Efficient Processing of RDF Graph Pattern Matching on MapReduce Platforms

Padmashree Ravindra, Seokyong Hong, HyeongSik Kim, **Kemafor Anyanwu**

COUL – Semantic **COmpUting** research Lab

Outline

- ✓ Background
 - Semantic Web (RDF, SPARQL)
 - Join Processing in MapReduce framework
 - RDF Graph Pattern Matching in Apache Pig
- ✓ Challenges
- ✓ Approach
 - Algebraic Optimization TripleGroup based Processing
 - Dynamic Optimization Information Passing
- ✓ Evaluation
- ✓ Related Work
- ✓ Conclusion and Future Work

Linked Data and the Semantic Web

May 2007 - # of datasets: 12 Feb 2008 - # of datasets: 32 March 2009 - # of datasets: 93

Sep 2010 - # of datasets: 203

Sep 2011 - # of datasets:295

Growing #RDF triples: currently 31 billion

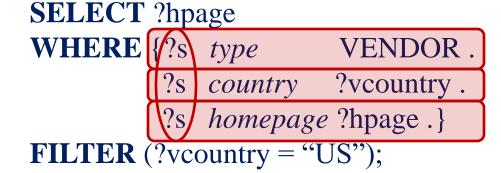
Example RDF Data and SPARQL Query

Statements (triples)

Sub	Prop	Obj			
&V1	type	VENDOR			
&V1	country	US			
&V1	homepage	www.vendor			
&Offer1	vendor	&V1			
&Offer1	price	108			

Data: BSBM benchmark data describing *Vendors* and their *Offers*

Query: Retrieve the homepage of US based Vendors



Implicit Join based on common variables

&V1	pe VENDOR	71 type VENDOR &V1 country US	&V1 homepage	www.vendor
-----	-----------	-------------------------------	--------------	------------

#Required Joins = 2
Several joins for more complex
pattern matching tasks

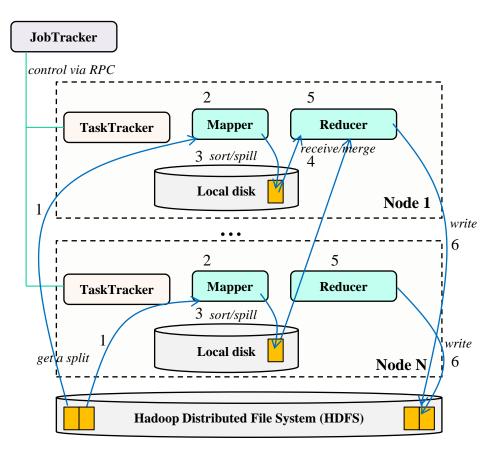
Our Direction

- ➤ Need: Scalable and cost-effective processing techniques to deal with growing amount of Semantic Web data
- Unlikely to achieve good scalability without parallelization
- ➤ *MapReduce* platforms offer scalability in an easy-to-use and cost effective manner
- ➤ BUT expensive for multi-join queries typical of Semantic Web processing e.g. SPARQL query processing

Basics: MapReduce

- ➤ Large scale processing of data on a cluster of commodity grade machines
- ➤ Users encode task as *map | reduce* functions, which are executed in parallel across the cluster
- ➤ Apache Hadoop* open-source implementation
- > Key Terms
 - ✓ Hadoop Distributed File System (HDFS)
 - ✓ Slave nodes / Task Tracker Mappers (Reducers) execute the *map* (*reduce*) function
 - ✓ Master node / Job Tracker manages and assigns tasks to Mappers / Reducers

