register schemas that describe their data. Schemas are JSON or 
XML descriptions of data. These descriptions may be a series 
of tuples, or highly structured object definitions. The decision 
on how to describe their data is left up to the user. In order to 
bridge the gap between different schemas, users can register 
mappings between schemas. These mappings allow the Meta 
service to identify opportunities to do apples-to-apples 
comparisons between metadata associated with different 
schemas. This is helpful when doing global searches, 
constructing user-derived responses, and when using metadata 
to reconcile different raw data sets. The Meta service is 
currently in initial testing while undergoing scalability 

evaluation. It is anticipated that the service will hold on the 
order of a billion pieces of information in its first year. 
Querying such a dataset becomes challenging as that number 
grows. To improve search times, various methods of data 
reductions are being examined. We anticipate the Meta service 
to be available in full production early in 2013. 

C. Execution Services 
The Apps service is designed to serve as a central registry 

for applications deployed in the iPlant software infrastructure. 
In concert with the Jobs API, bioinformatic analysis 
applications can be deployed on a range of platforms, ranging 
from leadership cluster systems, to virtual machines running in 
an environment such as Atmosphere, to remote RESTful 
services. Support for truly heterogeneous, user-defined 
computing infrastructure such as Amazon EC2 and Google 
App Engine is an area of future growth in development now. 

Users can search for applications by search terms such as 
ontological terms, tags, name, and unique ID.  As a 
convenience for users building their own web GUIs, the Apps 
service also generates HTML forms for registered applications 
that can be posted to the jobs service for execution. 
Applications are available both publicly and privately. Public 
applications are administered and maintained by iPlant staff 
and made available for anyone to use. Private applications are 
registered by users and, by default, can be discovered and run 
only by their owners. Applications have their own ACL, so 
private applications may be shared with other users by setting 
the appropriate permissions.  

Application registration is accomplished by posting a JSON 
description of the application to the Apps service. The JSON 
description includes basic information about the application 
name, version, target system, invocation method, and any 
required inputs, parameters, and outputs. Currently supported 
invocation methods include CLI, SGE, PBS, 
LOADLEVELER, LSF, TORQUE, and CONDOR. The 
description of the inputs and outputs is used exclusively for 
validating job submission requests and determining what 
information is needed by the executable to run. The process of 
wrapping an application is out of the scope of this paper. For 
more information on this process, consult the API 
documentation in [25]. 

The Job service is the core execution service in the API. Its 
sole purpose is to start and manage jobs across the underlying 
systems. Users POST a job request to the service and the 
service validates that request against the application description 
registered with the Apps service. A job handle is returned to the 
user and the job request is forwarded on to the submission 
queue. A job submission worker will pull the job off the queue, 
transfer in any missing data using the IO service and stage all 
dependencies to the remote system before submitting the job to 
the remote scheduler or forking the process. When the job 
completes, a callback will be made to the user. Like the IO 
service, the Job service supports a template system to enable 
the user to dynamically construct a callback URL at run time. 

Jobs, like applications and files, have their own ACL and 
can be shared between iPlant users as well as the general 
public. To support quick access to job data, the Job service 



provides convenience endpoints to easily locate and browse 
their output folders. This is helpful given that a job’s output 
folder may or may not exist and changes over time. When the 
job is running, the folder is on the execution host. Once a job 
has finished, the folder is archived in the Data Store. If the job 
was not archived or failed right away, there will not be an 
output folder associated with the job.  

Archiving is built into the job service. By default, all data 
generated during job execution is archived back to the Data 
Store and placed in a location specified by the user or, if not 
specified, in an archive folder generated by the service in the 
user’s home space. 

D. User Services 
The Profile service acts as a directory service for iPlant. It 

allows users to view information about other iPlant users such 
as their name, contact info, and institutional affiliation. The 
identity management within iPlant is currently going through 
an upgrade as the project moves towards providing OAuth2 
[26] support. As such, the profile service is currently available 
as a read-only service. Please consult the Future Plans section 
for more information about fAPI roadmap for identity 
management. 

The Audit service provides detailed usage and accounting 
information across the iPlant cyberinfrastructure. From the 
Audit service, users can check their allocation status and 
quotas, obtain reports on their system-level usage history, their 
API usage history, and obtain their remaining balances across 
resources. The Audit service is targeted towards individual 
users rather than the organization as a whole. As a result, 
separate administrative interfaces are available for staff to 
create systemwide and multi-user reports. 

