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Abstract—Infrastructure-as-a-Service (IaaS) cloud computing
is an emerging commercial infrastructure paradigm under which
clients (users) can lease resources when and for how long
needed, under a cost model that reflects the actual usage of
resources by the client. For IaaS clouds to become mainstream
technology and for current cost models to become more client-
friendly, benchmarking and comparing the non-functional system
properties of various IaaS clouds is important, especially for
the cloud users. In this article we focus on the IaaS cloud-
specific elements of benchmarking, from a user’s perspective. We
propose a generic approach for IaaS cloud benchmarking, discuss
numerous challenges in developing this approach, and summarize
our experience towards benchmarking IaaS clouds. We argue
for an experimental approach that requires, among others,
new techniques for experiment compression, new benchmarking
methods that go beyond blackbox and isolated-user testing, new
benchmark designs that are domain-specific, and new metrics for
elasticity and variability.

Index Terms—Cloud computing, Benchmarking, Distributed
Systems, Distributed applications, Performance evaluation, Met-
rics/Measurement, Performance measures.

I. I NTRODUCTION

Infrastructure-as-a-Service (IaaS) clouds are becoming a
rich and active branch of commercial ICT services. Users of
IaaS clouds can provision “processing, storage, networks,and
other fundamental resources” [1] on-demand, that is, when
needed, for as long as needed, and paying only for what
is actually consumed. For the past five years, commercial
IaaS clouds such as Amazon’s EC2 have gained an increasing
user base, from small and medium businesses [2] to scien-
tific HPC users [3], [4]. However, the increased adoption of
clouds and perhaps even the pricing models depend on the
ability of (prospective) cloud users to benchmark and compare
commercial cloud services. In this article, we investigatethe
IaaS cloud-specific elements of benchmarking from the user
perspective.

An important characteristic of IaaS clouds is good perfor-
mance, which needs to be ensured on-demand and sustained
when needed over a long period of time. However, as we
have witnessed happening with several other new technologies
while still in their infancy, notably with grid computing, we
believe IaaS clouds may also undergo a period of inconsistent
performance management.

Benchmarking is a traditional approach to verify that the
performance of a system meets the requirements. When bench-
marking results are published, for example through mixed

consumer-provider organizations such as SPEC and TPC, the
consumers can easily compare products and put pressure on
the providers to use best-practices and perhaps lower costs.
At the moment, the use of clouds is fragmented across
many different application areas, such as hosting applica-
tions, media, games, and web sites, E-commerce, On-Demand
Workforce and CRM, high-performance computing, search,
and raw resources for various usage. Each application area
has its own (de facto) performance standards that have to be
met by commercial clouds, and some have even developed
benchmarks (e.g., BioBench for Bioinformatics and RUBiS
for online business).

For IaaS clouds, we conjecture that the probable charac-
teristics of current and near-future workloads can be derived
from three major trends emerging from the last decade of
grid and large-scale computing. First, individual jobs arenow
predominantly split into smaller compute or data-intensive
tasks (many tasks [5]); there are almost no tightly coupled
parallel jobs. Second, the duration of individual tasks is
diminishing with every year; few tasks are still running for
longer than one hour and a majority require only a few minutes
to complete. Third, compute-intensive jobs are split either
into bags-of-tasks (BoTs) or DAG-based workflows, but data-
intensive jobs may use a variety of programming models, from
MapReduce to general dataflow.

Cloud benchmarking is not a straightforward application
of older benchmarking techniques. In the past, there have
been several large-scale computing environments that have
similarities with clouds. Already decades ago, such institutes
as CERN and the IBM T.J. Watson Research Center had
large numbers of mainframes (using virtualization through
the Virtual Machine operating system!) that also used multi-
tenancy across their departments. Similarly, some vendorshad
large-scale installations for paid use by customers through Re-
mote Job Entry facilities. In these environments, benchmarking
and capacity planning were performed in close collaboration
between owners and customers. A big difference, and advan-
tage, for customers wishing to benchmark their prospective
computing environments is that they can simply use access by
credit card to deploy and benchmark their applications in the
cloud: clouds do not only offer elasticity on demand, they also
offer (resources for) capacity planning and benchmarking on
demand. The new challenge is that customers will have to gain,
through benchmarking, sufficient trust in the performance,the



elasticity, the stability, and the resilience of clouds to rely on
them for the operation of their businesses. As a matter of
fact, they may want to do this both when migrating to the
cloud, and on a continuous basis to assess the operation of
their applications in the cloud. Thus, of great importance is
the ability of cloud benchmarks to allow users to gain trust
without requiring long setups and costly operation.