1 MR cycle in Hadoop

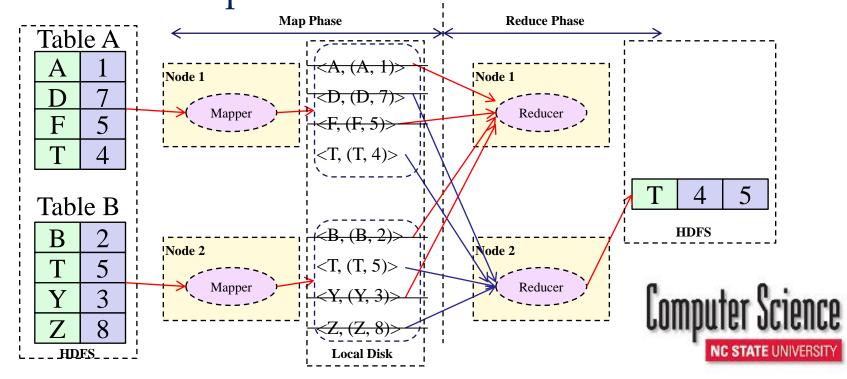


- 1. Mappers load splits (I/O)
- 2. Mappers process splits by executing *map()*
- 3. Mappers sort/spill (CPU/I/O) intermediate < key, value>
- 4. Reducers retrieve intermediate < key, value > from mappers (communication, I/O)
- 5. Reducers process data by executing *reduce()*
- 6. Reducers store resulting <key, value> tuples to HDFS (I/O)

Join Processing on Hadoop

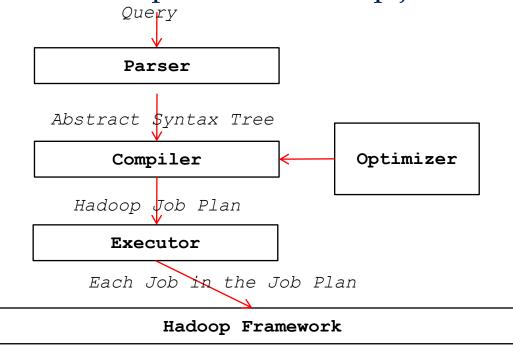
- ➤ Standard Repartitioning Join (reduce-side)
 - ✓ *map()*: "tag" tuple based on join key
 - ✓ *reduce()*: collect tuples with same "tag" and join relevant tuples

➤ Problem: all tuples in both relations (*should be distinguishable*) need to be sorted and transferred between two phases

