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Abstract—Infrastructure-as-a-Service (laaS) cloud computing consumer-provider organizations such as SPEC and TPC, the
|s_an emerging commercial infrastructure paradigm under which  consumers can eas”y compare products and put pressure on
clients (users) can lease resources when and for how longyhe providers to use best-practices and perhaps lower. costs

needed, under a cost model that reflects the actual usage ofAt th t th f clouds is fragmented ;
resources by the client. For laaS clouds to become mainstream € moment, the use ol clouds IS fragmented across

technology and for current cost models to become more client- many different application areas, such as hosting applica-
friendly, benchmarking and comparing the non-functional system tions, media, games, and web sites, E-commerce, On-Demand
properties of various laaS clouds is important, especially for \Workforce and CRM, high-performance computing, search,

the cloud users. In this article we focus on the laas cloud- onq raw resources for various usage. Each application area

specific elements of benchmarking, from a user’s perspective. &V .
propose a generic approach for laaS cloud benchmarking, discuss has its own (de facto) performance standards that have to be

numerous challenges in developing this approach, and summarize Met by commercial clouds, and some have even developed
our experience towards benchmarking laaS clouds. We argue benchmarks (e.g., BioBench for Bioinformatics and RUBIS
for an experimental approach that requires, among others, for online business).
new techniques for experiment compression, new benchlmarklng For laaS clouds, we conjecture that the probable charac-
methods that go beyond blackbox and isolated-user testing, new, . . .
benchmark designs that are domain-specific, and new metrics for teristics of currgnt and near'fum,re workloads can be defriv
elasticity and variability. from three major trends emerging from the last decade of
Index Terms—Cloud computing, Benchmarking, Distributed grid and large-scale computing. First, individual jobs aosv
Systems, Distributed applications, Performance evaluation, Met- predominantly split into smaller compute or data-inteasiv
rics’/Measurement, Performance measures. tasks (many tasks [5]); there are almost no tightly coupled
parallel jobs. Second, the duration of individual tasks is
diminishing with every year; few tasks are still running for
Infrastructure-as-a-Service (laaS) clouds are becomingloager than one hour and a majority require only a few minutes
rich and active branch of commercial ICT services. Users t§ complete. Third, compute-intensive jobs are split eithe
laaS clouds can provision “processing, storage, netwerkd, into bags-of-tasks (BoTs) or DAG-based workflows, but data-
other fundamental resources” [1] on-demand, that is, whértensive jobs may use a variety of programming models, from
needed, for as long as needed, and paying only for whdapReduce to general dataflow.
is actually consumed. For the past five years, commercialCloud benchmarking is not a straightforward application
laasS clouds such as Amazon's EC2 have gained an increasifigolder benchmarking techniques. In the past, there have
user base, from small and medium businesses [2] to sciéeen several large-scale computing environments that have
tific HPC users [3], [4]. However, the increased adoption afimilarities with clouds. Already decades ago, such insi
clouds and perhaps even the pricing models depend on #s CERN and the IBM T.J. Watson Research Center had
ability of (prospective) cloud users to benchmark and campdarge numbers of mainframes (using virtualization through
commercial cloud services. In this article, we investigéde the Virtual Machine operating system!) that also used multi
laaS cloud-specific elements of benchmarking from the ugenancy across their departments. Similarly, some verithuts
perspective. large-scale installations for paid use by customers thrdRer
An important characteristic of laaS clouds is good perfomote Job Entry facilities. In these environments, benckingr
mance, which needs to be ensured on-demand and sustagwed capacity planning were performed in close collabonatio
when needed over a long period of time. However, as vixetween owners and customers. A big difference, and advan-
have witnessed happening with several other new techreslogiage, for customers wishing to benchmark their prospective
while still in their infancy, notably with grid computing, @ computing environments is that they can simply use access by
believe laaS clouds may also undergo a period of inconsistenedit card to deploy and benchmark their applications & th
performance management. cloud: clouds do not only offer elasticity on demand, thespal
Benchmarking is a traditional approach to verify that theffer (resources for) capacity planning and benchmarking o
performance of a system meets the requirements. When beradmand. The new challenge is that customers will have tq gain
marking results are published, for example through mixdtdrough benchmarking, sufficient trust in the performarice,

