
Adaptive Runtime Systems
meet

Needs of Many Task Computing

Laxmikant (Sanjay) Kale
http://charm.cs.illinois.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign

http://charm.cs.uiuc.edu/

Premise

• Some of the MTAGS community is moving
towards a context where each task is itself a
parallel job

– These tasks interact in potentially complex
work-flow arrangements

– And they must run on cloud/grid environments

• Virtualized OSs

• Latencies

• Performance Heterogeneity: static and dynamic

• Resource availability may vary over time

• Resource needs may vary over time

11/11/2012 Charm and MTAGS 2

Outline

• How adaptive runtime systems within jobs can help
make parallel jobs fit within grid/cloud environment

• ARTS and their place in HPC
• Charm++ model and successes

• Charm++ Features of relevance:

– Task parallelism
– Handling latency, and variation/heterogeneity
– Multi-cluster jobs
– Shrink/expand, faucets project, scheduler, bid
– Interacting with parallel jobs
– Support for replica’s : loosely communicating tightly-

parallel jobs
– Theme: Please experiment with it

11/11/2012 Charm and MTAGS 3

Migratable Objects Execution Model

• Programmer
– Decomposes computation into a large number of

work/data units (WUDUs)

– Grainsize independent of number of processors

• The runtime system
– Assigns these units to processors,

– Changes the assignment at runtime

– Mediates communication between the units

• Message-driven execution model
– Since there are multiple units on each PE

• Programmer’s mental model doesn’t have
“processor” in it

11/11/2012 Charm and MTAGS 4

Object Based Over-decomposition:
Charm++

11/11/2012 Charm and MTAGS 5

User View

System implementation

• Multiple “indexed collections” of C++ objects
• Indices can be multi-dimensional and/or sparse
• Programmer expresses communication between objects

– with no reference to processors

Adaptive Runtime Systems

• Decomposing program into a large number of
WUDUs empowers the RTS, which can:
– Migrate WUDUs at will

– Schedule DEBS at will

– Instrument computation and communication at the
level of these logical units
• WUDU x communicates y bytes to WUDU z every iteration

• SEB A has a high cache miss ratio

– Maintain historical data to track changes in application
behavior
• Historical => previous iterations

• E.g., to trigger load balancing

11/11/2012 Charm and MTAGS 6

Over-decomposition and
message-driven

execution

Migratability

Introspective and
adaptive runtime system

Scalable Tools

Automatic overlap, pefetch,
compositionality

Emulation for
Perf Prediction

Fault Tolerance

Dynamic load balancing
(topology-aware, scalable)

Temperature/power
considerations

11/11/2012 Charm and MTAGS 7

Message-driven execution model

• Adaptive overlap of communication and computation

• A strong principle of prediction for data and code use

– Much stronger than principle of locality

• Can use to scale memory wall:

• Prefetching needed data:

– into scratch pad memories, for example

11/11/2012 Charm and MTAGS 8

Scheduler Scheduler

Message Q Message Q

Impact on communication

• Current use of communication network:

– Compute-communicate cycles in typical MPI apps

– So, the network is used for a fraction of time,

– and is on the critical path

• So, current communication networks are
over-engineered for by necessity

• With overdecomposition

– Communication is spread over an iteration

11/11/2012 Charm and MTAGS 9

Decomposition Independent of numCores

• Rocket simulation example under traditional MPI

• With migratable-objects:

– Benefit: load balance, communication optimizations, modularity

11/11/2012 Charm and MTAGS

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

Solid1

Fluid1

Solid2

Fluid2

Solidn

Fluidm
. . .

Solid3
. . .

10

Charm++ and CSE Applications

11/11/2012 Charm and MTAGS 11

Enabling CS technology of parallel objects and intelligent runtime
systems has led to several CSE collaborative applications

Synergy

Well-known Biophysics
molecular simulations App

Gordon Bell Award, 2002

Computational
Astronomy

Nano-Materials..