E. Administration Services 
The Systems service is a discovery endpoint for the fAPI. It 

provides information on what systems are currently available 
through the Jobs service for execution and what the current 
status of those systems is. This service is currently read-only. 
The section on Future Plans describes the ongoing work of the 
development team to support user-defined dynamic resource 
registration. 

The Monitor service gives users a view into the health of 
the fAPI. Its main role is to tell users if any part of the fAPI is 
down and why. This information is obtained by running a suite 
of tests as a cron process that check the availability and 
response accuracy of the entire fAPI, its dependent services, 
and the underlying systems. Test results are pushed into a 
separate MySQL database and exposed by the Monitor service. 
Both the service and database are hosted physically separated 
from the rest of the services to ensure that it is accessibility 
even in the case of catastrophic failure in the rest of the fAPI. 

The Track service is part of the provenance solution in the 
fAPI. It exists as a simple write-only service to track activity 
across the entire iPlant cyberinfrastructure. Every invocation of 
a fAPI service calls out to the Track service to create a record 
of its activity. The Track service provides a central place where 
one can mine usage information and service activity. All data 
from the service is currently stored in a MySQL database. This 

will change in the coming months as the size of data mandates 
a move towards a NoSQL solution. 

The Event service provides pubsub capabilities to the rest 
of the fAPI. When a work action is taken in the fAPI such as a 
data or job operation, an event is triggered and pushed onto the 
user’s event queue. The message is then available to anyone 
subscribed to that queue. The fAPI currently uses a custom 
Event service implementation based on the OGCE WS-
Message project [27]. This may change going forward in 
anticipation of broad RabbitMQ [28] support across the rest of 
the project.  

The Manager service is a catchall service for controlling the 
behavior of the other services. It provides reporting as well as 
the ability to shut down and drain work from the IO, data, and 
jobs worker services. It is a critical service in the Foundation 
API that we restricted exclusively to administrative users. 

V. USAGE AND ADOPTION 
The fAPI was released for public usage in September of 

2011. Since then, over 250 users have leveraged the fAPI to 
enable projects representing more than 10,000 scientists 
worldwide. Users burned more than half a million SUs running 
over 4000 jobs across HPC systems at PSC, SDSC, and TACC. 
The fAPI data services now serve access to nearly half a 
petabyte of data. Fig. 3 shows the approximate usage history 
over the first year of operation.  

Figure 3. Foundation API monthly usage history. Usage increased consistently 
over the year with anticipated dips during breaks in the academic calendar.  

In the remainder of this section we highlight three projects 
who have made significant contributions to this usage by 
engaging with the fAPI development team to integrate the fAPI 
deeply into their existing applications. These projects are the 
iPlant Discovery Environment, the BioExtract Server, and the 
Easy Terminal Alternative. 

The first adopter of the fAPI was the iPlant’s own 
Discovery Environment (DE) team [29]. Said Lead Developer 
Andrew Lenards, “The a la carte approach to the Foundation 
API was extremely attractive to an integrating system like the 
Discovery Environment. It primarily means that the system can 
leverage the portions of the framework that make the most 
impact. For the Discovery Environment's current 
implementation, this includes the Foundation API's Data, Auth, 
Apps, and Jobs services. 



“A token-based authentication approach available from the 
auth service allows actions to be completed on-behalf of the 
Discovery Environment's users. Aspects of the data service are 
leveraged to enable users to manage their file-based data.  And 
a simple "shim" script allows the Discovery Environment to 
off-load computationally intensive applications to the 
appropriate resources available at TACC. Through this simple 
script, the Discovery Environment can access applications 
deployed within the TACC and XSEDE environments, execute 
them, and monitor their status via commodity hardware using 
both the apps and jobs services. 

The greatest value-added feature gained through integration 
with the Foundation API, however, was its monitoring 
capabilities. Experienced software developers are all-to-aware 
of the performance implications of polling, yet are often forced 
to implement such functionality due to lack of effective 
alternatives. Using a Pub-Sub model, the Foundation API does 
not force an integrator to poll; they just need to operate a 
simple end-point that allows the integrating system to subscribe 
to updates via web hooks available throughout the API. This 
makes bubbling the status of operations within the Foundation 
API easily achievable. The Discovery Environment has 
benefited tremendously from its adoption of the Foundation 
API and, as our needs grow over time, our adoption of other 
Foundation API services will increase.”  