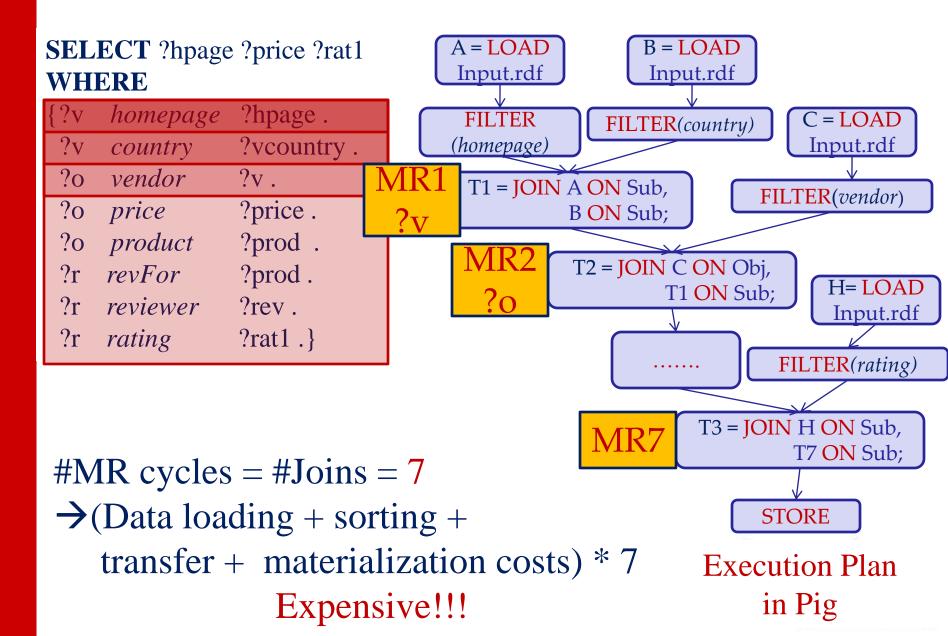


Complex Query Processing on Hadoop

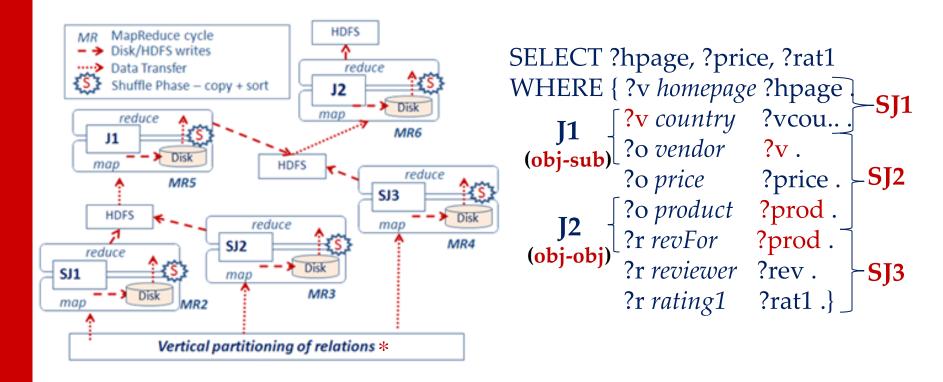
- > Low level implementation a burden for users
- ➤ Pig/Hive: Allow expression of tasks using highlevel query primitives
 - ✓ usability, code reuse, automatic optimization
 - ✓ Support for *relational-style* ops Join, Group By
 - ✓ Operators compile into Hadoop jobs



RDF Data Processing on Hadoop



Star-joins via m-way JOIN



#MR cycles reduced from 7 to 5 Can we do better???

*vertical-partitioning of triple relation based on properties to avoid self-joins on large relations

How to reduce these costs?

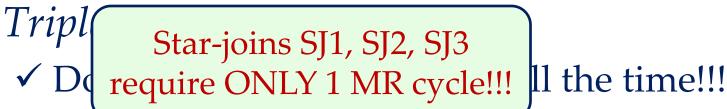
- ✓ Goal1: Minimize the length of MapReduce execution workflows
 - → Reduce #iterations for disk I/O, communication and sorting
- ✓ Goal2: Minimize size of intermediate data
 - → Reduce the #tuples sorted and transferred between the nodes

Goal1: Minimizing #MR cycles

- ➤ Concurrent processing of star-joins can further reduce the required #MR cycles
- Challenge: Requires support for *inter-operator* parallelism in Hadoop
 - → Changes to scheduler + complex partitioning scheme

What are we proposing?

An algebra (*Nested TripleGroup Algebra - NTGA*) for more efficient processing of RDF graph patterns based on a nested



Sub	Prop	Obj		
&V1	type	VENDOR	Group By (&V1, type, VENDOR),	7
&V1	country	US	(Sub) (&V1, country, US),	}
&V1	homepage	www.vendor	(&V1, homepage, www.vendo	r)
&Offer1	vendor	&V1	$tg_2 = (\&Offer1, vendor, &)$	/1),
&Offer1	price	108	(&Offer1, <i>price,</i> 10	8),
	••••		(&Offer1, product, &F	ر(1م
			J	

"Groups of Triples" or TripleGroups

NTGA – Data Model

- ➤ Data model based on *nested* TripleGroups
 - ✓ More naturally capture graphs
 - TripleGroup –
 groups of triples sharing
 Subject / Object component

```
{(&Offer1, price, 108),
(&Offer1, vendor, &V1),
(&Offer1, product, &P1),
(&Offer1, delDays, 2)
}
```

Can be nested at the Object component

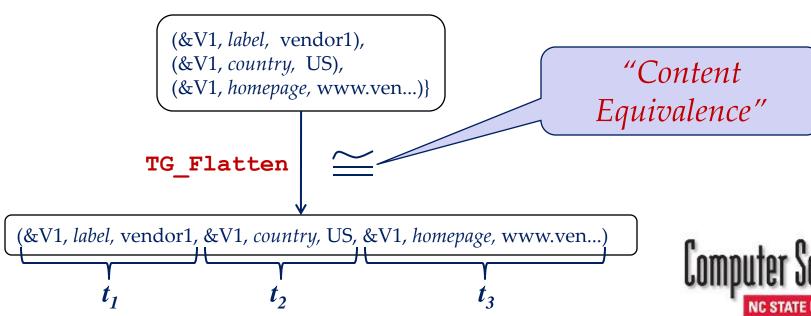
```
{(&Offer1, price, 108),
(&Offer1, vendor, {(&V1, label, vendor1),
(&V1, country, US),
(&V1, homepage, www.vendors....)}
(&Offer1, product, &P1),
(&Offer1, delDays, 2)
}
```


NTGA Operators...(1)