I. INTRODUCTION



elasticity, the stability, and the resilience of clouds étyron the TPC-D benchmark [8, Ch.3, Sec.IV]. For this benchmark,
them for the operation of their businesses. As a matter iokisting on the use of SQL has driven the wide acceptance of
fact, they may want to do this both when migrating to ththe ANSI SQL-92; furthermore, the complexity of a majority
cloud, and on a continuous basis to assess the operatiorobthe queries has lead to numerous improvements in the
their applications in the cloud. Thus, of great importange design of aggregate functions and support for them. This
the ability of cloud benchmarks to allow users to gain trustenchmark also led to a wide adoption of the geometric
without requiring long setups and costly operation. mean for aggregating normalized results [14]. The tuning of
We argue in this work for a focused, community-basetthe DAS multi-cluster system has benefited from the bench-
approach to laaS cloud benchmarking in which the main chaharking activity of some of the authors of this article in the
lenges are jointly identified, and best-practice and egpegs mid-2000s [15]; then, our distributed computing benchraark
can be easily shared. Although we have seen in the past fexposed various (fixable) problems of the in-operationesyst
years numerous approaches to benchmarking and performanddse in training: One of the important impediments in the
evaluation of various systems, there is no unified view of treoption of a new technology is the lack of expertise of poten
main challenges facing researchers and practitioners én tial users. Market shortages of qualified personnel in cderpu
field of benchmarking. Our work, which should help withscience are a major cause of concern for the European Union
system procurement and performance management, aimarad the US. Benchmarks, through their open-source natdre an
providing this unified view. In this sense, this work followsepresentation of industry-accepted standards, can sepre
the earlier efforts on benchmarking middleware [6], [7], obest-practices and thus be valuable training material.
benchmarking databases [8], on the performance evaluatiorOn alternatives to benchmarkin@everal alternative meth-
of grid and parallel-system schedulers [9]-[12], and onchen ods have been used for the purposes described earlier in
marking systems in general [13], [14]. Towards this end, otiiis section, among them empirical performance evaluation

main contribution is threefold: simulation, and even mathematical analysis. We view bench-
1) We introduce a generic approach for 1aaS cloud bendfarking as an empirical evaluation of performance that fol-
marking (Section 111). lows a set of accepted procedures and best-practices. Thus,

2) We discuss numerous challenges in developing our aff@ use of empirical performance evaluation is valuable, bu
other approaches for cloud benchmarking (Section IViperhaps without the representativeness of a (de factojatdn
We focus on methodological, system-, workload-, angenchmark. We see a role for (statistical) simulation [16]-
metrics-related issues. [18] and mathematical analysis when the behavior of the

3) We summarize our experience towards benchmarkifgstem is well-understood and for long-running evaluation
laaS clouds (Section V). We summarize two initiative$hat would be impractical otherwise. However, simulatimgvn
of the SPEC Research Group and its Cloud Workingchnology, such as cloud computing, requires careful (and
Group, of which some of the authors are members. \igne-consuming) validation of assumptions and models.
also summarize our experience with building models a

tools that can become useful building blocks for laa
cloud benchmarking. Inspired by canonical texts [8], [13], we review here the

main elements of a benchmarking process. The main re-

Il. A PRIMER ON BENCHMARKING COMPUTERSYSTEMS  quirements of a benchmark—relevance, portability, sckigbi

We review in this section the main reasons for benchmar&nd simplicity—have been discussed extensively in related
ing and the main elements of the typical benchmarking prbterature, for example in [8, Ch.1].
cess, which are basically unchanged since the early 1990s. F The System Under Test (SUT§ the system that is being
more detail, we refer to canonical texts on benchmarking [8yaluated. Awhite box system exposes its full operation,
and performance evaluation [13] of computer systems. whereas #lack boxsystem does not expose operational details

) and is evaluated only through its outputs.