The primary lesson learned working with the DE team was 
the cost of technological debt. The DE team started 
development a full year before the fAPI. As a result, they had 
hundreds of thousands of lines of code already deployed and 
working. Even small changes to their infrastructure could have 
significant impacts on the overall system both in terms of 
stability and developer effort. For them, the return on 
investment had to significantly outweigh the cost for any 
change they introduced. That placed a large responsibility on us 
to ensure that our services were stable and that we could clearly 
communicate the value of individual fAPI services so they 
could find integration points that fit into their existing 
development cycle. 

The BioExtract Server is an open, Web-based system 
designed to aid researchers in the analysis of genomic data by 
providing a platform to facilitate the creation of bioinformatic 
workflows. Scientific workflows are created within the system 
by recording tasks performed by the user. These tasks may 
include querying multiple, distributed data sources, saving 
query results as searchable data extracts, and executing local 
and Web-accessible analytic tools. The series of recorded tasks 
can then be saved as a reproducible, sharable workflow 
available for subsequent execution with the original or 
modified inputs and parameter settings [30]. Over the last year, 
Dr. Carol Lushbough and the BioExtract team have leveraged 
the fAPI to enable researchers to execute iPlant analytic tools 
within the BioExtract Server, create iPlant workflows through 
the BioExtract Server, and manage analysis and provenance 
data across both platforms. The result of this collaboration has 
added a unified authentication mechanism between the two 
projects using the Auth service, expansion of their data 
capacity by several orders of magnitude using the IO and Data 
services, the addition of over two dozen new scientific codes to 
their application through the Apps service, and over 500 HPC 

jobs run across systems at TACC and SDSC using the Jobs 
service.  

The biggest lessons learned from working with the 
BioExtract team was the need to respond quickly and manage 
change well. The BioExtract server already had an active user 
community relying on it for their daily work. Any changes 
made to the fAPI after integration needed to ensure backward 
compatibility or their application would break. As a result the 
development team spent time developing processes for 
releasing updates, versioning the services, migrating users 
between versions, and ensuring that provenance was pervasive 
across the fAPI. The processes made the fAPI a better product 
overall and helped manage our larger users more effectively. 

Easy Terminal Alternative (ETA) is a web based front end 
to any infrastructure that allows novice users to submit, 
monitor, and share jobs [31]. ETA is designed specifically to 
transition users from the terminal to the web by easing the 
running of applications, streamlining the creation of scientific 
pipelines, and managing application lifecycles. The ETA 
development team at the Center for Genome Research and 
Biocomputing, led by Alex Boyd, used the fAPI Auth, Jobs, 
IO, and Apps services to provide overflow cycles for their 
campus users when their system reached full capacity. 
Leveraging the webhook features of the Jobs service, ETA was 
able to reconstruct existing pipelines using their existing 
workflow execution engine.  

The primary takeaway from engagement with the ETA 
team was the need for multiple levels of documentation. While 
we had documentation in place for the fAPI, we didn’t have the 
big picture description that explained the concepts of how the 
fAPI worked and the value proposition to its potential users. To 
that end, a developer’s website will be released with version 2 
of the fAPI. 

VI. FUTURE PLANS 
Looking forward, the Foundation API has an exciting 

roadmap. In the coming months the development team will be 
releasing the 2.0 version of the API, expanding functionality in 
several new directions while increasing performance and 
reliability in the existing services. Provenance will continue to 
be improved across the entire iPlant cyberinfrastructure. Global 
UUID will be given to every digital object that touches the 
iPlant cyberinfrastructure. The Meta service currently in testing 
will be rolled out as a first class service as well. 

A new area of focus for the development team is 
authentication and identity management. A new OAuth 2 
service will be deployed that will provide better accounting, 
provenance, and control over individual services than was 
previously available. At the same time, a new Systems service 
will be deployed that allows users to register compute and data 
resources external to iPlant for use through the fAPI. This will 
move the fAPI closer towards a true SaaS offering and help 
bridge the gap for users between iPlant and their local and 
campus resources. 