ISAM

CharmSimdemics

Stochastic
Optimization

Object Based Over-decomposition:
AMPI

• Each MPI process is implemented as a user-level
thread

• Threads are light-weight and migratable!
– <1 microsecond context switch time, potentially >100k threads per core

• Each thread is embedded in a charm++ object (chare)

Charm and MTAGS

Real Processors

MPI

processes

Virtual

Processors

(user-level

migratable

threads)

11/11/2012 12

A quick Example:
Weather Forecasting in BRAMS

• Brams: Brazilian weather code (based on RAMS)

• AMPI version (Eduardo Rodrigues, with Mendes
and J. Panetta)

11/11/2012 Charm and MTAGS 13

11/11/2012 Charm and MTAGS 14

11/11/2012 Charm and MTAGS 15

Baseline: 64 objects on 64 processors

11/11/2012 Charm and MTAGS 16

Over-decomposition: 1024 objects on 64 processors:

Benefits from communication/computation overlap

11/11/2012 Charm and MTAGS 17

With Load Balancing:

1024 objects on 64 processors

No overdecomp (64 threads) 4988 sec

Overdecomp into 1024 threads 3713 sec

Load balancing (1024 threads) 3367 sec

Saving Cooling Energy

• Easy: increase A/C setting
– But: some cores may get too hot

• Reduce frequency if temperature is high
– Independently for each core or chip

• This creates a load imbalance!
• Migrate objects away from the slowed-down

processors
– Balance load using an existing strategy
– Strategies take speed of processors into account

• Recently implemented in experimental version
– SC 2011 paper

• Several new power/energy-related strategies

11/11/2012 Charm and MTAGS 18

Fault Tolerance in Charm++/AMPI

• Four Approaches:

– Disk-based checkpoint/restart

– In-memory double checkpoint/restart

– Proactive object migration

– Message-logging: scalable fault tolerance

• Common Features:

– Leverages object-migration capabilities

– Based on dynamic runtime capabilities

11/11/2012 Charm and MTAGS 19

In-memory double checkpointing

• Is practical for many apps

– Relatively small footprint at checkpoint time

– Also, you can use non-volatile node-local storage
(e.g. FLASH)

11/11/2012 Charm and MTAGS 20

11/11/2012 Charm and MTAGS 21

Checkpoint time is low: 4 milliseconds for MD,

 essentially, live-data-permutation for any app

11/11/2012 Charm and MTAGS 22

Restart time is low: 150 milliseconds on 64K cores,

 detection time, and re-execution times not included

HPC Challenge Competition

• Conducted at Supercomputing 2011

• 2 parts:
– Class I: machine performance

– Class II: programming model productivity
• Has been typically split in two sub-awards

– We implemented in Charm++
• LU decomposition

• RandomAccess

• LeanMD

• Barnes-Hut

• Finalists in 2011:
– Chapel (Cray), CAF (Rice), and Charm++ (UIUC)

11/11/2012 Charm and MTAGS 23

Strong Scaling on Hopper for
LeanMD

11/11/2012 Charm and MTAGS 24

 1

 10

 100

264 528 1032 2064 4104 8208 16392

T
im

e
 p

e
r

st
e
p
 (

m
s)

Number of cores

Performance on Hopper (125,000 atoms)

No LB
Refine LB

Gemini Interconnect, much less noisy

CharmLU: productivity and
performance

• 1650 lines of source

• 67% of peak on Jaguar

11/11/2012 Charm and MTAGS 25

Barnes-Hut

11/11/2012 Charm and MTAGS 26

High Density Variation with a Plummer distribution of particles

Charm++ interoperates with MPI

Charm++
Control

11/11/2012 Charm and MTAGS 27

Summary of ARTS

• Charm++ is a sophisticated programming
“language”,

• It is supported by a rich adaptive runtime
system, which supports:

– Adaptive overlap of communication/computation

– Parallel composition

– Dynamic load balancing

– Fault tolerance

• Is a production-quality system used by
many apps in routine use by CSE scientists

11/11/2012 Charm and MTAGS 28

So…

• Charm++ is a sophisticated programming
“language”,

• It is supported by a rich adaptive runtime
system, which supports:
– Adaptive overlap of communication/computation

– Parallel composition

– Dynamic load balancing

– Fault tolerance

• Is a production-quality system used by
many apps in routine use by CSE scientists

• How does it help the MTAGS community?

11/11/2012 Charm and MTAGS 29

11/11/2012 Charm and MTAGS 30

Support for Task

Parallelism

Task Parallelism support

• Dynamic creation of chares, supported by a
“seed balancer”, supports

– Master-slave

– Divide-and-conquer

– State-space (combinatorial) search

• One can assign priorities with each task

– And with each response as well

– Supported by a prioritized load balancer

11/11/2012 Charm and MTAGS 31

Some Examples:

Priority is a bit-vector

Finding any feasible solution

While controlling mem. usage

With priorities, search tends proceed in

this fashion,

Leading to very low memory usage: P +D

(P:processors, D: depth)

11/11/2012 Charm and MTAGS 32

Combinatorial Search Examples

• A*, IDA* (memory efficient A*), …

• Branch-and-bound search

• Graph coloring, …

• Game trees

• Parallel logic programming

• All of these have been done well using
Charm++

• To the extent Task parallelism is relevant to
MTAGS, these capabilities are useful

