
LOGO

Dynamic Split Model of Resource
Utilization in MapReduce

Xiaowei Wang、Jie Zhang、Huaming Liao、Li Zha

Institute Of Computing Technology

Chinese Academy Of Sciences

Contents

Evaluation 5

Introduction 1

Dynamic Scheduling Model 2

Dynamic Resource Allocation 3

Resource Usage Pipeline 4

Introduction

 MapReduce is gaining increasing popularity as a parallel

programming model for large-scale data processing

 Traditional MapReduce platforms have a poor performance in

terms of cluster resource utilization

 Dynamic Split Model of the Resources Utilization

 Dynamic Resource Allocation

 Resource Usage Pipeline

 Optimization verification on top of Hadoop

Dynamic Scheduling Model

Figure1: Job execution situation on a single node in raw version Hadoop, the red dash dotted line
stands for three arbitrary time point in the execution process.

Dynamic Scheduling Model

 Node resource usage unbalanced:

 Different phases have different resource usage bias at different time

 Some resources may be underused while the other overused at the

same time

 Reduce slot hoarding:

 First round reduce tasks will hold reduce slots for a long time if the job

has a long time running map

 Resource allocation unbalance within job:

 A static configuration does not consider the system load and the jobs

requirement

Dynamic Scheduling Model

Figure2: Job execution situation on a single node in new version Hadoop the red dash dotted line
stands for three arbitrary time point in the execution process.

Dynamic Scheduling Model

 Separate resource usage within a phase into two periods:

 CPU period and IO period. Use advanced scheduling to launch a task

at a proper point so that one task’s sub-operation can overlapped with the

other in case their resource usage is complementary.

 Collect the system load and the status of each job at run time to

 allocate resource dynamically. So that the number of slot is not the

same and can be modified according to system load.

Dynamic Resource Allocation

 Reduce Slot Hoarding Problem

 The job will hold any reduce slots it receives during this until its maps finish.

 Resources Allocation unbalance Problem
The requirement for slots varies along with job proceeding. Obviously, static

slot configuration can’t adapt to these requirements

 Our Solution: Dynamic Resource Allocation

 We will allocate resource according to the cluster load and all jobs run-time

status.

Dynamic Resource Allocation

wm + wr = 1

 wm : the weight of map phase;

 wr : the weight of reduce phase.

Suppose: the percentage of map phase completion is x.

 Ftask is the number of finished map tasks;

 Ttask is the total number of map tasks in the job.

Then: x = Ftask/Ttask (0 <= x <= 1)

We defined the wm and wr as bellow:

Figure3: The dynamic weight of map phase and reduce

phase with the changing of job status.

Dynamic Resource Allocation

 If only one job in the cluster:

 The number of slots in the cluster is R;

 There are Rm slots use for map phase;

 There are Rr slots use for reduce phase.

Then we get:

Dynamic Resource Allocation

 If lots of users submit jobs:

 There are n jobs running in the cluster;

 Each job i has a weight wi;

 The resource for job i is Ri, the map phase gets resource Rim, the reduce

phase gets resource Rir.

So we can get:

Dynamic Resource Allocation

 In the cluster:

 There are totally RM resources allocated for map slots;

 There are totally RR resources allocated for reduce slots;

Then we can get:

RESOURCE USAGE PIPELINE

 Resource Usage Unbalance problem
 io.size.mb configuration conflict in map phase

 Obvious resource usage in reduce phase

 resource usage unbalance problem in a single node

 Our Solution: Resource Usage Pipeline
 Dynamic Buffer Enlargement in Map Phase

 Dynamic Slot Request of Map Task

 Dynamic Slot Request of Reduce Task

RESOURCE USAGE PIPELINE

 Dynamic Buffer Enlargement Logic in Map Phase

 Map task allocates a kvbuffer according to the default io.sort.mb value to

hold output (key, value) pairs.

 We used a dynamic buffer instead of the static buffer in raw Hadoop.