Through a joint effort with the HPC and HTC system 
providers, a global RabbitMQ based event system will be 
deployed in the near future. This will allow for better 



monitoring and information management across the entire 
system.  

Finally, the Apps and Jobs services will continue to expand 
with additional functionality. Support for new platforms and 
execution mechanisms is ongoing and will bring commercial 
cloud support to the fAPI in the coming months. In order to 
support interoperability with other job execution services, 
additional job and application description formats will be 
supported. The addition of the new OAuth service will impact 
the Job service in a positive way. Once available, job 
submission using the user’s personal system account and 
allocation will be supported. 

This list of plans is in no way complete, but hopefully casts 
a vision of the direction in which development is currently 
headed. For more information on the fAPI and to follow along 
with its development, consult [25] and [32]. 

ACKNOWLEDGMENT 
The iPlant Collaborative is funded by a grant from the 

National ScienceFoundation Plant Cyberinfrastructure Program 
(#DBI-0735191). This work was also partially supported by a 
grant from the National Science Foundation Cybersecurity 
Program (#1127210). 

REFERENCES 
[1] Stanzione, Dan, "The iPlant Collaborative: Cyberinfrastructure to Feed 

the World," IEEE Computer, November 2011. doi: 
10.1109/MC.2011.297. 

[2] Rajasekar, A., M. Wan, R. Moore, W. Schroeder, "A Prototype Rule-
based Distributed Data Management System", HPDC workshop on 
"Next Generation Distributed Data Management", May 2006, Paris, 
France. 

[3] iPlant Atmosphere: A Gateway to Cloud Infrastructure for the Plant 
Sciences. Skidmore E, Kim SJ, Kuchimanchi, S Singaram S, Merchant 
N, Stanzione D. Proceedings from Gateway Computing Environments 
2011 at Supercomputing11 (2011) 

[4] Eucalyptus. http://www.eucalyptus.com. 
[5] The Extreme Science and Engineering Discovery Environment. 

http://xsede.org. 
[6] FutureGrid: An Experimental, High-Performance Grid Test-Bed. 

http://portal.futuregrid.org. 
[7] Mine Altunay, Paul Avery, Kent Blackburn, Brian Bockelman, Michael 

Ernst, Dan Fraser, Robert Quick, Robert Gardner, Sebastien Goasguen, 
Tanya Levshina, Miron Livny, John Mcgee, Doug Olson, Ruth Pordes, 
Maxim Potekhin, Abhishek Rana, Alain Roy, Chander Sehgal, Igor 
Sfiligoi, and Frank Wuerthwein. 2011. A Science Driven Production 
Cyberinfrastructure--the Open Science Grid. J. Grid Comput. 9, 2 (June 
2011), 201-218. 

[8] The University of Texas System. http://www.utsystem.edu. 
[9] R. T. Fielding. Architectural Styles and the Design of Network-based 

Software Architectures. PhD thesis, Information and Computer Science, 
University of California, Irvine, California, USA, 2000. 

[10] Ian Foster. 2011. Globus Online: Accelerating and Democratizing 
Science through Cloud-Based Services. IEEE Internet Computing 15, 3 
(May 2011), 70-73. 

[11] Kurze, T.; Lizhe Wang; von Laszewski, G.; Jie Tao; Kunze, M.; Kramer, 
D.; Karl, W.; , "Cyberaide onServe: Software as a Service on Production 
Grids," Parallel Processing (ICPP), 2010 39th International Conference 
on , vol., no., pp.395-403, 13-16 Sept. 2010. doi: 10.1109/ICPP.2010.47 

[12] Suresh Marru, Lahiru Gunathilake, Chathura Herath, Patanachai 
Tangchaisin, Marlon Pierce, Chris Mattmann, Raminder Singh, Thilina 
Gunarathne, Eran Chinthaka, Ross Gardler, Aleksander Slominski, Ate 

Douma, Srinath Perera, and Sanjiva Weerawarana. 2011. Apache 
airavata: a framework for distributed applications and computational 
workflows. In Proceedings of the 2011 ACM workshop on Gateway 
computing environments (GCE '11). ACM, New York, NY, USA, 21-
28.  