A. Why Benchmarking? The workload is the operational load to which the SUT

Benchmarking computer systems is the process of evaluiat-subjected. Starting from the empirical observation that
ing their performance and other non-functional charasties “20% of the code consumes 80% of the resources”, simple
with the purpose of comparing them with other systems amicrobenchmarkgkernel benchmarkf8, Ch.9]) are simplified
with industry-agreed standards. Traditionally, the maie of or reduced-size codes designed to stress potential system
benchmarking has been to facilitate the informed procuréméottlenecks. Using the methodology of Saavedra et al. [19]
of computer systems through the publication of verifiablend later refinements such as Sharkawi et al. [20], the sesult
results by system vendors and third-parties. However, lbenof microbenchmarks can be combined with application prefile
marking has grown as a support process for several othemprovide credible performance predictions for any platfo
situations, which we review in the following. Syntheticand everreal-world (complex) applicationare also

Use in system design, tuning, and operatiBenchmarking used for benchmarking purposes, as a response to system
has been shown to increase pressure on vendors to desigprovements that make microbenchmarks run fast but do not
better systems, as has been for example the experienceafdéct the performance of much larger codes. For distribute

. Elements of Benchmarking
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Fig. 1. Overview of our generic architecture for laaS cloethd¢hmarking.

and large-scale systems such as laaS claidgle workloads process. To increase the statistical confidence in obtained
comprised of a single application and a (realistic) jobvairi results, subjecting the SUT to a workload may repeated
process represent better the typical system load and have bar the workload may béong-running

used for benchmarking [15Fomplex workloadsthat is, the  After the preparation of the workload, the SUT (component
combined simple workloads of multiple users, possibly witB in Figure 1) is subjected to the workload through the job and
different applications and job characteristics, havetsthto resource management services provided by the testingnsyste
be used in the evaluation of distributed systems [15], [2H; (component 4, which includes components 5-10). In our
see an important role for them in benchmarking. benchmarking architecture, the SUT can be comprised of one
or several self-owned infrastructures, and public andapeiv
laaS clouds. The SUT provides resources for the execution

o } ] ] of the workload; these resources are grouped intdiraial
We propose in this section a generic architecture for 1ag@&source PoolThe results produced during the operation of

cloud benchmarking. Our architecture focuses on condyictifhe system may be used to providdeadback loogrom the
benchmarks as sets of (real-world) experiments that lead\ipy,a| Resource Pool back into the Workload Generator and

results with high statistical confidence, on consideringl ars,,pmitter (component 5); thus, our architecture can implem
evaluating laaS clouds as evolving black-box systems, gRen and closed feedback loops [22].

employing complex. worqua}ds that .represent multi—teqanqy As a last important sequence of process steps, per-

scenarios, on domain-specific scenarios, and on a comtimat,neriment results are combined into higher-level agdesga

of traditional and cloud-specific metrics. first aggregates per workload execution (component 11 in
We introduce in Section IV thg main challenges t'hat neq_qgure 1), then aggregates per benchmark (component 12).

to be addressed for our architecture to be realizable. {p o reporting of metrics should try to avoid the common

Section V-B, we discuss a pe_lrtlal |mplementat|0_n of thls*._mrc pitfalls of performance evaluation: see for example [12B][

tecture that has already achieved good results in pra@ite [ o |arge-scale distributed systems, it is particularlpamant

A. Overview to report not only the basic statistics, but also some of the

tliers, and full distributions or at least the higher gertides

the distribution (95-th, 99-th, etc.). We also enviside t

Ireation of a general database of results collected by ttieen

community and shared freely. The organization and operatio

of such a database is beyond the scope of this article.

IIl. A GENERICARCHITECTURE FOR
IAAS CLOUD BENCHMARKING

Our main design principle is to adapt the proven design?
for benchmarking to laaS clouds at scale. Thus, we desi
an architecture that builds on our GrenchMark framework f
grid benchmarking [15], as presented in Figure 1.