We argue in this work for a focused, community-based
approach to IaaS cloud benchmarking in which the main chal-
lenges are jointly identified, and best-practice and experiences
can be easily shared. Although we have seen in the past few
years numerous approaches to benchmarking and performance
evaluation of various systems, there is no unified view of the
main challenges facing researchers and practitioners in the
field of benchmarking. Our work, which should help with
system procurement and performance management, aims at
providing this unified view. In this sense, this work follows
the earlier efforts on benchmarking middleware [6], [7], on
benchmarking databases [8], on the performance evaluation
of grid and parallel-system schedulers [9]–[12], and on bench-
marking systems in general [13], [14]. Towards this end, our
main contribution is threefold:

1) We introduce a generic approach for IaaS cloud bench-
marking (Section III).

2) We discuss numerous challenges in developing our and
other approaches for cloud benchmarking (Section IV).
We focus on methodological, system-, workload-, and
metrics-related issues.

3) We summarize our experience towards benchmarking
IaaS clouds (Section V). We summarize two initiatives
of the SPEC Research Group and its Cloud Working
Group, of which some of the authors are members. We
also summarize our experience with building models and
tools that can become useful building blocks for IaaS
cloud benchmarking.

II. A PRIMER ON BENCHMARKING COMPUTERSYSTEMS

We review in this section the main reasons for benchmark-
ing and the main elements of the typical benchmarking pro-
cess, which are basically unchanged since the early 1990s. For
more detail, we refer to canonical texts on benchmarking [8]
and performance evaluation [13] of computer systems.

A. Why Benchmarking?

Benchmarking computer systems is the process of evaluat-
ing their performance and other non-functional characteristics
with the purpose of comparing them with other systems or
with industry-agreed standards. Traditionally, the main use of
benchmarking has been to facilitate the informed procurement
of computer systems through the publication of verifiable
results by system vendors and third-parties. However, bench-
marking has grown as a support process for several other
situations, which we review in the following.

Use in system design, tuning, and operation:Benchmarking
has been shown to increase pressure on vendors to design
better systems, as has been for example the experience of

the TPC-D benchmark [8, Ch.3, Sec.IV]. For this benchmark,
insisting on the use of SQL has driven the wide acceptance of
the ANSI SQL-92; furthermore, the complexity of a majority
of the queries has lead to numerous improvements in the
design of aggregate functions and support for them. This
benchmark also led to a wide adoption of the geometric
mean for aggregating normalized results [14]. The tuning of
the DAS multi-cluster system has benefited from the bench-
marking activity of some of the authors of this article in the
mid-2000s [15]; then, our distributed computing benchmarks
exposed various (fixable) problems of the in-operation system.

Use in training: One of the important impediments in the
adoption of a new technology is the lack of expertise of poten-
tial users. Market shortages of qualified personnel in computer
science are a major cause of concern for the European Union
and the US. Benchmarks, through their open-source nature and
representation of industry-accepted standards, can represent
best-practices and thus be valuable training material.

On alternatives to benchmarking:Several alternative meth-
ods have been used for the purposes described earlier in
this section, among them empirical performance evaluation,
simulation, and even mathematical analysis. We view bench-
marking as an empirical evaluation of performance that fol-
lows a set of accepted procedures and best-practices. Thus,
the use of empirical performance evaluation is valuable, but
perhaps without the representativeness of a (de facto) standard
benchmark. We see a role for (statistical) simulation [16]–
[18] and mathematical analysis when the behavior of the
system is well-understood and for long-running evaluations
that would be impractical otherwise. However, simulating new
technology, such as cloud computing, requires careful (and
time-consuming) validation of assumptions and models.