> TG Unnest - unnest a nested TripleGroup

```
{(&Offer1, price, 108),
(&Offer1, vendor, {(&V1, label, vendor1),
(&V1, country, US),
(&V1, homepage, www.ven..)}
(&Offer1, product, &P1),
(&Offer1, product, &P1),
(&Offer1, product, &P1),
(&Offer1, product, &P1),
(&Offer1, price, 108),
(&V1, label, vendor1),
(&V1, country, US),
(&V1, homepage, www.ven..)}
(&Offer1, product, &P1),
(&Offer1, delDays, 2)}
```

> TG_Flatten - generate equivalent n-tuple



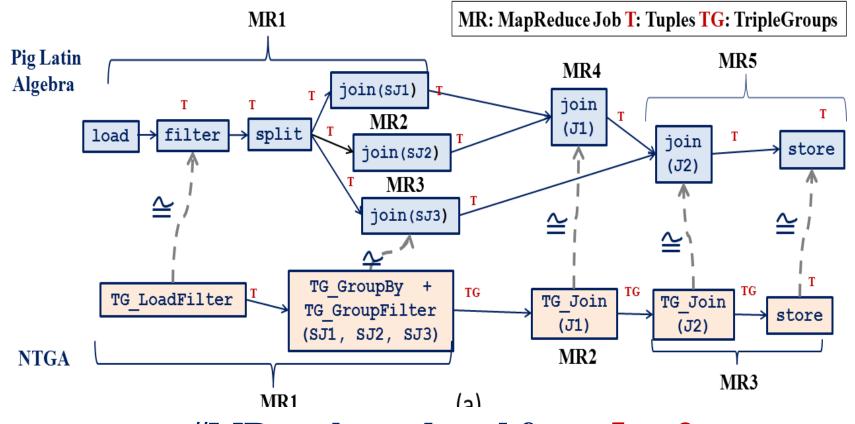
NTGA Operators...(2)

➤ TG_Join – join between different structure TripleGroups based on join triple patterns

```
\mathbf{TG}_{\{price, vendor, del Days, product\}}
                                                \mathbf{TG}_{\{label, country, homepage\}}
 { (&Offer1, price, 108),
                                                 (&V1, label, vendor1),
  (&Offer1, vendor, &V1),
                                                 (&V1, country, US),
  (&Offer1, product, &P1),
                                                 (&V1, homepage, ww.ven...)}
  (&Offer1, delDays, 2) }
 ?o vendor ?v
                                                        ?v country ?vcountry
                                    TG Join
                   {(&Offer1, price, 108),
                    (&Offer1, vendor, {(&V1, label, vendor1),
                                       (&V1, country, US),
                                       (&V1, homepage, www.ven..)}
                    (&Offer1, product, &P1),
                    (&Offer1, delDays, 2)}
```

RDF Data Processing using NTGA

➤ TripleGroups resulting from NTGA operators can be mapped to Pig's n-tupled results



