
Efficient Processing of

RDF Graph Pattern Matching

on MapReduce Platforms

Padmashree Ravindra, Seokyong Hong,

HyeongSik Kim, Kemafor Anyanwu

COUL – Semantic COmpUting research Lab

Outline
Background

 Semantic Web (RDF, SPARQL)

 Join Processing in MapReduce framework

 RDF Graph Pattern Matching in Apache Pig

Challenges

Approach
 Algebraic Optimization – TripleGroup based Processing

 Dynamic Optimization – Information Passing

Evaluation

Related Work

Conclusion and Future Work

Linked Data and the Semantic Web

May 2007 - # of datasets: 12 Feb 2008 - # of datasets: 32 March 2009 - # of datasets: 93

Sep 2010 - # of datasets: 203 Sep 2011 - # of datasets:295

Growing #RDF triples: currently 31 billion

Example RDF Data and SPARQL Query

Sub Prop Obj

&V1 type VENDOR

&V1 country US

&V1 homepage www.vendor...

&Offer1 vendor &V1

&Offer1 price 108

….

Data: BSBM benchmark data

describing Vendors and their Offers

SELECT ?hpage

WHERE {?s type VENDOR .

 ?s country ?vcountry .

 ?s homepage ?hpage .}

FILTER (?vcountry = “US”);

#Required Joins = 2

Several joins for more complex

pattern matching tasks

Statements (triples)

&V1 type VENDOR &V1 country US &V1 homepage www.vendor... &V1 type VENDOR &V1 country US &V1 type VENDOR

Implicit Join based on

common variables

Query: Retrieve the homepage of US

based Vendors

Our Direction

Need: Scalable and cost-effective processing
techniques to deal with growing amount of
Semantic Web data

Unlikely to achieve good scalability without
parallelization

MapReduce platforms offer scalability in an easy-
to-use and cost effective manner

BUT expensive for multi-join queries typical of
Semantic Web processing e.g. SPARQL query
processing

Basics: MapReduce

Large scale processing of data on a cluster of

commodity grade machines

Users encode task as map / reduce functions,
which are executed in parallel across the cluster

Apache Hadoop* – open-source implementation

Key Terms

 Hadoop Distributed File System (HDFS)

 Slave nodes / Task Tracker – Mappers (Reducers) execute

the map (reduce) function

 Master node / Job Tracker – manages and assigns
tasks to Mappers / Reducers

* http://hadoop.apache.org/

1 MR cycle in Hadoop

JobTracker

TaskTracker

Local disk
Node 1

TaskTracker

Local disk
Node N

...

control via RPC

Hadoop Distributed File System (HDFS)

Mapper

Mapper

1. Mappers load splits (I/O)

get a split

2. Mappers process splits
 by executing map()

3. Mappers sort/spill (CPU/I/O)
 intermediate <key, value>

sort/spill

sort/spill

Reducer

Reducer

4. Reducers retrieve intermediate
 <key, value> from mappers

(communication, I/O)

receive/merge

5. Reducers process data
 by executing reduce()

6. Reducers store resulting
 <key, value> tuples to HDFS

(I/O)

write

write

7

1

1

2

2

3

3

4

5

5
6

6

Join Processing on Hadoop

1 A
7 D

2 B
5 T
3 Y
8 Z

Table A

Table B

Mapper

Map Phase

Node 1

Mapper

Node 2

<A, (A, 1)>

<D, (D, 7)>

<B, (B, 2)>

<T, (T, 5)>

<Y, (Y, 3)>

<Z, (Z, 8)>

Reducer

Node 1

Reducer

Node 2

4 T 5

5 F
4 T

<F, (F, 5)>

<T, (T, 4)>

Reduce Phase

HDFS Local Disk

HDFS

 Standard Repartitioning Join (reduce-side)
 map(): “tag” tuple based on join key

 reduce(): collect tuples with same “tag” and join relevant tuples

Problem: all tuples in both relations (should be
distinguishable) need to be sorted and transferred
between two phases

