
Efficient Processing of  

RDF Graph Pattern Matching  

on MapReduce Platforms  
 

Padmashree Ravindra, Seokyong Hong,  

HyeongSik Kim, Kemafor Anyanwu 

COUL – Semantic COmpUting research Lab 



Outline  
Background 

 Semantic Web (RDF, SPARQL) 

 Join Processing in MapReduce framework  

 RDF Graph Pattern Matching in Apache Pig 

Challenges 

Approach 
 Algebraic Optimization – TripleGroup based Processing 

 Dynamic Optimization – Information Passing 

Evaluation 

Related Work 

Conclusion and Future Work 

 

 



Linked Data and the Semantic Web 

May 2007 - # of datasets: 12 Feb 2008 - # of datasets: 32 March 2009 - # of datasets: 93 

Sep 2010 - # of datasets: 203 Sep 2011 - # of datasets:295 

Growing #RDF triples: currently 31 billion  



Example RDF Data and SPARQL Query 

Sub Prop Obj 

&V1 type VENDOR 

&V1 country US 

&V1 homepage www.vendor... 

&Offer1 vendor &V1 

&Offer1 price 108 

…. 

Data: BSBM benchmark data 

describing Vendors and their Offers 

SELECT ?hpage 

WHERE {?s   type           VENDOR . 

                  ?s   country     ?vcountry . 

                  ?s   homepage ?hpage .} 

FILTER (?vcountry = “US”); 

#Required Joins =  2 

Several joins for more complex  

pattern matching tasks 

Statements (triples) 

&V1 type VENDOR &V1 country US &V1 homepage www.vendor... &V1 type VENDOR &V1 country US &V1 type VENDOR 

Implicit Join based on 

common variables 

Query: Retrieve the homepage of US 

based Vendors  



Our Direction 

Need: Scalable and cost-effective processing 
techniques to deal with growing amount of 
Semantic Web data 

Unlikely to achieve good scalability without 
parallelization  

MapReduce platforms offer scalability in an easy-
to-use and cost effective manner 

BUT expensive for multi-join queries typical of 
Semantic Web processing e.g. SPARQL query 
processing  

 

    

 



Basics: MapReduce 
      

 
Large scale processing of data on a cluster of 

commodity grade  machines 

Users encode task as map / reduce functions, 
which are executed in parallel across the cluster 

Apache Hadoop* – open-source implementation 

Key Terms 

 Hadoop Distributed File System (HDFS) 

 Slave nodes / Task Tracker – Mappers (Reducers) execute 

the map (reduce) function 

 Master node / Job Tracker – manages and assigns 
tasks to Mappers / Reducers 

* http://hadoop.apache.org/  



1 MR cycle in Hadoop 

JobTracker 

TaskTracker 

Local disk 
Node 1 

TaskTracker 

Local disk 
Node N 

... 

control via RPC 

Hadoop Distributed File System (HDFS) 

Mapper 

Mapper 

1. Mappers load splits (I/O) 

get a split 

2. Mappers process splits 
    by executing map()  

3. Mappers sort/spill (CPU/I/O) 
    intermediate <key, value>   

sort/spill 

sort/spill 

Reducer 

Reducer 

4. Reducers retrieve intermediate 
    <key, value> from mappers 

(communication, I/O) 

receive/merge 

5. Reducers process data  
    by executing reduce() 

6. Reducers store resulting  
   <key, value> tuples to HDFS 

(I/O) 

write 

write 
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Join Processing on Hadoop 

1 A 
7 D 

2 B 
5 T 
3 Y 
8 Z 

Table A 

Table B 

Mapper 

Map Phase 

Node 1 

Mapper 

Node 2 

<A, (A, 1)> 

<D, (D, 7)> 

<B, (B, 2)> 

<T, (T, 5)> 

<Y, (Y, 3)> 

<Z, (Z, 8)> 

Reducer 

Node 1 

Reducer 

Node 2 

4 T 5 

5 F 
4 T 

<F, (F, 5)> 

<T, (T, 4)> 

Reduce Phase 

HDFS Local Disk 

HDFS 

 Standard Repartitioning Join (reduce-side) 
 map(): “tag” tuple based on join key 

 reduce(): collect tuples with same “tag” and join relevant tuples  

Problem: all tuples in both relations (should be 
distinguishable) need to be sorted and transferred 
between two phases 



Complex Query Processing on Hadoop 

Query 

Parser 

Compiler Optimizer 

Abstract Syntax Tree 

Executor 

Hadoop Job Plan 

Hadoop Framework 

Each Job in the Job Plan 

Low level implementation a burden for users   

Pig/Hive: Allow expression of tasks using high-
level query primitives  

usability, code reuse, automatic optimization 

  Support for relational-style ops – Join, Group By 

  Operators compile into Hadoop jobs 



#MR cycles = #Joins = 7 

(Data loading + sorting + 

     transfer +  materialization costs) * 7 

Expensive!!! 

SELECT ?hpage ?price ?rat1 

WHERE 

{?v    homepage   ?hpage . 

  ?v    country       ?vcountry . 

  ?o    vendor        ?v . 

  ?o    price           ?price . 

  ?o    product       ?prod  . 

  ?r    revFor         ?prod . 

  ?r    reviewer      ?rev . 