B. Elements of Benchmarking

Inspired by canonical texts [8], [13], we review here the
main elements of a benchmarking process. The main re-
quirements of a benchmark—relevance, portability, scalability,
and simplicity—have been discussed extensively in related
literature, for example in [8, Ch.1].

The System Under Test (SUT)is the system that is being
evaluated. Awhite box system exposes its full operation,
whereas ablack boxsystem does not expose operational details
and is evaluated only through its outputs.

The workload is the operational load to which the SUT
is subjected. Starting from the empirical observation that
“20% of the code consumes 80% of the resources”, simple
microbenchmarks(kernel benchmarks[8, Ch.9]) are simplified
or reduced-size codes designed to stress potential system
bottlenecks. Using the methodology of Saavedra et al. [19]
and later refinements such as Sharkawi et al. [20], the results
of microbenchmarks can be combined with application profiles
to provide credible performance predictions for any platform.
Syntheticand evenreal-world (complex) applicationsare also
used for benchmarking purposes, as a response to system
improvements that make microbenchmarks run fast but do not
affect the performance of much larger codes. For distributed
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Fig. 1. Overview of our generic architecture for IaaS cloud benchmarking.

and large-scale systems such as IaaS clouds,simple workloads
comprised of a single application and a (realistic) job arrival
process represent better the typical system load and have been
used for benchmarking [15].Complex workloads, that is, the
combined simple workloads of multiple users, possibly with
different applications and job characteristics, have started to
be used in the evaluation of distributed systems [15], [21];we
see an important role for them in benchmarking.

III. A G ENERIC ARCHITECTURE FOR

IAA S CLOUD BENCHMARKING

We propose in this section a generic architecture for IaaS
cloud benchmarking. Our architecture focuses on conducting
benchmarks as sets of (real-world) experiments that lead to
results with high statistical confidence, on considering and
evaluating IaaS clouds as evolving black-box systems, on
employing complex workloads that represent multi-tenancy
scenarios, on domain-specific scenarios, and on a combination
of traditional and cloud-specific metrics.

We introduce in Section IV the main challenges that need
to be addressed for our architecture to be realizable. In
Section V-B, we discuss a partial implementation of this archi-
tecture that has already achieved good results in practice [21].

A. Overview

Our main design principle is to adapt the proven designs
for benchmarking to IaaS clouds at scale. Thus, we design
an architecture that builds on our GrenchMark framework for
grid benchmarking [15], as presented in Figure 1.

TheBenchmarking Processconsists of the set of rules, prior
knowledge (invariants), and procedures used to subject the
SUT to the benchmark workload, and to collect and report the
results. In our architecture, the process begins with the user
(e.g., a prospective IaaS cloud user) defining the benchmark
configuration, that is, the complex workloads that define the
user’s preferred scenario (component 1 in Figure 1). The
scenario may focus on processing as much of the workload as
possible during a fixed test period or on processing a fixed-
size workload as quickly or cheaply as possible. The bench-
marking system converts (component 2) the scenario into a set
of workload descriptions, one per (repeated) execution. The
workload may be defined before the benchmarking process,
or change (in particular, increase) during the benchmarking

process. To increase the statistical confidence in obtained
results, subjecting the SUT to a workload may berepeated
or the workload may belong-running.

After the preparation of the workload, the SUT (component
3 in Figure 1) is subjected to the workload through the job and
resource management services provided by the testing system
(component 4, which includes components 5–10). In our
benchmarking architecture, the SUT can be comprised of one
or several self-owned infrastructures, and public and private
IaaS clouds. The SUT provides resources for the execution
of the workload; these resources are grouped into aVirtual
Resource Pool. The results produced during the operation of
the system may be used to provide afeedback loopfrom the
Virtual Resource Pool back into the Workload Generator and
Submitter (component 5); thus, our architecture can implement
open and closed feedback loops [22].

As a last important sequence of process steps, per-
experiment results are combined into higher-level aggregates,
first aggregates per workload execution (component 11 in
Figure 1), then aggregates per benchmark (component 12).
The reporting of metrics should try to avoid the common
pitfalls of performance evaluation; see for example [14], [23].
For large-scale distributed systems, it is particularly important
to report not only the basic statistics, but also some of the
outliers, and full distributions or at least the higher percentiles
of the distribution (95-th, 99-th, etc.). We also envision the
creation of a general database of results collected by the entire
community and shared freely. The organization and operation
of such a database is beyond the scope of this article.