TheBenchmarking Procesonsists of the set of rules, prior
knowledge (invariants), and procedures used to subject ﬂéle
SUT to the benchmark workload, and to collect and report the
results. In our architecture, the process begins with theg us We present in the remainder of this section several of the
(e.g., a prospective laaS cloud user) defining the benchmaliktinguishing features of this architecture.
configuration, that is, the complex workloads that define the In comparison with traditional grid environments, commer-
user’s preferred scenario (component 1 in Figure 1). Tihél laaS clouds do not provide services for managing the
scenario may focus on processing as much of the workloadiasoming stream of requests (components 5, 6, and 8 in
possible during a fixed test period or on processing a fixeligure 1) or the resources leased from the cloud (components
size workload as quickly or cheaply as possible. The bench-and 8). Our architecture supports various policies for pro
marking system converts (component 2) the scenario intd a gisioning and allocation of resources (components 6 and 7,
of workload descriptions, one per (repeated) executiore Thespectively). In contrast to GrenchMark, our generic dtou
workload may be defined before the benchmarking procebgnchmarking architecture also includes support for énglv
or change (in particular, increase) during the benchmgrkiblack-box systems (components 9, 11, and 12), complex

Distinguishing Design Features



workloads and multi-tenancy scenarios (components 1,@, an Reduced benchmark input and application sets can be
5), domain-specific components (component 10), etc. obtained by refining input workloads from real complex
Experiments conducted on large-scale infrastructure ldhoworkloads, using theoretically sound methods (e.g., tedil
be designed to minimize the time spent effectively usingodels and goodness-of-fit tests). Such reduced benchmark i
resources. The interplay between components 1, 2, and 5pists will contrast with traditional synthetic benchmanksijich
Figure 1 can play a non-trivial role in resolving this chatle, incorporate many human-friendly parameter values (el§%6
through automatic selection and refinement of complex tegteries of type A, 90% queries of type B”) and thus may lack
workloads that balance the trade-off between accuracy tboretical guarantees for representativeness.

results and benchmark cost; the main element in a dynamicCha”enge 2. Beyond black-box testing through testing
tuning of this trade-off is the policy present in component 3hort-term dynamics and long-term evolution: Similarly
The same interplay enables multi-tenancy benchmarks. o muilti-cluster grids, which frequently added clusters or
Several of the possible SUTs expose complete or partial gadividual nodes to the distributed infrastructure, cleuate
erational information, acting as white or partially whitexes. continuously extended and tuned by their operators. Maeov
Our architecture allows exploiting this information, cambg commercial clouds such as Amazon EC2 add frequenﬂy new
results from black-box and white-box testing. Moreoveg thfunctionality to their systems. Thus, the benchmarkingiltss
presence of the increasingly higher-level aggregationsn{C obtained at any given time may be unrepresentative for the
ponents 11 and 12 in Figure 1) permits both the long-terfiture behavior of the system. We argue that laaS clouds
evaluation of the system, and the combination of short-tershould not be benchmarked only using traditional black-box
and long-term results. The policy for monitoring and logginand even white-box testing, for which the system under test
in component 8 allows the user to customize what informati@bes not change in size and functionality, but also throuey n
is processed and stored in the results database. We conclyélechmarking methods that evaluate the impact of shart-ter
our architecture goes far beyond simple black-box testing. dynamics and long-term evolution. Specifically, shortrter
Supports domain-specific bechmarks is twofold in our aglynamics characterize system changes occurring over short
chitecture. First, components 5-7 support complex woddoaperiods (at most hours), and long-term evolution charieer
and feedback loops, and policy-based resource and job meyistem changes occurring over long periods (months, years)

agement. Second, we include in our architecture a domain-, straightforward approach to benchmark both short-term

specific component (component 10) that can be useful d8,,mics and long-term evolution is to measure the system un

supporting cloud programming models such as the cOmpuUlgs; et periodically, with judiciously chosen frequesdi26].
intensive workflows and bags-of-tasks, and the data-ilMens, ., eyer, this approach increases the pressure of the so-far
MapReduce and Pregel. The policy element in component dQresolved Challenge 1.

allows this component to play a dynamic, intelligent role in

the benchmarking process. Challenge 3. Impact of middleware:laaS clouds are built

on several layers of middleware, from the guest operating
IV. OPENCHALLENGES IN IAAS CLOUD BENCHMARKING  System of the VM to the data-center resource manager. Each
of these layers adds new complexity to testing and possibly