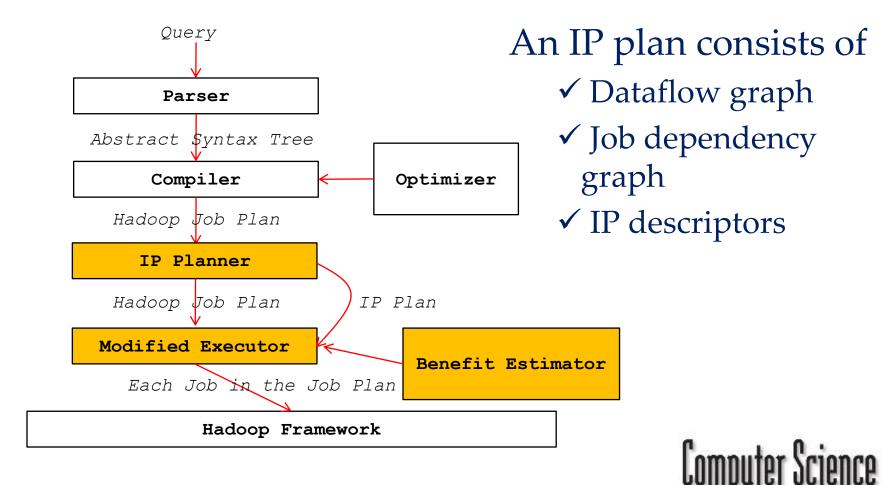
#MR cycles reduced from 5 to 3

Goal2: Minimizing Intermediate Data

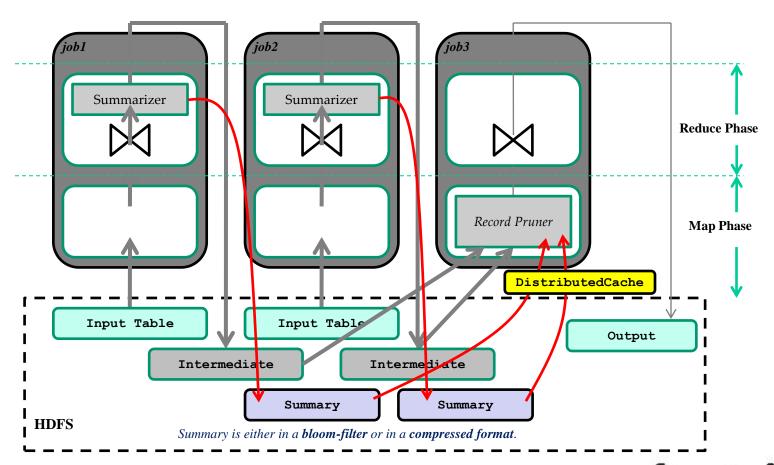
- Filter out irrelevant records that may not join in subsequent phases
 - ✓ Use side-way information passing to reduce the #intermediate tuples that are loaded, sorted, and transferred in intermediate steps
- Challenge: Adapting SIP to MapReduce
 - ✓ Pipelined or Operation parallelism absent. Only partitioned parallelism support
 - Each job is blocked until the completion of a previous job
 - Which operators should generate / receive summary
 - All operators cannot run at the same time
 - ✓ Limited direct communication method between units
 - Shared memory/Message passing/TCP communication

Enabling Information-Passing in Hadoop Plans

➤ Compile-time IP preparation



Inter-Job Information Passing

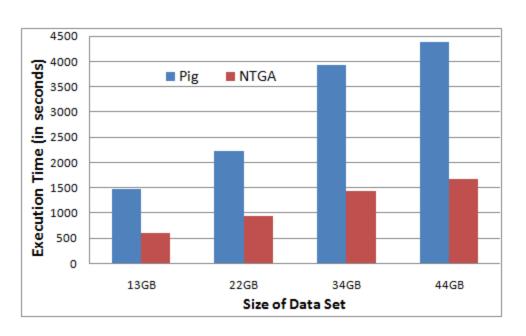


Evaluation

- Setup: 5-node Hadoop clusters on NCSU's Virtual Computing Lab*
- Dataset: Synthetic benchmark dataset generated using BSBM** tool
- ➤ Evaluating TripleGroup based Query Plans using *N-triple format* (max. 44GB approx. 170 million triples)
 - ✓ Task A Scalability with increasing size of RDF graphs
 - ✓ Task B –Scalability with increasing cluster sizes
 - ✓ Task C Comparative Study of hybrid plans
- ➤ Evaluating Inter-Job Information Passing using *SQL-dump* (max. 50GB 500000 products)
 - ✓ Task D Scalability with increasing size of RDF graphs

Experimental Results...(Task A)

Cost Analysis across Increasing size of RDF graphs (5-node)



Query Pattern:

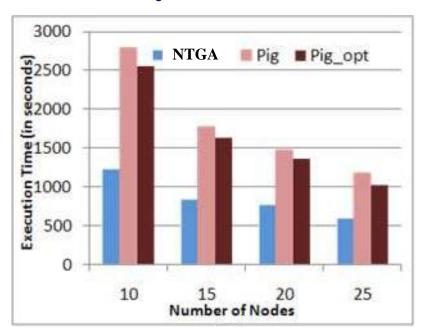
Two star-join structures
Total of 6 triple patterns
Naïve – 5 join ops
N-way join – 3 join ops
NTGA – 2 join ops

Key Observations:

- ✓ Benefit of TripleGroup based processing seen across data sizes up to 60% in most cases
- ✓ TODO delineate different types of TripleGroups after star-joins

Experimental Results...(Task B)