[13] Ian Foster, Carl Kesselman, and Steven Tuecke. 2001. The Anatomy of 
the Grid: Enabling Scalable Virtual Organizations. Int. J. High Perform. 
Comput. Appl. 15, 3 (August 2001), 200-222.  

[14] (grisu)Altinay, C.; Binsteiner, M.; Gross, L.; Weatherley, D.K.; , "High-
Performance Scientific Computing for the Masses: Developing Secure 
Grid Portals for Scientific Workflows," e-Science (e-Science), 2010 
IEEE Sixth International Conference on , vol., no., pp.254-260, 7-10 
Dec. 2010. doi: 10.1109/eScience.2010.30 

[15] S. Cholia, D. Skinner, J. Boverhof, “NEWT: A RESTful service for 
building High Performance Computing web applications”, Gateway 
Computing Environments Workshop (GCE), 2010, January 1, 2010, 1--
11, 

[16] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. 
Shalf, and C.Smith, A Simple API for Grid Applications (SAGA), OGF 
Document Series 90, http://www.ogf.org/documents/GFD.90.pdf. 

[17] Dietmar W. Erwin , David F. Snelling, UNICORE: A Grid Computing 
Environment, Proceedings of the 7th International Euro-Par Conference 
Manchester on Parallel Processing, p.825-834, August 28-31, 2001 

[18] J. Louval, T. Templier, and T. Boileau. Restlet In Action. Manning 
Press. 2012. 

[19] Hibernate. http://www.hibernate.org. 
[20] PHP Data Objects. http://php.net/manual/en/book.pdo.php. 
[21] Quartz Enterprise Job Scheduler. http://quartz-scheduler.org. 
[22] Mark A. Miller, Wayne Pfeiffer, and Terri Schwartz. 2011. The CIPRES 

science gateway: a community resource for phylogenetic analyses. In 
Proceedings of the 2011 TeraGrid Conference: Extreme Digital 
Discovery (TG '11). ACM, New York, NY, USA, , Article 41 , 8 pages. 
DOI=10.1145/2016741.2016785 
http://doi.acm.org/10.1145/2016741.2016785 

[23] Jo Erskine Hannay, Carolyn MacLeod, Janice Singer, Hans Petter 
Langtangen, Dietmar Pfahl, and Greg Wilson. 2009. How do scientists 
develop and use scientific software?. In Proceedings of the 2009 ICSE 
Workshop on Software Engineering for Computational Science and 
Engineering (SECSE '09). IEEE Computer Society, Washington, DC, 
USA, 1-8.Goecks, J, Nekrutenko, A, Taylor, J and The Galaxy Team. 
Galaxy: a comprehensive approach for supporting accessible, 
reproducible, and transparent computational research in the life 
sciences.Genome Biol. 2010 Aug 25;11(8):R86. 

[24] Rick Cattell, Scalable SQL and NoSQL data stores, ACM SIGMOD 
Record, v.39 n.4, December 2010  [doi>10.1145/1978915.1978919] 

[25] iPlant Foundation API Developer Documentation. 
https://foundation.iplantcollaborative.org/docs. 

[26] OAuth2. http://oauth.net/2/. 
[27] Y. Huang, A. Slominski, C. Herath, and D. Gannon, " WS-Messenger: A 

Web Services based Messaging System for Service-Oriented Grid 
Computing ," 6th IEEE International Symposium on Cluster Computing 
and the Grid (CCGrid06) 

[28] Rabbitmq. http://www.rabbitmq.com/blog/. 
[29] Andrew Lenards, Nirav Merchant, and Dan Stanzione. 2011. Building 

an environment to facilitate discoveries for plant sciences. In 
Proceedings of the 2011 ACM workshop on Gateway computing 
environments (GCE '11). ACM, New York, NY, USA, 51-58. 
DOI=10.1145/2110486.2110494.  

[30] Lushbough, C., Jennewein, D., Brendel, V., (2011), The BioExtract 
Server: a web-based bioinfromatic workflow platform, Nucl. Acids Res, 
vol. 39, iss. W528-W532. 

[31] Easy Terminal Alternative. http://eta-
pub.cgrb.oregonstate.edu/about.php. 

[32] iPlant Foundation API Forums. 
https://foundation.iplantcollaborative.org/forums. 
 

 