B. Distinguishing Design Features

We present in the remainder of this section several of the
distinguishing features of this architecture.

In comparison with traditional grid environments, commer-
cial IaaS clouds do not provide services for managing the
incoming stream of requests (components 5, 6, and 8 in
Figure 1) or the resources leased from the cloud (components
7 and 8). Our architecture supports various policies for pro-
visioning and allocation of resources (components 6 and 7,
respectively). In contrast to GrenchMark, our generic cloud-
benchmarking architecture also includes support for evolving
black-box systems (components 9, 11, and 12), complex



workloads and multi-tenancy scenarios (components 1, 2, and
5), domain-specific components (component 10), etc.

Experiments conducted on large-scale infrastructure should
be designed to minimize the time spent effectively using
resources. The interplay between components 1, 2, and 5 in
Figure 1 can play a non-trivial role in resolving this challenge,
through automatic selection and refinement of complex test
workloads that balance the trade-off between accuracy of
results and benchmark cost; the main element in a dynamic
tuning of this trade-off is the policy present in component 5.
The same interplay enables multi-tenancy benchmarks.

Several of the possible SUTs expose complete or partial op-
erational information, acting as white or partially white boxes.
Our architecture allows exploiting this information, combining
results from black-box and white-box testing. Moreover, the
presence of the increasingly higher-level aggregations (com-
ponents 11 and 12 in Figure 1) permits both the long-term
evaluation of the system, and the combination of short-term
and long-term results. The policy for monitoring and logging
in component 8 allows the user to customize what information
is processed and stored in the results database. We conclude
our architecture goes far beyond simple black-box testing.

Supports domain-specific bechmarks is twofold in our ar-
chitecture. First, components 5–7 support complex workloads
and feedback loops, and policy-based resource and job man-
agement. Second, we include in our architecture a domain-
specific component (component 10) that can be useful in
supporting cloud programming models such as the compute-
intensive workflows and bags-of-tasks, and the data-intensive
MapReduce and Pregel. The policy element in component 10
allows this component to play a dynamic, intelligent role in
the benchmarking process.

IV. OPEN CHALLENGES IN IAA S CLOUD BENCHMARKING

We introduce in this section an open list of surmountable
challenges in IaaS cloud benchmarking.

A. Methodological

Challenge 1. Experiment compression:Long setup times,
for example of over a day, and/or long periods of continuous
evaluation, for example of more than a day per result, reduce
the usefulness of a benchmark for the general user. This is a
general problem with any experimental approach, but for IaaS
clouds it has the added disadvantage of greatly and visibly
increasing the cost of benchmarking. We argue that researchis
needed to reduce the setup and operational time of benchmarks
for IaaS clouds. This can be achieved through reduced input
and application sets, a clever setup of the experiments, and
sharing of results across the community. We also envision
the use of combined experimental approaches, in which real-
world experiments are combined with emulation [24], [25] or
simulation. Our vision for experiment compression represents
an extension of the concept of statistical simulation [16]–[18],
which has been used for computer architecture studies, to real-
world experimentation.

Reduced benchmark input and application sets can be
obtained by refining input workloads from real complex
workloads, using theoretically sound methods (e.g., statistical
models and goodness-of-fit tests). Such reduced benchmark in-
puts will contrast with traditional synthetic benchmarks,which
incorporate many human-friendly parameter values (e.g., “10%
queries of type A, 90% queries of type B”) and thus may lack
theoretical guarantees for representativeness.