Cost Analysis across Increasing Cluster Sizes



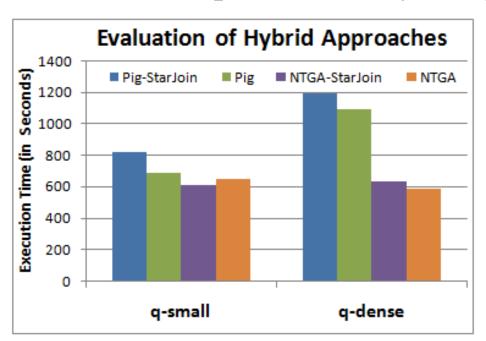
Query pattern with three star-joins and two chain-joins (32GB)

Key Observations:

- ✓ NTGA has 56% gain for 10node cluster over Pig approaches
- ✓ Pig approaches catch up with increasing cluster size
 - Increasing nodes decrease probability of disk spills with the SPLIT approach
- ✓ NTGA still maintains 45% gain across the experiments

Experimental Results...(Task C)

Comparative Study of Hybrid Plans (5-node)



Pig-StarJoin: Compute only star-joins using Pig 's JOIN;

NTGA-StarJoin: Compute only starjoins using NTGA's TG GroupBy

Query Patterns: 3 star-joins

q-small – 1,3,1 triple patterns in
each star

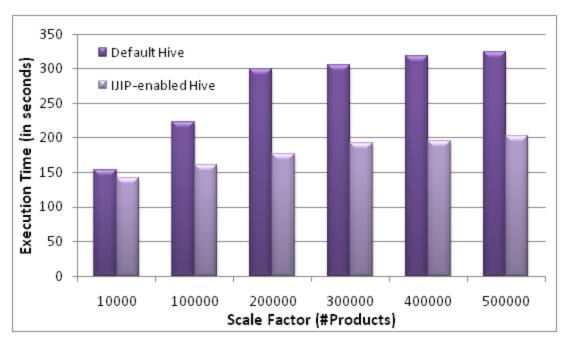
q-dense – 3 triple patterns in
each star

Key Observations:

- ✓ NTGA-StarJoin and NTGA have 42% to 46% performance gain over Pig
- ✓ NTGA better than NTGA-StarJoin for denser query patterns
- ✓ PigStarJoin worse than Pig due to overhead of flattening n-tuples into TripleGroups

Experimental Results...(Task D)

Cost Analysis across Increasing size of RDF graphs (5-node)



Key Observations:

✓IP-enabled Hive shows more than 35% performance improvement in terms of execution time

Query Pattern:

-retrieves products which have two certain properties and are classified to a certain type (three joins).
-Generates summary on

the output of the 2nd join and 3rd job prunes records by using the summary.

Related Work

MapReduce-based Processing

```
→ High-level Dataflow Languages:
         Pig Latin[Olston08], [HiveQL], [JAQL]
Graph Pattern Matching
         HadoopRDF[Husain10], SHARD[Rohloff10],
         [Huang11], RDF-Molecules([Newman08], [Hunter08])
→ Efficient Join Techniques
         Map-Reduce-Merge[Yang07], [Afrati10],
         Hadoop++ [Dittrich10], Log Processing[Blanas10]
DB/MR Hybrid Architecture
         HadoopDB [Abadi09]
Reasoning
         [Urbani07]
```


Conclusion

- ➤ Generalized query plan strategy for efficient processing of RDF data
 - ✓ TripleGroup based processing to minimize #MR cycles
 - ✓ *Inter-job information passing* to minimize intermediate data

→Future work:

- → Support for *inferencing* e.g. sameAs for multiple support datasets and subsumption hierarchies
- → Compression of URIs
- → Integrating both strategies in the same system