We introduce in this section an open list of surmountablgso visible or invisible performance bottlenecks. Onetaf t

challenges in laaS cloud benchmarking. key issues in benchmarking laaS clouds is to measure the
_ performance of each layer of the middleware in isolation. We
A. Methodological argue that a solution for this problem may not be possible

Challenge 1. Experiment compressionLong setup times, under the current assumption of black-box testing, andgsep
for example of over a day, and/or long periods of continuodstead to focus on a new methodology that accounts for
evaluation, for example of more than a day per result, reduiFaprecision in the isolation of root causes of performance.
the usefulness of a benchmark for the general user. This is &Ve believe that good steps towards understanding the
general problem with any experimental approach, but fo lagerformance of various middleware layers can be and have
clouds it has the added disadvantage of greatly and visitdiready been taken [7], for example in assessing the imgact o
increasing the cost of benchmarking. We argue that resésarchirtualization, but that more work is needed to reconcike rié
needed to reduce the setup and operational time of bencemantidts (the situation presented in Challenge 2, where laafsl
for laaS clouds. This can be achieved through reduced inmitange over time, may be a source of conflicting experimental
and application sets, a clever setup of the experiments, aedults). We have surveyed in our previous work [26], [27]
sharing of results across the community. We also envisioner ten performance studies that use common benchmarks
the use of combined experimental approaches, in which re-assess the virtualization overhead on computation @}15
world experiments are combined with emulation [24], [25] olfO (10-30%), and HPC kernels (results vary). We have shown
simulation. Our vision for experiment compression repnése in a recent study of four commercial laaS clouds [27] that
an extension of the concept of statistical simulation [{B3}; virtualized resources obtained from public clouds can have
which has been used for computer architecture studiesato renuch lower performance than the theoretical peak, possibly
world experimentation. because of the performance of the middleware layer.



B. System Properties This is similar to the appearance of domain-specific grids,
Challenge 4. Reliability, availability, and related systen such as BioGrid, in the early 2000s; and of domain-specific
properties: One of the factors affecting the behavior of largedatabase-related technology, such as transaction-jsinges
scale systems is the presence of failures, which are liképd data warehousing solutions, in the early 1990s [8,
inevitable at scale. We have found endemic presence oféailuCh-1]. We argue that laaS cloud benchmarking should begin
in many popular large-scale systems, from grids [28] to pNwith domain-specific benchmarks, before transiting to gaine
and other distributed services [29]. Benchmarking relighi Penchmarks.
and related systems properties is difficult, not in the least Toward building domain-specific benchmarks, we argue
because of Challenge 2. for building statistical models of domain-specific or atdea
Challenge 5. Massive scale, multi-site benchmarking: programming model-specific workloads. We have conducted in
One of the main product features of laaS clouds is the prom# Past extensive research in grid workloads [33], withites
of seemingly infinite capacity. We argue that benchmarkirl modeling BoTs [34], and in characterizing scientific anel e
this promise is difficult, very time-consuming, and verytps 9ineering workflows [33]. Several studies [35]-[39)], indilg
We have seen in our previous work that testing tools can B own study of four large MapReduce clusters [40], have
built to test infrastructures of thousands of cores [15]t bfecused on characterizing workloads of MapReduce, which
performance evaluation tools that work at much larger sicaleiS one of the most popular programming models for data
heterogeneous laaS clouds have yet to be proven in pract;é@cessing in the loud. Open challenges in this contexthae t
An important challenge here may be the ability to generai@rmulation of realistic models for workflows, MapReduce,
massive-scale workloads. and other programming models for data processing. We also
We have already had experience with companies buildifi§d that the many-task programming model [5] is worthwhile
hybrid clouds[1] out of their own infrastructure and resource£or investigation in this context. We also refer to a recent s
leased from laaS clouds (this process is also referred @Y Of challenges associated with large-scale log anal¥sis
as cloudbursting for example by Microsoft). Other cloud Challenge 8. Benchmarking performance isolation under
deployment models require the use of multiple sites, fglifferent multi-tenancy models: Unlike traditional system
reliability and vendor lock-in avoidance. We expect melte benchmarking, where interference of different elemeng th
cloud use to increase, as more companies, with or withgdffect performance—multiple users competing for resources
existing computational capacity, try out or even decidege ustressing multiple system resources at the same time—is gen-
cloud services. We argue that benchmarking across multi§ieally avoided, the expected cloud workload is complex. We
sites raises additional challenges, not in the least theoowed ~argue that for laaS clouds interference should be expecied a
availability for testing and scalability of the infrasttuce, and benchmarked. Specific focus for this challenge, as an grtens
the increased cost. of Challenge 8, is to benchmark under a specific multi-
Challenge 6. Performance isolation:The negative effects tenancy model, from the shared-nothing approach of multi-
of the interaction between running jobs in a complex worklogeluster grids, to shared-hardware and shared-virtualineel
have been observed in distributed environments since st |eghine approaches prevalent in today’s commercial cloudls [4
the mid-1990s [30]. Following early work [31], [32], we amyu [43], and possibly others.
that quantifying the level of isolation provided by an Iaa% Metrics
cloud is a new and important challenge. '
Moreover, as laaS clouds become more international, theirChallenge 9. Beyond traditional performance:Traditional
ability to isolate performance may suffer most during pesio performance metrics—such as utilization, throughput, and
of peak activity. Thus, studying the time patterns of perfofakespan—have been defined for statically-sized, homoge-