11/11/2012 Charm and MTAGS 33

11/11/2012 Charm and MTAGS 34

Handling Speed

Heterogeneity

Different CPU speeds

• This may happen because
– Static: a cloud/cluster environment has a mix of

nodes with different capabilities

– Dynamic: physical node may be time-shared (with
other VMs, for example)

– Frequency changes in hot spots

• But is easy to handle:
– The RTS measures speeds and balances load

accordingly

– Measures idle time, and can adapt to dynamic loads
• By migrating objects away from time-shared overloaded

nodes

• See http://ppl.cs.illinois.edu/research/cloud

11/11/2012 Charm and MTAGS 35

http://charm.cs.uiuc.edu/research/cloud
http://charm.cs.uiuc.edu/research/cloud
http://charm.cs.uiuc.edu/research/cloud

11/11/2012 Charm and MTAGS 36

Handling Increased or

Variable Latencies

Latencies

• Message-Driven execution mitigates the
impact of latencies

– With multiple objects per PE

– Adaptive and automatic overlap of
communication and computation

• Even more dramatic example:

– Running a single, tightly coupled, application
across geographically separated clusters

– Work from Greg Koenig’s dissertation:

• http://charm.cs.illinois.edu/newPapers/07-
17/paper.pdf

11/11/2012 Charm and MTAGS 37

11/11/2012 Charm and MTAGS
38

Multi-Cluster Co-Scheduling

• Job co-scheduled to run
across two clusters to
provide access to large
numbers of processors

• But cross-cluster
latencies are large

• Virtualization within
Charm++ masks high
inter-cluster latency by
allowing overlap of
communication with
computation

Cluster A Cluster B

Intra-cluster latency

(microseconds)
Inter-cluster latency

(milliseconds)

11/11/2012 Charm and MTAGS 39

Five-Point Stencil Results
(2048x2048 mesh, P=16)

11/11/2012 Charm and MTAGS
40

Multi-Cluster Co-Scheduling

11/11/2012 Charm and MTAGS 41

Live Interaction

with

Parallel Jobs:
The client-server interface and

its uses

Interactive Parallel Jobs

• Need for real-time communication with parallel
applications
– Steering computation
– Visualizing/Analyzing data
– Debugging problems

• Long running applications
– Time consuming to recompile the code (if at all

available)
– Need to wait for application to re-execute

• Communication requirements:
– Fast (low user waiting time), Scalable
– Uniform method of connection

• User controlled workflow

11/11/2012 Charm and MTAGS 42

43 Charm and MTAGS

Charm++ Client-Sever Interface

Python

Module

Python

Module

Python

Module

External

Client
Converse C

lie

nt
 S

e
rv

e
r

1) Send request

4) Send back reply later

2) Execute the request

3) Combine results

Client

Server frontend

Parallel program

11/11/2012

44 Charm and MTAGS

Large Scale Debugging:
Motivations

 Bugs in sequential programs
 Buffer overflow, memory leaks, pointers, …
 More than 50% programming time spent

debugging
 GDB and others

 Bugs in parallel programs
 Race conditions, non-determinism, ...
 Much harder to find

 Effects not only happen later in time, but also on
different processors

 Bugs may appear only on thousands of processors
 Network latencies delaying messages
 Data decomposition algorithm

 TotalView, Allinea DDT

11/11/2012

45 Charm and MTAGS

CharmDebug Overview

CharmDebug Java GUI

(local machine)

Firewall Parallel Application

(remote machine)

CharmDebug

Application

CCS

(Converse Client-Server)

GDB
11/11/2012

11/11/2012 Charm and MTAGS 46

11/11/2012 Charm and MTAGS 47

48 Charm and MTAGS

Online, Interactive Access to
Parallel Performance Data:

Motivations

 Observation of time-varying performance of
long-running applications through streaming

 Re-use of local performance data buffers

 Interactive manipulation of performance data
when parameters are difficult to define a
priori

 Perform data-volume reduction before application
shutdown

 k-clustering parameters (like number of seeds to use)

 Write only one processor per cluster

11/11/2012

Projections: Online Streaming of
Performance Data

• Parallel Application records performance
data on local processor buffers

• Performance data is periodically processed
and collected to a root processor

• Charm++ runtime adaptively co-schedules
the data collection's computation and
messages with the host parallel
application's