Complex Query Processing on Hadoop

Query

Parser

Compiler Optimizer

Abstract Syntax Tree

Executor

Hadoop Job Plan

Hadoop Framework

Each Job in the Job Plan

Low level implementation a burden for users

Pig/Hive: Allow expression of tasks using high-
level query primitives

usability, code reuse, automatic optimization

 Support for relational-style ops – Join, Group By

 Operators compile into Hadoop jobs

#MR cycles = #Joins = 7

(Data loading + sorting +

 transfer + materialization costs) * 7

Expensive!!!

SELECT ?hpage ?price ?rat1

WHERE

{?v homepage ?hpage .

 ?v country ?vcountry .

 ?o vendor ?v .

 ?o price ?price .

 ?o product ?prod .

 ?r revFor ?prod .

 ?r reviewer ?rev .

 ?r rating ?rat1 .}

Execution Plan

in Pig

RDF Data Processing on Hadoop

A = LOAD
Input.rdf

FILTER
(homepage)

B = LOAD
Input.rdf

FILTER(country)

T1 = JOIN A ON Sub,
 B ON Sub;

C = LOAD
Input.rdf

FILTER(vendor)

T2 = JOIN C ON Obj,
 T1 ON Sub;

STORE

T3 = JOIN H ON Sub,
 T7 ON Sub;

…….

H= LOAD
Input.rdf

FILTER(rating)

MR1
?v

MR2
?o

MR7

#MR cycles reduced from 7 to 5

SELECT ?hpage, ?price, ?rat1
WHERE { ?v homepage ?hpage .
 ?v country ?vcou.. .
 ?o vendor ?v .
 ?o price ?price .
 ?o product ?prod .
 ?r revFor ?prod .
 ?r reviewer ?rev .
 ?r rating1 ?rat1 .}

SJ1

SJ2

J1
(obj-sub)

SJ3

J2
(obj-obj)

*vertical-partitioning of triple relation based on properties to avoid
self-joins on large relations

*

Star-joins via m-way JOIN

Can we do better???

How to reduce these costs?

Goal1: Minimize the length of MapReduce
execution workflows

 Reduce #iterations for disk I/O,
communication and sorting

Goal2: Minimize size of intermediate data

 Reduce the #tuples sorted and transferred
between the nodes

Goal1: Minimizing #MR cycles
 Concurrent processing of star-joins can

further reduce the required #MR cycles

Challenge: Requires support for inter-
operator parallelism in Hadoop

 Changes to scheduler + complex partitioning
scheme

What are we proposing?
An algebra (Nested TripleGroup Algebra -

NTGA) for more efficient processing of RDF
graph patterns based on a nested
TripleGroup model

 Don’t think of joins as joins all the time!!!

 Sub Prop Obj

&V1 type VENDOR

&V1 country US

&V1 homepage www.vendor...

&Offer1 vendor &V1

&Offer1 price 108

….

{
 tg1 = (&V1, type, VENDOR),
 (&V1, country, US),
 (&V1, homepage, www.vendor...)

 tg2 = (&Offer1, vendor, &V1),
 (&Offer1, price, 108),
 (&Offer1, product, &P1),
}

Group By

(Sub)

“Groups of Triples” or TripleGroups

Star-joins SJ1, SJ2, SJ3
require ONLY 1 MR cycle!!!