mance isolation is worthwhile. neous systems. We have raised in our previous work [12]
the challenge of adapting these metrics for distributed on-
C. Workload demand systems, such as the contemporary multi-clus@s gri

Challenge 7. Statistical models of workloads or of system and commercial 1aaS clouds. laaS clouds raise new chalienge
performance: Statistical workload modeling is the generain defining cloud-related metrics, such as elasticity [445)].
technique of producing synthetic models from workloaddsac We also argue for revisiting the analysis of results and thei
collected from real-world systems that are statisticaltyiler refinement into metrics. For example, due to their change
to the real-world traces. We argue that building such stedils over time and imperfect performance isolation, laaS clouds
models raises important challenges, from data collectmn thay require revisiting the concept of variability, way bayo
trace processing, from finding good models to testing tlike traditional mean (or median) and standard deviatiorr. Ou
validity of the models. We also see as an open challenge treliminary work [26] on the variability of performance in
derivation of statistical performance models, perhapsufn laaS and other types of clouds indicates that variability ca
linear regression, from already existing measurements. be high and may vary with time.

We envision that laaS clouds will also be built for specific, Traditionally, system warm-up is excluded from perfor-
even niche application domains, charging premium rates fmance evaluation, leaving only the steady-state periodhef t
the expertise required to run specific classes of applicatiosystem for study. However, especially for hybrid and other



multi-site cloud architectures, we argue for the need to albenchmarking [48]. SkyMark already implements two of the
measure the transitional period that occurs when a signfficalistinguishing features of our architecture (see SectibB)L
fraction of the system resources are in the process of beilrigst, SkyMark provide services for managing the incoming
leased or released. stream of requests (jobs) and the resources leased from the
Challenge 10. The cost issueAlthough cost models were cloud [21]. For the former, SkyMark provides single or multi
discussed in benchmarking and performance evaluation p¥é¢ job queues, depending on the configuration of the experi-
both databases and grids, a variety of issues have not bemmt, and each queue supports a variety of simple scheduling
addressed. Specifically, the sub-leasing cost model usedpaoiicies (e.g., FCFS). For the latter, SkyMark supportessv
today’s commercial laaS clouds (e.g., Amazon’s “spot” irstatic and dynamic resource provisioning policies.
stances) provides a new focus. It is also unclear how to definéSecond, SkyMark supports complex workloa@héllenge
costs for a hybrid cloud infrastructure, especially whea th7). Workloads are split into units. Each unit is defined by
performance of the cloud does not match the expectation [2#e characteristic resource to be stressed (e.g., throfyh C
[46]. Last but not least, it is unclear how to define the sourdetensive jobs), the job arrival pattern (one of uniforngrieas-
of budgets, for example either infrastructural or operalo ing, and bursty), and the job durations. SkyMark is able afor
funds, a situation which affects a variety of economic nestri given target configuration, to generate workloads that tead

Early approaches exist [3], [4]. a user-specified average utilization in the absence of myste
V. EXPERIENCE TOWARDSIAAS CLOUD BENCHMARKING overheads.