References

- [Dean04] Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51 (2008) 107–113
- [Olston08] Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In: Proc. International Conference on Management of data. (2008)
- [Abadi09] Abouzied, A., Bajda-Pawlikowski, K., Huang, J., Abadi, D.J., Silberschatz, A.: Hadoopdb in action: building real world applications. In: Proc. International Conference on Management of data. (2010)
- [Newman08] Newman, A., Li, Y.F., Hunter, J.: Scalable semantics: The silver lining of cloud computing. In: eScience. IEEE International Conference on. (2008)
- [Hunter08] Newman, A., Hunter, J., Li, Y., Bouton, C., Davis, M.: A scale-out RDF molecule store for distributed processing of biomedical data. In: Semantic Web for Health Care and Life Sciences Workshop. (2008)
- [Urbani07] Urbani, J., Kotoulas, S., Oren, E., Harmelen, F.: Scalable distributed reasoning using mapreduce. In: Proc. International Semantic Web Conference. (2009)
- [Abadi07] Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web Data Management Using Vertical Partitioning. VLDB 2007
- [Dittrich10] Dittrich, J., Quiane-Ruiz, J., Jindal, A., Kargin, Y., Setty, V., Schad, J.: Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing). VLDB 2010/PVLDB
- [Yang07] Yang, H., Dasdan, A., Hsiao, R., Parker Jr., D.S.: Map-Reduce-Merge: simplified relational data processing on large clusters. SIGMOD 2007
- [Afrati10] Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In: Proc. International Conference on Extending Database Technology. (2010)
- [Husain10] Husain, M., Khan, L., Kantarcioglu, M., Thuraisingham, B.: Data intensive query processing for large RDF graphs using cloud computing tools. In: Cloud Computing (CLOUD), IEEE International Conference on. (2010)
- [Huang11] Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL Querying of Large RDF Graphs. Proceedings of the VLDB Endowment, 4(11), 2011.
- [Rohloff10] Kurt Rohloff and Richard E. Schantz. High-performance, Massively Scalable Distributed Systems using the MapReduce Software Framework: the SHARD Triple-store. In Programming Support Innovations for Emerging Distributed Applications, pages 4:1–4:5, 2010.
- [Blanas10] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and Yuanyuan Tian. A Comparison of Join Algorithms for Log Processing in MapReduce. In Proc. International conference on Management of Data, 2010
- [HiveQL] http://hadoop.apache.org/hive/
- [JAQL], http://code.google.com/p/jaql

Thank You!

Possible Optimizations (1)

Issues

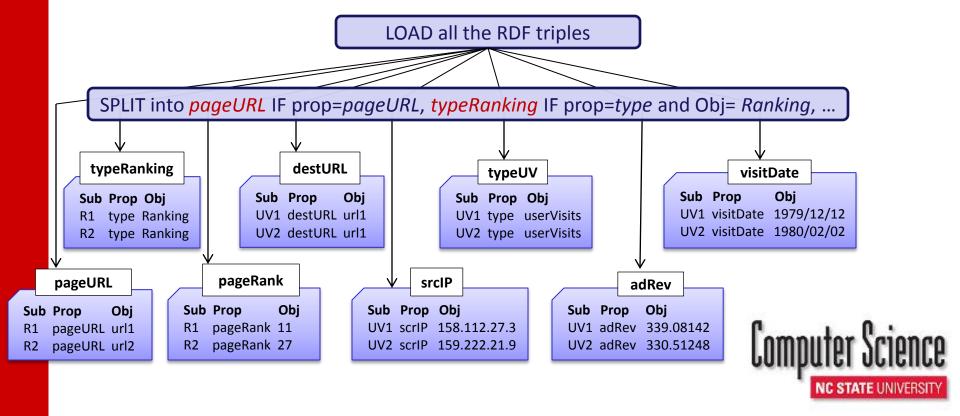
- ✓ SPLIT operator for RDF data,
 #sub flows = #unique property types
 might be a large number of subflows
- → Concurrent sub flows compete for memory resources
- → Higher risk of disk spills → increased I/O costs

Our Approach : RAPID+

- ➤ Goal : Minimize I/O and communication costs by reducing MR cycles
- ➤ Reinterpret and refactor operations into a more suitable (coalesced) set of operators NTGA algebra
- > Foundation:
 - ✓ Re-interpret multiple star joins as a *grouping* operation
 - ✓ leads to "groups of Triples" (TripleGroups) instead of n-tuples
 - ✓ different structure BUT "content equivalent"
 - ✓ NTGA- algebra on TripleGroups

Possible Optimizations (1)

- ➤ Vertical Partitioning (VP) in 1 MR cycle
 - ➤ Input file read only once → better!!
 - ✓ In Pig Latin, VP can be achieved using the SPLIT operator



NTGA Operators...(2)

- > TG GroupFilter retain only TripleGroups that satisfy the required query sub structure
 - → Structure-based filtering

```
TG
{ (&V1, label, vendor1),
  (&V1, country, US),
                                       TG GroupFilter
  (&V1, homepage, www.ven..) },
                                   (TG, {price, vendor, delDays, product})
{ (&Offer1, price, 108),
  (&Offer1, vendor, &V1),
  (&Offer1, product, &P1),
  (&Offer1, delDays, 2) },
{ (&Offer2, vendor, &V2),
  (&Offer2, product, &P3),
  (&Offer2, delDays, 1) }}
```