NTGA – Data Model
 Data model based on nested TripleGroups

More naturally capture graphs

 TripleGroup –

groups of triples sharing

Subject / Object component

 Can be nested at the Object component

{(&Offer1, price, 108),
 (&Offer1, vendor, &V1),
 (&Offer1, product, &P1),
 (&Offer1, delDays, 2)
}

{(&Offer1, price, 108),
 (&Offer1, vendor, {(&V1, label, vendor1),
 (&V1, country, US),
 (&V1, homepage, www.vendors….)}
 (&Offer1, product, &P1),
 (&Offer1, delDays, 2)
}

NTGA Operators…(1)
 TG_Unnest – unnest a nested TripleGroup

{(&Offer1, price, 108),
 (&Offer1, vendor,{(&V1, label, vendor1),
 (&V1, country, US),
 (&V1, homepage, www.ven..)}
 (&Offer1, product, &P1),
 (&Offer1, delDays, 2)}

{(&Offer1, price, 108),
 (&Offer1, vendor, &V1),
 (&V1, label, vendor1),
 (&V1, country, US),
 (&V1, homepage, www.ven..)}
 (&Offer1, product, &P1),
 (&Offer1, delDays, 2)}

TG_Unnest

 TG_Flatten – generate equivalent n-tuple

(&V1, label, vendor1),
(&V1, country, US),
(&V1, homepage, www.ven...)}

(&V1, label, vendor1, &V1, country, US, &V1, homepage, www.ven...)

TG_Flatten

t1 t2 t3

“Content
Equivalence”

NTGA Operators…(2)
 TG_Join – join between different structure

TripleGroups based on join triple patterns

TG_Join

{ (&Offer1, price, 108),
 (&Offer1, vendor, &V1),
 (&Offer1, product, &P1),
 (&Offer1, delDays, 2) }

TG{price, vendor, delDays, product}

(&V1, label, vendor1),
(&V1, country, US),
(&V1, homepage, ww.ven...)}

TG{label, country, homepage}

{(&Offer1, price, 108),
 (&Offer1, vendor, {(&V1, label, vendor1),
 (&V1, country, US),
 (&V1, homepage, www.ven..)}
 (&Offer1, product, &P1),
 (&Offer1, delDays, 2)}

?o vendor ?v ?v country ?vcountry

RDF Data Processing using NTGA

 TripleGroups resulting from NTGA operators can
be mapped to Pig’s n-tupled results

#MR cycles reduced from 5 to 3

Goal2: Minimizing Intermediate Data

 Filter out irrelevant records that may not join in
subsequent phases

 Use side-way information passing to reduce the
#intermediate tuples that are loaded, sorted, and
transferred in intermediate steps

Challenge: Adapting SIP to MapReduce
 Pipelined or Operation parallelism absent. Only

partitioned parallelism support
- Each job is blocked until the completion of a previous job

- Which operators should generate / receive summary

- All operators cannot run at the same time

 Limited direct communication method between units

- Shared memory/Message passing/TCP communication

Enabling Information-Passing in
Hadoop Plans

Parser

Compiler Optimizer

Abstract Syntax Tree

Query

Modified Executor

Hadoop Job Plan

Hadoop Framework

Each Job in the Job Plan

IP Planner

Hadoop Job Plan IP Plan

Benefit Estimator

Compile-time IP preparation

An IP plan consists of

 Dataflow graph

 Job dependency
graph

 IP descriptors

Inter-Job Information Passing

HDFS

Map Phase

Reduce Phase

Summarizer

job1

Summarizer

job2 job3

Record Pruner

Summary

Input Table Input Table

Intermediate Intermediate

Summary

Summary is either in a bloom-filter or in a compressed format.

Output

DistributedCache

Evaluation
 Setup: 5-node Hadoop clusters on NCSU’s

Virtual Computing Lab*

 Dataset: Synthetic benchmark dataset
generated using BSBM** tool

Evaluating TripleGroup based Query Plans
 using N-triple format (max. 44GB – approx. 170 million triples)

 Task A – Scalability with increasing size of RDF graphs

 Task B –Scalability with increasing cluster sizes

 Task C – Comparative Study of hybrid plans

Evaluating Inter-Job Information Passing
 using SQL-dump (max. 50GB – 500000 products)

 Task D – Scalability with increasing size of RDF graphs

 *https://vcl.ncsu.edu

 **http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/

Experimental Results…(Task A)

Cost Analysis across Increasing size of RDF graphs (5-node)