• Performance data buffers can now be re-
used

• Remote tool collects data through CCS

11/11/2012 Charm and MTAGS 49

Projections: Online Streaming of
Performance Data

• Parallel Application records performance data
on local processor buffers

• Performance data is periodically processed
and collected to a root processor

• Charm++ runtime adaptively co-schedules

– The data collection's computation and messages

– with the host parallel application’s

• Performance data buffers can now be re-
used

• Remote tool collects data through CCS

11/11/2012 Charm and MTAGS 50

System Overview

51 Charm and MTAGS 11/11/2012

52 Charm and MTAGS

Impact of Online Performance
Data Streaming

Simple Charm++ Parallel Application
(Iterations of Work + Barriers)

Cores Exec Time in seconds
(no Data Collection and Streaming)

Exec Time in seconds
(with Data Collection and Streaming*)

4095 21.44s 21.46s

8191 37.84s 37.71s

* Global Reduction of 8 kilobyte messages from each processor every second.

NAMD 1-million atom simulation (STMV)
Cores 512 1024 2048 4096 8192

Overhead (%) no Data Collection
and Streaming to visualization
client.

0.69% 0.55% -3.44% 1.56% 1.29%

Overhead (%) with Data Collection
and Streaming@

0.30% 0.43% -3.94% 3.47% 6.63%

@ Global Reductions per second of between 3.5 to 11 kilobyte messages from

each processor. The visualization client receives 12 kilobytes/second. 11/11/2012

53 Charm and MTAGS

Online Visualization of Streamed
Performance Data

 Pictures show 10-second snapshots of live NAMD
detailed performance profiles from start-up (left) to the
first major load-balancing phase (right) on 1024 Cray
XT5 processors

 Ssh tunnel between client and compute node through
head-node

System Overview

54 Charm and MTAGS 11/11/2012

55 Charm and MTAGS

Cosmological Data Analysis:
Motivations

 Astronomical simulations/observations
generate huge amount of data

 This data cannot be loaded into a single
machine

 Even if loaded, interaction with user too slow

 Need to parallel analyzer tools capable of
 Scaling well to large number of processors

 Provide flexibility to the user

11/11/2012

56 Charm and MTAGS

Salsa

Collaboration

with Prof.

Quinn,

(U.

Washington)

and Prof.

Lawlor

(U. Alaska)

11/11/2012

57 Charm and MTAGS

LiveViz

 Every piece is represented by a chare

 Under integration in ChaNGa (simulator)

11/11/2012

11/11/2012 Charm and MTAGS 58

Faucets Project

Experience:
Shrink/Expand jobs, with an

adaptive job scheduler

11/11/2012 Charm and MTAGS 59

The Faucets Project

• Motivations
– Increasing trend towards individual organizations

owning their own computational resources
– Computational power is too dispersed and hard to

use
– Workload of most organizations occurs in bursts
– Rigid job scheduling leads to internal fragmentation

of resources

• Objectives
– Support the metaphor of computing power as a

utility
– Make it easier to use remote compute power
– Efficient utilization of individual clusters
– Improve the throughput of jobs in a federation of

clusters

11/11/2012 Charm and MTAGS 60

Aspects of the Faucets Project

• Theme:
– Efficient resource allocation via adaptive

strategies for
• Higher throughput/utilization

• Shorter response times

• Resource Utilization within a cluster
– Leveraging our adaptive run time system

– A new cluster scheduler

• Resource Utilization across clusters
– Meta-scheduling and Market economy

• Supporting a single job on multiple clusters

11/11/2012 Charm and MTAGS 61

Inefficient Utilization within a cluster

Job A

Allocate A !

Job B

8 processors

B Queued Conflict ! 16 Processor
system

Job A

Job B

Current Job Schedulers can lead to low system utilization !

11/11/2012 Charm and MTAGS 62

Adaptive Job Scheduler

• Scheduler can take advantage of the
adaptivity of AMPI and Charm++ jobs

• Improve system utilization and response time

• Scheduling decisions
– Shrink existing jobs when a new job arrives

– Expand jobs to use all processors when a job finishes

• Processor map sent to the job
– Bit vector specifying which processors a job is allowed to

use

• 00011100 (use 3 4 and 5!)

• Handles regular (non-adaptive) jobs

11/11/2012 Charm and MTAGS 63

Two Adaptive Jobs

Job A

A Expands !

Job B

Min_pe = 8
Max_pe= 16

Shrink A Allocate B ! 16 Processor
system

Job A

Job B

B Finishes

Allocate A !