TG{price, vendor, delDays, product} { (&Offer1, price, 108), (&Offer1, vendor, &V1), (&Offer1, product, &P1), (&Offer1, delDays, 2) }

Eliminate TripleGroups with missing triples (edges)

NTGA Operators...(3)

- ➤ TG_Filter filter out triples that do not satisfy the filter condition (FILTER clause)
 - → Value-based filtering

```
\mathbf{TG}_{\{price, vendor, del Days, product\}}
                                                                 TG{price, vendor, delDays, product}
   { (&Offer1, price, 108),
                                                                  { (&Offer1, price,
                                                                                      108),
    (&Offer1, vendor, &V1),
                                   TG_Filter<sub>price<200</sub> (TG)
                                                                   (&Offer1, vendor, &V1),
    (&Offer1, product, &P1),
                                                                   (&Offer1, product, &P1),
    (&Offer1, delDays, 2) },
                                                                   (&Offer1, delDays, 2) }
   { (&Offer3, vendor, &V2),
    (&Offer3, product, &P3),
                                            Eliminate TripleGroups with
    (&Offer3, price, 306),
                                               triples that do not satisfy
    (&Offer3, delDays, 1) }}
                                                      filter condition
```


UPDATE

- Additional evaluation
 - ✓ Up to 65% performance gain on synthetic benchmark dataset* for three/two star-join queries
 - ✓ Experiment extended to 30-node clusters with 1 billion 3-ary triples (43GB) – 41% gain
- ➤ RAPID+ now includes a SPARQL interface
- ➤ Join us for a demo of RAPID+@VLDB2011*

Environment

- ➤ Node Specifications
 - ✓ Single / duo core Intel X86
 - ✓ 2.33 GHz processor speed
 - ✓ 4G memory
 - ✓ Red Hat Linux
- ➤ Pig 0.8.0
- ► Hadoop 0.20
 - ✓ Block size 256MB

Experiment Results

Percentage Performance Gain
= (exec time 1) – (exec time 2)
(exec time 1)

Structured Data Processing in Pig

UserVisits							
srcIP	destURL	visitDate	adRevenue	•••			
158.112.27.3	url1	1979/12/12	339.08142	••••			
158.112.27.3	url5	1979/12/15	180.334	• • • •			
150.121.18.6	url1	1979/12/28	550.7889	••••			
	\ /		•••	•••			

LOAD UserVisits	LOAD Ranking
FILTER(visitD	ate)
	ts ON destURL, ON pageURL;
STO	ORE
510	JRE

Ranking		
pageRank	pageURL	avgDur
11	url1	96
23	url2	3
18	url3	87
	\ /	

Query: Retrieve the pageRank and adRevenue of pages visited by particular users between "1979/12/01"

and "1979/12/30"

JOIN: Pig Latin → MapReduce

	srcIP	destURL	visitDate	adRev	
url1	158.112.27.3	url1	1979/12/12	339.081	•••
url2	158.112.27.3	url2	1979/12/15	180.334	•••
url1	150.121.18.6	url1	1979/12/28	550.78	•••

	pageRank	pageURL	avgDur
url1	11	url1	96
url2	23	url2	3

map

Annotate based on july level on july level on the level of the level o

Package tuples

url1 Reducer 1						
158.112.	27.3	url1	url1	11		
150.121.	18.6	url1	url1	11		

url2 Reducer 2						
158.112.	27.3	url2	url2	3		

 srcIP	destURL	pageURL	pageRank	
 158.112.27.3	url1	url1	339.081	•••
 150.121.18.6	url1	url1	550.78	•••
 158.112.27.3	url2	url2	180.334	•••

Background

- Hadoop Join Processing Techniques
 - Standard Repartitioning Join
 - Fragment-Replication Join
 - Map-Merge Join

Background

- Hadoop Join Processing Techniques (Cont.)
 - Fragment-Replication Join and Map-Merge Join
 - Alternative Join techniques
 - Process join operation in map-phase
 - Can remove the cost to sort and transfer data between phases
 - Used in very restricted ways
 - In the presence of pre-processing or
 - One of the two input relation is small enough to be buffered in available memory)