Challenge 2. Beyond black-box testing through testing
short-term dynamics and long-term evolution: Similarly
to multi-cluster grids, which frequently added clusters or
individual nodes to the distributed infrastructure, clouds are
continuously extended and tuned by their operators. Moreover,
commercial clouds such as Amazon EC2 add frequently new
functionality to their systems. Thus, the benchmarking results
obtained at any given time may be unrepresentative for the
future behavior of the system. We argue that IaaS clouds
should not be benchmarked only using traditional black-box
and even white-box testing, for which the system under test
does not change in size and functionality, but also through new
benchmarking methods that evaluate the impact of short-term
dynamics and long-term evolution. Specifically, short-term
dynamics characterize system changes occurring over short
periods (at most hours), and long-term evolution characterizes
system changes occurring over long periods (months, years).

A straightforward approach to benchmark both short-term
dynamics and long-term evolution is to measure the system un-
der test periodically, with judiciously chosen frequencies [26].
However, this approach increases the pressure of the so-far
unresolved Challenge 1.

Challenge 3. Impact of middleware:IaaS clouds are built
on several layers of middleware, from the guest operating
system of the VM to the data-center resource manager. Each
of these layers adds new complexity to testing and possibly
also visible or invisible performance bottlenecks. One of the
key issues in benchmarking IaaS clouds is to measure the
performance of each layer of the middleware in isolation. We
argue that a solution for this problem may not be possible
under the current assumption of black-box testing, and propose
instead to focus on a new methodology that accounts for
imprecision in the isolation of root causes of performance.

We believe that good steps towards understanding the
performance of various middleware layers can be and have
already been taken [7], for example in assessing the impact of
virtualization, but that more work is needed to reconcile the re-
sults (the situation presented in Challenge 2, where IaaS clouds
change over time, may be a source of conflicting experimental
results). We have surveyed in our previous work [26], [27]
over ten performance studies that use common benchmarks
to assess the virtualization overhead on computation (5–15%),
I/O (10–30%), and HPC kernels (results vary). We have shown
in a recent study of four commercial IaaS clouds [27] that
virtualized resources obtained from public clouds can havea
much lower performance than the theoretical peak, possibly
because of the performance of the middleware layer.



B. System Properties

Challenge 4. Reliability, availability, and related system
properties: One of the factors affecting the behavior of large-
scale systems is the presence of failures, which are likely
inevitable at scale. We have found endemic presence of failures
in many popular large-scale systems, from grids [28] to DNS
and other distributed services [29]. Benchmarking reliability
and related systems properties is difficult, not in the least
because of Challenge 2.

Challenge 5. Massive scale, multi-site benchmarking:
One of the main product features of IaaS clouds is the promise
of seemingly infinite capacity. We argue that benchmarking
this promise is difficult, very time-consuming, and very costly.
We have seen in our previous work that testing tools can be
built to test infrastructures of thousands of cores [15], but
performance evaluation tools that work at much larger scalein
heterogeneous IaaS clouds have yet to be proven in practice.
An important challenge here may be the ability to generate
massive-scale workloads.

We have already had experience with companies building
hybrid clouds[1] out of their own infrastructure and resources
leased from IaaS clouds (this process is also referred to
as cloudbursting, for example by Microsoft). Other cloud
deployment models require the use of multiple sites, for
reliability and vendor lock-in avoidance. We expect multi-site
cloud use to increase, as more companies, with or without
existing computational capacity, try out or even decide to use
cloud services. We argue that benchmarking across multiple
sites raises additional challenges, not in the least the combined
availability for testing and scalability of the infrastructure, and
the increased cost.

Challenge 6. Performance isolation:The negative effects
of the interaction between running jobs in a complex workload
have been observed in distributed environments since at least
the mid-1990s [30]. Following early work [31], [32], we argue
that quantifying the level of isolation provided by an IaaS
cloud is a new and important challenge.

Moreover, as IaaS clouds become more international, their
ability to isolate performance may suffer most during periods
of peak activity. Thus, studying the time patterns of perfor-
mance isolation is worthwhile.

C. Workload

Challenge 7. Statistical models of workloads or of system
performance: Statistical workload modeling is the general
technique of producing synthetic models from workload traces
collected from real-world systems that are statistically similar
to the real-world traces. We argue that building such statistical
models raises important challenges, from data collection to
trace processing, from finding good models to testing the
validity of the models. We also see as an open challenge the
derivation of statistical performance models, perhaps through
linear regression, from already existing measurements.