 The method used to calculate how much free memory x is needed.

 pfs : tfs = abs : x

 tfs: total file size;

 pfs: processed file size;

 abs: allocated buffer size.

 afm: available free JVM memory

 If x < (afm * threshold), then kvbuffer can be expanded to x, else we will

set a flag to indicate map task to handle the remaining output in the way

the raw version Hadoop does.

RESOURCE USAGE PIPELINE

Figure4: A map task process analysis from resource usage perspective.

RESOURCE USAGE PIPELINE

 Dynamic Slot Request of Map Task

 Additional map slot is needed , when map task enters into the IO-

intensive period then the task tracker can ask for a new map task

 Two different resource usage periods can be overlapped

 mapred.tasktracker.map.tasks.maximum is the sum of normal map slot

and additional map slot

RESOURCE USAGE PIPELINE

Figure5: Dynamic slot request

RESOURCE USAGE PIPELINE

Copy Sort Compute

Copy Sort

Copy

Copy

askForIncreaseRed

uceTasks

Reduce

Task

Reduce

Task 1

Reduce

Task 2

Sort Compute

Compute

Sort Compute

Reduce

Task 2

RESOURCE USAGE PIPELINE

 Dynamic Slot Request of Reduce Task

 Shuffle period and sort-compute period which provides the possibility to

implement the resource utilization pipeline

 Three subparameters:

mapred.tasktracker.reduce.toal.tasks

The total running reduce tasks is not greater than the maximum reduce tasks

at any time.

mapred.tasktracker.reduce.shuffle.tasks

Running shuffling tasks is not greater than maximumshuffling tasks at any

time.

mapred.tasktracker.reduce.compute.tasks

Running sort-computing tasks is not greater than maximum sort-computing

tasks at any time.

RESOURCE USAGE PIPELINE

 Guideline for parameters selection

 A formula applying to both maximum shuffling tasks slot and maximum

sort-computing tasks slot.

 Suppose:

Avgx is the average running time in raw version;

Gainx is to be the total gain of a job in reduce phase if

mapred.tasktracker.reduce.tasks.maximum set to be x;

Losex to be the total lose of a job.

So we get (m < n):

 In a reduce phase:

If Gainm > Losem => Avgn/n > Avgm/m

 Then we can get: set mapred.tasktracker.reduce.tasks.maximum to be

m is better than n and vice versa.

Evaluation

 Definition:

 Throughput (T) : the number of jobs finished in unit time. If we finished n

jobs in time t, then we get: T = n / t

 The throughput increased by I (nraw = nnew):

 Suppose: wall time of job i is t1 in the raw version, and t2 in the new

version, The percentage of wall time is reduced by ri. Then:

 The average wall time gain for all jobs in the workload is rave

Evaluation

 Environment

 The cluster is configured in one rack;

 Operating system is CentOS release 5.3, Linux version 2.6.18-128.el5;

 Apache Hadoop version 0.20.2;

 JDK version 1.6.0_14.

Evaluation

 Microbenchmark

 A data input set of 27G using TextWriter;

 Run a monsterquery job including 200 map tasks and 100
reduce tasks with 128mb block size;

 Using Hadoop-0.20.2 and FairScheduler as a comparison;

Evaluation

 Impact of Map slot and job type on performance

Figure6: impact of job type and map slot ratio on performance compared to raw version whose map

slot is set to 4

Evaluation

 Memory Resource in Map phase

 Figure7: Effect with memory size change ranging from 256 to 1280

Evaluation

 Macrobenchmark

 Using 10 jobs with different input size and type;

 Using Hadoop-0.20.2 and FairScheduler as a comparison;

 We submit each job by a time interval to simulate the real environment,

because different users will submit jobs at different times. The time interval

is 1 min.

Evaluation

 Job execution time:

 We can get:

Evaluation

Compare to raw Hadoop:

CPU:

 userCPU is 12.93% higher;

 iowaitCPU is 6.61% less;

 idleCPU is 6.73% less.

Net I/O :

 upstream speed is increased by 11.3%

 downstream speed is increased by

23.5%.

LOGO