Key Observations:

Benefit of TripleGroup based processing seen across data sizes – up

to 60% in most cases

 TODO - delineate different types of TripleGroups after star-joins

Query Pattern:

Two star-join structures

Total of 6 triple patterns

Naïve – 5 join ops

N-way join – 3 join ops

NTGA – 2 join ops

Experimental Results…(Task B)

Cost Analysis across Increasing Cluster Sizes

Query pattern with three star-joins

and two chain-joins (32GB)

Key Observations:

 NTGA has 56% gain for 10-

node cluster over Pig approaches

 Pig approaches catch up with

increasing cluster size

 Increasing nodes decrease

probability of disk spills with

the SPLIT approach

 NTGA still maintains 45% gain

across the experiments

NTGA

Experimental Results…(Task C)

Comparative Study of Hybrid Plans (5-node)

Key Observations:

 NTGA-StarJoin and NTGA have 42% to 46% performance gain

over Pig

 NTGA better than NTGA-StarJoin for denser query patterns

 PigStarJoin worse than Pig due to overhead of

 flattening n-tuples into TripleGroups

Query Patterns: 3 star-joins

q-small – 1,3,1 triple patterns in

each star

q-dense – 3 triple patterns in

each star

Pig-StarJoin: Compute only star-joins

using Pig ’s JOIN;

NTGA-StarJoin: Compute only star-

joins using NTGA’s TG_GroupBy

Experimental Results…(Task D)

Cost Analysis across Increasing size of RDF graphs (5-node)

Key Observations:

IP-enabled Hive shows more than 35%

performance improvement in terms of

execution time

Query Pattern:

-retrieves products which

have two certain

properties and are

classified to a certain

type (three joins).

-Generates summary on

the output of the 2nd join

and 3rd job prunes

records by using the

summary.

Related Work
MapReduce-based Processing

Graph Pattern Matching
 HadoopRDF[Husain10], SHARD[Rohloff10],

 [Huang11], RDF-Molecules([Newman08], [Hunter08])

High-level Dataflow Languages:
 Pig Latin[Olston08], [HiveQL], [JAQL]

Efficient Join Techniques

 Map-Reduce-Merge[Yang07], [Afrati10],

 Hadoop++ [Dittrich10], Log Processing[Blanas10]

DB/MR Hybrid Architecture

 HadoopDB [Abadi09]

Reasoning

 [Urbani07]

Conclusion
Generalized query plan strategy for

efficient processing of RDF data

 TripleGroup based processing to minimize #MR
cycles

 Inter-job information passing to minimize
intermediate data

Future work:
Support for inferencing e.g. sameAs for multiple support

datasets and subsumption hierarchies

Compression of URIs

Integrating both strategies in the same system

References
[Dean04] Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51 (2008) 107–113

[Olston08] Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In:
Proc. International Conference on Management of data. (2008)

[Abadi09] Abouzied, A., Bajda-Pawlikowski, K., Huang, J., Abadi, D.J., Silberschatz, A.: Hadoopdb in action: building real world
applications. In: Proc. International Conference on Management of data. (2010)

[Newman08] Newman, A., Li, Y.F., Hunter, J.: Scalable semantics: The silver lining of cloud computing. In: eScience. IEEE
International Conference on. (2008)

[Hunter08] Newman, A., Hunter, J., Li, Y., Bouton, C., Davis, M.: A scale-out RDF molecule store for distributed processing of
biomedical data. In: Semantic Web for Health Care and Life Sciences Workshop. (2008)

[Urbani07] Urbani, J., Kotoulas, S., Oren, E., Harmelen, F.: Scalable distributed reasoning using mapreduce. In: Proc. International
Semantic Web Conference. (2009)

[Abadi07] Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web Data Management Using Vertical
Partitioning. VLDB 2007

[Dittrich10] Dittrich, J., Quiane-Ruiz, J., Jindal, A., Kargin, Y., Setty, V., Schad, J.: Hadoop++: Making a Yellow Elephant Run Like a
Cheetah (Without It Even Noticing). VLDB 2010/PVLDB