We envision that IaaS clouds will also be built for specific,
even niche application domains, charging premium rates for
the expertise required to run specific classes of applications.

This is similar to the appearance of domain-specific grids,
such as BioGrid, in the early 2000s; and of domain-specific
database-related technology, such as transaction-processing
and data warehousing solutions, in the early 1990s [8,
Ch.1]. We argue that IaaS cloud benchmarking should begin
with domain-specific benchmarks, before transiting to general
benchmarks.

Toward building domain-specific benchmarks, we argue
for building statistical models of domain-specific or at least
programming model-specific workloads. We have conducted in
the past extensive research in grid workloads [33], with results
in modeling BoTs [34], and in characterizing scientific and en-
gineering workflows [33]. Several studies [35]–[39], including
our own study of four large MapReduce clusters [40], have
focused on characterizing workloads of MapReduce, which
is one of the most popular programming models for data
processing in the loud. Open challenges in this context are the
formulation of realistic models for workflows, MapReduce,
and other programming models for data processing. We also
find that the many-task programming model [5] is worthwhile
for investigation in this context. We also refer to a recent sur-
vey of challenges associated with large-scale log analysis[41].

Challenge 8. Benchmarking performance isolation under
different multi-tenancy models: Unlike traditional system
benchmarking, where interference of different elements that
affect performance—multiple users competing for resources,
stressing multiple system resources at the same time—is gen-
erally avoided, the expected cloud workload is complex. We
argue that for IaaS clouds interference should be expected and
benchmarked. Specific focus for this challenge, as an extension
of Challenge 8, is to benchmark under a specific multi-
tenancy model, from the shared-nothing approach of multi-
cluster grids, to shared-hardware and shared-virtualizedma-
chine approaches prevalent in today’s commercial clouds [42],
[43], and possibly others.

D. Metrics

Challenge 9. Beyond traditional performance:Traditional
performance metrics—such as utilization, throughput, and
makespan—have been defined for statically-sized, homoge-
neous systems. We have raised in our previous work [12]
the challenge of adapting these metrics for distributed on-
demand systems, such as the contemporary multi-cluster grids
and commercial IaaS clouds. IaaS clouds raise new challenges
in defining cloud-related metrics, such as elasticity [44],[45].

We also argue for revisiting the analysis of results and their
refinement into metrics. For example, due to their change
over time and imperfect performance isolation, IaaS clouds
may require revisiting the concept of variability, way beyond
the traditional mean (or median) and standard deviation. Our
preliminary work [26] on the variability of performance in
IaaS and other types of clouds indicates that variability can
be high and may vary with time.

Traditionally, system warm-up is excluded from perfor-
mance evaluation, leaving only the steady-state period of the
system for study. However, especially for hybrid and other



multi-site cloud architectures, we argue for the need to also
measure the transitional period that occurs when a significant
fraction of the system resources are in the process of being
leased or released.

Challenge 10. The cost issue:Although cost models were
discussed in benchmarking and performance evaluation of
both databases and grids, a variety of issues have not been
addressed. Specifically, the sub-leasing cost model used in
today’s commercial IaaS clouds (e.g., Amazon’s “spot” in-
stances) provides a new focus. It is also unclear how to define
costs for a hybrid cloud infrastructure, especially when the
performance of the cloud does not match the expectation [27],
[46]. Last but not least, it is unclear how to define the source
of budgets, for example either infrastructural or operational
funds, a situation which affects a variety of economic metrics.
Early approaches exist [3], [4].

V. EXPERIENCE TOWARDSIAA S CLOUD BENCHMARKING

A. Methodology: the SPEC Cloud Working Group

The SPEC Research Group1 (RG) is a new group within
the Standard Performance Evaluation Corporation (SPEC).
Among other activities, the SPEC RG facilitates the inter-
action between academia and industry by co-organizing the
Joint ACM/SPEC International Conference on Performance
Engineering (ICPE). The Cloud Working Group2 (CWG) is
a branch of the SPEC RG that aims to develop the method-
ological aspects of cloud benchmarking (Challenges 1–3in
Section IV). In this section we summarize two initiatives of
the SPEC RG and CWG.