' Using SkyMark, we were able [21] to benchmark three
A. Methodology: the SPEC Cloud Working Group laaS clouds, including Amazon EC2. We have used in out

The SPEC Research GroufRG) is a new group within benchmarks six provisioning policies and three allocation
the Standard Performance Evaluation Corporation (SPE@¥plicies, with provisioning and allocation policies caesied
Among other activities, the SPEC RG facilitates the integither independently or together. We were also able [48] to
action between academia and industry by co-organizing teealuate, for our OpenNebula private clouds, the interfege
Joint ACM/SPEC International Conference on Performanegcurring in various multi-tenancy scenarigsh@llenge §.
Engineering (ICPE). The Cloud Working GroupCWG) is

a branch of the SPEC RG that aims to develop the metho%‘- Real-World Evaluation of laaS Cloud Performance

ological aspects of cloud benchmarkingh@llenges 1-3in Several of the challenges we formulated in Section IV
Section V). In this section we summarize two initiatives ofire the outcome of our previous research conducted from
the SPEC RG and CWG. the past three years in benchmarking and understanding the

Beyond traditional performanceTraditional performance performance of several cloud infrastructures. We sumraariz
metrics such as utilization and normalized schedule lefjth in the following some of our main results that motivated this
have been defined for statically sized systems. Redefiniglgssification.
these metrics for dynamic systems, especially in the coofex ~Challenge 2:We have observed the long-term evolution in
black-box resources leased from clouds, is a topic of isterg@erformance of clouds since 2007. Then, the acquisition of
for the CWG Challenges 5 and § Beyond performance, the one EC2 cloud resource took an average time of 50 seconds,
CWG is also interested in other non-functional metrics, suémnd constantly increased to 64 seconds in 2008 and 78 seconds
as elasticity, utility, performance isolation, and depaitity in 2009. The EU S3 service shows pronounced daily patterns
(Challenges 4, 9, and 1p with lower transfer rates during night hours (7PM to 2AM),

Reproducibility of experiments{orthogonal to our chal- while the US S3 service exhibits a yearly pattern with lowest
lenges) Being able to reproduce experimental resultstisalri mean performance during the months January, September,
for the validity and lifetime of obtained results. Howeverand October. Other services have occasional decreases in
this goal is difficult to achieve when the system under test performance, such as SDB in March 2009, which later steadily
complex, dynamic, or large-scale; laaS clouds have allethggcovered until December [26]. Finally, EC2 spot prices-typ
characteristics. A recent initiative of the RG is to build #ally follow a long-term step function [49].
repository that can be used to share experimental results,Challenge 3:Depending on the provider and its middleware
setups, and other meta-data. Moreover, the call for pap@Rstraction, several cloud overheads and performancecsetr
issued by ICPE 2013 includes a focus on reproducibility ¢fin have different interpretation and meaning. In laaSdspu
experiments. resource acquisition is typically the sum of the instadiati

_ time and boot times, and for Amazon EC2 has a stable value
B. SkyMark: A Framework for laaS Cloud Benchmarking i, the order of minutes [27]. Other laaS providers, such as
We have recently implemented a part of the architectu®oGrid, behave similarly to grids and offer highly variable
described in Section Il as our SkyMark tool for laaS clougesource acquisition times, i.e., one order magnitude erigh
than EC2. In contrast, the Google App Engine (GAE), which
2http:/Iresearch.spec.org/working-groups/rg-cloudkiva-group.html offers a hlgher_lev,el PaaS abstractlop, defines the atquisi
3ICPE Organizers, Reproducibility repository approveth#icpe2013.ipd. Overhead as the time between the issue of a HTTP request
kit.edu/news/singleview/article/reproducibility-repository-approved!. until the HTTP response is returned; the overhead of GAE