[Yang07] Yang, H., Dasdan, A., Hsiao, R., Parker Jr., D.S.: Map-Reduce-Merge: simplified relational data processing on large
clusters. SIGMOD 2007

[Afrati10] Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In: Proc. International Conference on Extending
Database Technology. (2010)

[Husain10] Husain, M., Khan, L., Kantarcioglu, M., Thuraisingham, B.: Data intensive query processing for large RDF graphs using
cloud computing tools. In: Cloud Computing (CLOUD), IEEE International Conference on. (2010)

[Huang11] Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL Querying of Large RDF Graphs. Proceedings of the
VLDB Endowment, 4(11), 2011.

[Rohloff10] Kurt Rohloff and Richard E. Schantz. High-performance, Massively Scalable Distributed Systems using the MapReduce
Software Framework: the SHARD Triple-store. In Programming Support Innovations for Emerging Distributed Applications,
pages 4:1–4:5, 2010.

[Blanas10] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and Yuanyuan Tian. A Comparison of Join
Algorithms for Log Processing in MapReduce. In Proc. International conference on Management of Data, 2010

[HiveQL] http://hadoop.apache.org/hive/

[JAQL], http://code.google.com/p/jaql

Thank You!

Possible Optimizations (1) 18/45

Issues

 SPLIT operator for RDF data,

 #sub flows = #unique property types

 might be a large number of subflows

Concurrent sub flows compete for memory resources

Higher risk of disk spills  increased I/O costs

Our Approach : RAPID+
 Goal : Minimize I/O and communication costs
by reducing MR cycles
Reinterpret and refactor operations into a more
suitable (coalesced) set of operators – NTGA
algebra
 Foundation:
 Re-interpret multiple star joins as a grouping
operation
leads to “groups of Triples” (TripleGroups)
instead of n-tuples
different structure BUT “content equivalent”

 NTGA- algebra on TripleGroups

22/45

Possible Optimizations (1)
Vertical Partitioning (VP) in 1 MR cycle

 Input file read only once  better!!

 In Pig Latin, VP can be achieved using the
SPLIT operator

17/45

LOAD all the RDF triples

Sub Prop Obj
R1 type Ranking
R2 type Ranking

typeRanking

Sub Prop Obj
UV1 destURL url1
UV2 destURL url1

destURL

Sub Prop Obj
R1 pageURL url1
R2 pageURL url2

pageURL

Sub Prop Obj
R1 pageRank 11
R2 pageRank 27

pageRank

Sub Prop Obj
UV1 type userVisits
UV2 type userVisits

typeUV

Sub Prop Obj
UV1 scrIP 158.112.27.3
UV2 scrIP 159.222.21.9

srcIP

Sub Prop Obj
UV1 adRev 339.08142
UV2 adRev 330.51248

adRev

Sub Prop Obj
UV1 visitDate 1979/12/12
UV2 visitDate 1980/02/02

visitDate

SPLIT into pageURL IF prop=pageURL, typeRanking IF prop=type and Obj= Ranking, …

NTGA Operators…(2)
 TG_GroupFilter – retain only TripleGroups

that satisfy the required query sub structure

  Structure-based filtering

TG_GroupFilter

{ (&V1, label, vendor1),
 (&V1, country, US),
 (&V1, homepage, www.ven..) },

{ (&Offer1, price, 108),
 (&Offer1, vendor, &V1),
 (&Offer1, product, &P1),
 (&Offer1, delDays, 2) } ,

{ (&Offer2, vendor, &V2),
 (&Offer2, product, &P3),
 (&Offer2, delDays, 1) } }

{ (&Offer1, price, 108),
 (&Offer1, vendor, &V1),
 (&Offer1, product, &P1),
 (&Offer1, delDays, 2) }

(TG, {price, vendor, delDays, product})