Beyond traditional performance:Traditional performance
metrics such as utilization and normalized schedule length[47]
have been defined for statically sized systems. Redefining
these metrics for dynamic systems, especially in the context of
black-box resources leased from clouds, is a topic of interest
for the CWG (Challenges 5 and 6). Beyond performance, the
CWG is also interested in other non-functional metrics, such
as elasticity, utility, performance isolation, and dependability
(Challenges 4, 9, and 15).

Reproducibility of experiments:(orthogonal to our chal-
lenges) Being able to reproduce experimental results is critical
for the validity and lifetime of obtained results. However,
this goal is difficult to achieve when the system under test is
complex, dynamic, or large-scale; IaaS clouds have all these
characteristics. A recent initiative of the RG is to build a
repository3 that can be used to share experimental results,
setups, and other meta-data. Moreover, the call for papers
issued by ICPE 2013 includes a focus on reproducibility of
experiments.

B. SkyMark: A Framework for IaaS Cloud Benchmarking

We have recently implemented a part of the architecture
described in Section III as our SkyMark tool for IaaS cloud

1http://research.spec.org/
2http://research.spec.org/working-groups/rg-cloud-working-group.html
3ICPE Organizers, Reproducibility repository approved, http://icpe2013.ipd.

kit.edu/news/singleview/article/reproducibility-repository-approved/.

benchmarking [48]. SkyMark already implements two of the
distinguishing features of our architecture (see Section III-B).
First, SkyMark provide services for managing the incoming
stream of requests (jobs) and the resources leased from the
cloud [21]. For the former, SkyMark provides single or multi-
ple job queues, depending on the configuration of the experi-
ment, and each queue supports a variety of simple scheduling
policies (e.g., FCFS). For the latter, SkyMark supports several
static and dynamic resource provisioning policies.

Second, SkyMark supports complex workloads (Challenge
7). Workloads are split into units. Each unit is defined by
the characteristic resource to be stressed (e.g., through CPU-
intensive jobs), the job arrival pattern (one of uniform, increas-
ing, and bursty), and the job durations. SkyMark is able, fora
given target configuration, to generate workloads that leadto
a user-specified average utilization in the absence of system
overheads.

Using SkyMark, we were able [21] to benchmark three
IaaS clouds, including Amazon EC2. We have used in out
benchmarks six provisioning policies and three allocation
policies, with provisioning and allocation policies considered
either independently or together. We were also able [48] to
evaluate, for our OpenNebula private clouds, the interference
occurring in various multi-tenancy scenarios (Challenge 8).

C. Real-World Evaluation of IaaS Cloud Performance

Several of the challenges we formulated in Section IV
are the outcome of our previous research conducted from
the past three years in benchmarking and understanding the
performance of several cloud infrastructures. We summarize
in the following some of our main results that motivated this
classification.

Challenge 2:We have observed the long-term evolution in
performance of clouds since 2007. Then, the acquisition of
one EC2 cloud resource took an average time of 50 seconds,
and constantly increased to 64 seconds in 2008 and 78 seconds
in 2009. The EU S3 service shows pronounced daily patterns
with lower transfer rates during night hours (7PM to 2AM),
while the US S3 service exhibits a yearly pattern with lowest
mean performance during the months January, September,
and October. Other services have occasional decreases in
performance, such as SDB in March 2009, which later steadily
recovered until December [26]. Finally, EC2 spot prices typi-
cally follow a long-term step function [49].

Challenge 3:Depending on the provider and its middleware
abstraction, several cloud overheads and performance metrics
can have different interpretation and meaning. In IaaS clouds,
resource acquisition is typically the sum of the installation
time and boot times, and for Amazon EC2 has a stable value
in the order of minutes [27]. Other IaaS providers, such as
GoGrid, behave similarly to grids and offer highly variable
resource acquisition times, i.e., one order magnitude higher
than EC2. In contrast, the Google App Engine (GAE), which
offers a higher-level PaaS abstraction, defines the acquisition
overhead as the time between the issue of a HTTP request
until the HTTP response is returned; the overhead of GAE