11/11/2012 Charm and MTAGS 64

Shrink/Expand

• Problem: Availability of computing platform may change

• Fitting applications on the platform by object migration

Time per step for the million-row CG solver on a 16-node cluster

Additional 16 nodes available at step 600

11/11/2012 Charm and MTAGS 66

AQS: Adaptive Queuing System

• Multithreaded

• Reliable and robust

• Deployed on multiple Linux clusters at UIUC

• Supports most features of standard queuing
Sys.

• Has the ability to manage adaptive jobs
currently implemented in Charm++ and MPI

• Handles regular (non-adaptive) jobs

• For more details:
http://ppl.cs.illinois.edu/research/faucets

http://charm.cs.uiuc.edu/research/faucets
http://charm.cs.uiuc.edu/research/faucets
http://charm.cs.uiuc.edu/research/faucets
http://charm.cs.uiuc.edu/research/faucets

11/11/2012 Charm and MTAGS 67

Experimental Utilization

11/11/2012 Charm and MTAGS 68

Experimental MRT

11/11/2012 Charm and MTAGS 69

Faucets: Scheduling Across the Grid

• “Central” source of compute power
– Users

– Providers of compute resources

– User account not needed on every resource

• Match users and providers
– Market economy ?

– QoS requirements, contracts and bidding systems

• GUI or web-based interface
– Submission

– monitoring

11/11/2012 Charm and MTAGS 70

Job Monitor

Job

Submission

Cluster

Cluster

Cluster

Faucets

http://ppl.cs.illinois.edu/research/faucets

Parallel systems need to
maximize their efficiency!

http://www.psc.edu/machines/tcs/lemieux.html
http://www.psc.edu/machines/tcs/lemieux.html
http://www.psc.edu/machines/tcs/lemieux.html
http://charm.cs.uiuc.edu/research/faucets
http://charm.cs.uiuc.edu/research/faucets
http://charm.cs.uiuc.edu/research/faucets

11/11/2012 Charm and MTAGS 71

FAUCETS SERVER

GUI
CLIENT

(or)
Web

Browser

CLUSTER
DAEMON

CLUSTER

ADAPTIVE
Q SYSTEM PE PE PE

CLUSTER

System
Overview

11/11/2012 Charm and MTAGS 72

Replica Computations

Replica Methods

• Motivation
– Scientific studies often require multiple runs

• with minor changes in initial conditions: results are
combined to increase accuracy

• Forking alternatives …

• Soft error detection

– But if working on small problem sizes, strong
scaling is not seen – larger systems do not help.

• Solution
– Run RTS supported “replicas” of simulation

– Add code for replicas to enable combining of
results in situ

11/11/2012 Charm and MTAGS 73

Replica in Charm++

• Charm++ RTS divides the allocated processors
into Charm Instances – users can plugin their
partitioning code

• Each instance runs a simulation, and are
unaffected by other instances
– Interact within my instance as before
– No change in existing code

• Asynchronous, non-blocking communication
messages to other instances
– RemoteSend(to_partition, rank_within_partition,

message)

• Examples of usage: Thanks to TCBG/Prof.
Schulten

11/11/2012 Charm and MTAGS 74

ψ

φ

First application of parallel tempering is CHARMM Drude-
oscillator polarizable force field development by Alex MacKerell

(U. Maryland)
Distribution of backbone dihedral angles at different temperatures from

64-replica simulation of Acetyl-(AAQAA)3-amide peptide on Blue Gene/P

Data from Luo & Roux, ANL/UC.

Cold

Hot
11/11/2012 Charm and MTAGS 75

DBP7: Membrane Transporters – First BTRC application of
replica exchange for umbrella sampling on collective variables

Quaternion-based order parameters

from collective variables module

Inward-FacingOutward-Facing

transition of GlpT transporter in explicit

membrane/water environment (not shown)

θ7 θ1

IF

OF

F
re

e
E

n
er

g
y

 (
k
ca

l/
m

o
l)

Reaction Path (θ1+θ7)

12 replicas

θ1

θ7

Efficient Reaction Path Sampling

Inward

Outward

11/11/2012 Charm and MTAGS 76

Usage and Future Work

• To the command line,

– Add +partitions <num_partitions>

– This will create block-division based
num_partitions Charm instances, each with a
unique partition number

• Future work

– Support topology aware partitioning

– Heterogeneous tasks in partitions

– Stretch partitions as needed

11/11/2012 Charm and MTAGS 77

Conclusion

• Adaptive runtime systems have proved
useful in pure HPC settings

• The same adaptivity features, especially
migratability and message-driven
execution, prove useful in multiple-tasks
contexts

• dynamic interactive controllability through
scripting, both external and embedded,
supports rich variety of job types

11/11/2012 Charm and MTAGS 78