TG TG{price, vendor, delDays, product}

Eliminate TripleGroups
with missing triples (edges)

NTGA Operators…(3)
 TG_Filter – filter out triples that do not satisfy

the filter condition (FILTER clause)

  Value-based filtering

TG_Filterprice<200(TG)

{ (&Offer1, price, 108),
 (&Offer1, vendor, &V1),
 (&Offer1, product, &P1),
 (&Offer1, delDays, 2) } ,

{ (&Offer3, vendor, &V2),
 (&Offer3, product, &P3),
 (&Offer3, price, 306),
 (&Offer3, delDays, 1) } }

{ (&Offer1, price, 108),
 (&Offer1, vendor, &V1),
 (&Offer1, product, &P1),
 (&Offer1, delDays, 2) }

TG{price, vendor, delDays, product}

Eliminate TripleGroups with
triples that do not satisfy

filter condition

TG{price, vendor, delDays, product}

UPDATE

 Additional evaluation –
 Up to 65% performance gain on synthetic benchmark

dataset* for three/two star-join queries

 Experiment extended to 30-node clusters with 1
billion 3-ary triples (43GB) – 41% gain

RAPID+ now includes a SPARQL interface

Join us for a demo of RAPID+@VLDB2011*

*Kim, H., Ravindra, P., Anyanwu, K : From SPARQL to MapReduce:

The Journey using a Nested TripleGroup Algebra. To appear In: Proc.

International Conference on Very Large Data Bases. (VLDB 2011)

Environment
Node Specifications
 Single / duo core Intel X86

 2.33 GHz processor speed

 4G memory

 Red Hat Linux

Pig 0.8.0

Hadoop 0.20
 Block size 256MB

Experiment Results
Percentage Performance Gain

= (exec time 1) – (exec time 2)

 (exec time 1)

Structured Data Processing in Pig

srcIP destURL visitDate adRevenue …

158.112.27.3 url1 1979/12/12 339.08142 ….

158.112.27.3 url5 1979/12/15 180.334 ….

150.121.18.6 url1 1979/12/28 550.7889 ….

… … … … …

pageRank pageURL avgDur

11 url1 96

23 url2 3

18 url3 87

… … …

UserVisits

Ranking

Query: Retrieve the pageRank and adRevenue of pages visited by

particular users between “1979/12/01”

and “1979/12/30”

LOAD
UserVisits

LOAD
Ranking

FILTER(visitDate)

JOIN UserVisits ON destURL,
 Ranking ON pageURL;

STORE

10/45

Package tuples

JOIN
UserVisits ON destURL,
Ranking ON pageURL;

JOIN: Pig Latin  MapReduce
UserVisits Ranking

Annotate based on
join key

map

reduce

Reducer 1 Reducer 2
158.112.27.3 url1 url1 11 …

srcIP destURL visitDate adRev …

158.112.27.3 url1 1979/12/12 339.081 …

158.112.27.3 url2 1979/12/15 180.334 …

150.121.18.6 url1 1979/12/28 550.78 …

url2
url1

pageRank pageURL avgDur

11 url1 96

23 url2 3

url1
url2

url1

url1

150.121.18.6 url1 url1 11 …

url2
158.112.27.3 url2 url2 3 …

… srcIP destURL pageURL pageRank …

… 158.112.27.3 url1 url1 339.081 …

… 150.121.18.6 url1 url1 550.78 …

… 158.112.27.3 url2 url2 180.334 …

11/45

Background

• Hadoop Join Processing Techniques

– Standard Repartitioning Join

– Fragment-Replication Join

– Map-Merge Join

Background

• Hadoop Join Processing Techniques (Cont.)

– Fragment-Replication Join and Map-Merge Join

• Alternative Join techniques

• Process join operation in map-phase

– Can remove the cost to sort and transfer data between phases

• Used in very restricted ways

– In the presence of pre-processing or

– One of the two input relation is small enough to be buffered

in available memory)