Ihttp://research.spec.org/



is in the order of seconds [50], an order of magnitude lowstatistically MapReduce workloads, starting from fourcés

than for EC2. The performance interpretations and diffeesn of large clusters, including Google’s [40].

can have similarly high variations depending on the middle- ) .

ware. The black-box execution approach in laaS clouds %f Open Data: Several Useful Archives

externa”y_comp”ed software encapsu|ated in VMs gemrat ChaIIenge 7: Workload and Operational trace archives are

high degradations from the expected peak performance, ugatb important tool in developing benchmarks. Although laaS

six to eight times lower than the theoretical maximum of Amatlouds are new, several online archives could already geovi

zon's “Elastic Compute Unit” (ECU, 4.4 GOPS) [27]. Paralleinteresting data.

computing-wise, the performance of today’s laa$S is belasv th General workload traces for parallel systems and multi-

theoretical peak of today’s dedicated parallel supercaerpu cluster grid are provided by the Parallel Workloads

even for demanding conveniently parallel applications By 6Archive [51] and the Grid Workloads Archive [52], respec-

70%. Furthermore, benchmarking the sustained performart#@ly. For an example of domain-specific workload traces,

of other infrastructures such as GAE is almost prohibitdfe Game Trace Archive [53] publishes data representative f

by the sandboxed environment that completely hides tR&line gaming.

underlying hardware on which the instance is started with noFor operational traces, the Failure Trace Archive [29] and

user control, raising the need f@hallenge 6[50]. the P2P Trace Archive [54] provide operational information
Challenge 4:With respect to reliability, the payment modelgabout general and domain-specific (peer-to-peer) disttbu

and compensations in case of resource failures make cloud®/atems.

more promising platform than traditional distributed syss,

especially grids. Interesting from the reliability point\dew he i ¢ | hmarking h
are the EC2 spot instances that allow customers to bid on' N€ Importance of laaS cloud benchmarking has grown

unused capacity and run those instances for as long as tigPortionally to the increased adoption of this technglog
bid exceeds the current spot price. Our analysis on this rigko™ small and medium businesses to scientific HPC users. In
reward problem between January 2011 and February ofPtrast to the fragmented field of today, we argue in t.h's
demonstrates that spot instances may represent a cheapeWBﬂkh,for: ?1 more focqsed apPrF’a‘?h t‘? Iaas .benchhmark_mg,
still reliable solution offering up to 99% availability proled " WNIC the community can join into identifying the main

that users make slightly generous bids, such as $0.35 p&allenges, and then share best-pract'ices and gxper.iences
mL. | ar ge instances [49]. Such an approach would greatly benefit (prospective) cloud

Challenge 9:Regarding the importance of system warmuﬂfsers with system procur_ement and performance management.
an interesting case is the modern just-in-time (JIT) coaapil We propose a generic approach for 1aaS cloud bench-

tions of Java application running on GAE infrastructure athi marking, in which resource and job management can be

can boost the performance of interpreted Java byte code b |r8v|i(ded by the tes;ing irr:frastructu.rel, there is sup;l)on fo
factor of four in a predictable manner (from the third reque&!ack-box systems that change rapidly and can evolve over
onwards in case of GAE) [50]. time, where tests are conducted with complex workloads, and

hwhere various multi-tenancy scenarios can be investigated
We also discuss four classes of challenges in developisg thi

VI. CONCLUSION

Challenge 10:The variety of cost models combined wit

performance variability makes the cloud provider selec@éo b hodoloaical lated. loadk
difficult problem for the cloud user. For example, our anmysapproac - met odological, system property-r.e ated, loa .
rﬁlated, and metric-related. Last, we summarize our egpee

in [50] shows that computing costs are lower on GAE tha 4s benchmarking laasS cloud
in EC2 for very short jobs, mostly due to the cycle-baset((fWar S benchmarking faas clouds.
payment granularity, as opposed to the hourly billing ivets ACKNOWLEDGMENT
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