is in the order of seconds [50], an order of magnitude lower
than for EC2. The performance interpretations and differences
can have similarly high variations depending on the middle-
ware. The black-box execution approach in IaaS clouds of
externally-compiled software encapsulated in VMs generates
high degradations from the expected peak performance, up to
six to eight times lower than the theoretical maximum of Ama-
zon’s “Elastic Compute Unit” (ECU, 4.4 GOPS) [27]. Parallel
computing-wise, the performance of today’s IaaS is below the
theoretical peak of today’s dedicated parallel supercomputers
even for demanding conveniently parallel applications by 60-
70%. Furthermore, benchmarking the sustained performance
of other infrastructures such as GAE is almost prohibited
by the sandboxed environment that completely hides the
underlying hardware on which the instance is started with no
user control, raising the need forChallenge 6[50].

Challenge 4:With respect to reliability, the payment models
and compensations in case of resource failures make clouds a
more promising platform than traditional distributed systems,
especially grids. Interesting from the reliability point of view
are the EC2 spot instances that allow customers to bid on
unused capacity and run those instances for as long as their
bid exceeds the current spot price. Our analysis on this risk-
reward problem between January 2011 and February 2012
demonstrates that spot instances may represent a cheaper but
still reliable solution offering up to 99% availability provided
that users make slightly generous bids, such as $0.35 for
m1.large instances [49].

Challenge 9:Regarding the importance of system warmup,
an interesting case is the modern just-in-time (JIT) compila-
tions of Java application running on GAE infrastructure which
can boost the performance of interpreted Java byte code by a
factor of four in a predictable manner (from the third request
onwards in case of GAE) [50].

Challenge 10:The variety of cost models combined with
performance variability makes the cloud provider selection a
difficult problem for the cloud user. For example, our analysis
in [50] shows that computing costs are lower on GAE than
in EC2 for very short jobs, mostly due to the cycle-based
payment granularity, as opposed to the hourly billing intervals
of EC2. The cost model may also vary within one provider. For
example, the EC2 reserved instances are cheaper than standard
instances if their usage is of about 50% for for one year
reservations, and of about 30% for three year reservations [49].
In contrast, spot instances on EC2 may represent a 60%
cheaper but equally reliable alternative to standard instances
provided that a correct user bet is made [49].

D. Statistical Workload Models

Challenge 7: In our previous work, starting from multi-
cluster grid traces, we have proposed statistical models of
BoTs [34], and characterized BoTs [33], [34] and work-
flows [33]. We found, notably, that BoTs are the dominant pro-
gramming model for compute-intensive workloads in grids—
they account for 80-90% of both number of tasks and resource
consumption. We have recently characterized and modeled

statistically MapReduce workloads, starting from four traces
of large clusters, including Google’s [40].

E. Open Data: Several Useful Archives

Challenge 7: Workload and operational trace archives are
an important tool in developing benchmarks. Although IaaS
clouds are new, several online archives could already provide
interesting data.

General workload traces for parallel systems and multi-
cluster grid are provided by the Parallel Workloads
Archive [51] and the Grid Workloads Archive [52], respec-
tively. For an example of domain-specific workload traces,
the Game Trace Archive [53] publishes data representative for
online gaming.

For operational traces, the Failure Trace Archive [29] and
the P2P Trace Archive [54] provide operational information
about general and domain-specific (peer-to-peer) distributed
systems.

VI. CONCLUSION

The importance of IaaS cloud benchmarking has grown
proportionally to the increased adoption of this technology,
from small and medium businesses to scientific HPC users. In
contrast to the fragmented field of today, we argue in this
work for a more focused approach to IaaS benchmarking,
in which the community can join into identifying the main
challenges, and then share best-practices and experiences.
Such an approach would greatly benefit (prospective) cloud
users with system procurement and performance management.

We propose a generic approach for IaaS cloud bench-
marking, in which resource and job management can be
provided by the testing infrastructure, there is support for
black-box systems that change rapidly and can evolve over
time, where tests are conducted with complex workloads, and
where various multi-tenancy scenarios can be investigated.

We also discuss four classes of challenges in developing this
approach: methodological, system property-related, workload-
related, and metric-related. Last, we summarize our experience
towards benchmarking IaaS clouds.
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