  ?r    rating          ?rat1 .} 

Execution Plan 

in Pig 

RDF Data Processing on Hadoop 

A = LOAD 
Input.rdf 

FILTER  
(homepage) 

B = LOAD 
Input.rdf 

FILTER(country) 

T1 = JOIN A ON Sub, 
                   B ON Sub; 

C = LOAD 
Input.rdf 

FILTER(vendor) 

T2 = JOIN C ON Obj, 
                  T1 ON Sub; 

STORE 

T3 = JOIN H ON Sub, 
                  T7 ON Sub; 

……. 

H= LOAD 
Input.rdf 

FILTER(rating) 

MR1
?v 

MR2 
?o 

MR7 



#MR cycles reduced from 7 to 5 

SELECT ?hpage, ?price, ?rat1  
WHERE { ?v homepage ?hpage . 
                  ?v country    ?vcou.. . 
                  ?o vendor      ?v . 
                  ?o price         ?price . 
                  ?o product    ?prod . 
                  ?r revFor      ?prod . 
                  ?r reviewer   ?rev . 
                  ?r rating1     ?rat1 .} 

SJ1 

SJ2 

J1 
(obj-sub) 

SJ3 

J2 
(obj-obj) 

*vertical-partitioning of triple relation based on properties to avoid 
self-joins on large relations 

* 

Star-joins via m-way JOIN 

Can we do better??? 



How to reduce these costs?  

Goal1: Minimize the length of MapReduce 
execution workflows 

 Reduce #iterations for disk I/O, 
communication and sorting 

Goal2: Minimize size of intermediate data 

 Reduce the #tuples sorted and transferred 
between the nodes  



Goal1: Minimizing #MR cycles   
 Concurrent processing of star-joins can 

further reduce the required #MR cycles 

Challenge: Requires support for inter-
operator parallelism in Hadoop 

 Changes to scheduler + complex partitioning 
scheme 

 



What are we proposing? 
An algebra (Nested TripleGroup Algebra - 

NTGA) for more efficient processing of RDF 
graph patterns based on a nested 
TripleGroup model  

 Don’t think of joins as joins all the time!!! 

 Sub Prop Obj 

&V1 type VENDOR 

&V1 country US 

&V1 homepage www.vendor... 

&Offer1 vendor &V1 

&Offer1 price 108 

…. 

 

 

{ 
   tg1 =   (&V1, type,            VENDOR), 
                (&V1, country,       US),                                                                
                (&V1, homepage, www.vendor...)                        
 
   tg2 =    (&Offer1,  vendor,                 &V1),       
                (&Offer1,  price,                    108), 
                (&Offer1,  product,               &P1),  
}     

Group By 

(Sub)  

“Groups of Triples” or TripleGroups 

Star-joins SJ1, SJ2, SJ3 
require ONLY 1 MR cycle!!! 



NTGA – Data Model  
 Data model based on nested TripleGroups 

More naturally capture graphs 

 TripleGroup –  

groups of triples sharing  

Subject / Object component 

 Can be nested at the Object component 

{(&Offer1, price,  108), 
  (&Offer1, vendor,  &V1),       
  (&Offer1, product, &P1),  
  (&Offer1, delDays,  2) 
} 

{(&Offer1, price,   108), 
  (&Offer1, vendor, {(&V1, label,    vendor1), 
                                  (&V1, country, US), 
                                  (&V1, homepage, www.vendors….)} 
 (&Offer1, product, &P1), 
 (&Offer1, delDays,  2) 
} 



NTGA Operators…(1) 
  TG_Unnest – unnest a nested TripleGroup 

{(&Offer1, price,   108), 
  (&Offer1, vendor,{(&V1, label,    vendor1), 
                                 (&V1, country, US), 
                                 (&V1, homepage, www.ven..)} 
 (&Offer1, product, &P1), 
 (&Offer1, delDays,  2)} 

{(&Offer1, price,   108), 
 (&Offer1, vendor, &V1), 
 (&V1, label,    vendor1), 
 (&V1, country, US), 
 (&V1, homepage, www.ven..)} 
 (&Offer1, product, &P1), 
 (&Offer1, delDays,  2)} 

TG_Unnest 

  TG_Flatten – generate equivalent n-tuple 

(&V1, label,  vendor1),                                            
(&V1, country,  US),                                                                
(&V1, homepage, www.ven...)}                         

(&V1, label, vendor1, &V1, country, US, &V1, homepage, www.ven...)  

TG_Flatten 

t1 t2 t3 

“Content 
Equivalence” 



NTGA Operators…(2) 
  TG_Join – join between different structure 

TripleGroups based on join triple patterns 

TG_Join 

{ (&Offer1, price,     108), 
  (&Offer1, vendor,  &V1),     
  (&Offer1, product, &P1), 
  (&Offer1, delDays, 2)  }     

TG{price, vendor, delDays, product} 

(&V1, label,  vendor1),                                            
(&V1, country,  US),                                                            
(&V1, homepage, ww.ven...)}  

TG{label, country, homepage} 

{(&Offer1, price,   108), 
  (&Offer1, vendor, {(&V1, label,    vendor1), 
                                  (&V1, country, US), 
                                  (&V1, homepage, www.ven..)} 
 (&Offer1, product, &P1), 
 (&Offer1, delDays,  2)} 

?o vendor ?v ?v country ?vcountry 



 

 

RDF Data Processing using NTGA 

  TripleGroups resulting from NTGA operators can 
be mapped to Pig’s n-tupled results 

 

#MR cycles reduced from 5 to 3 



Goal2: Minimizing Intermediate Data 

 Filter out irrelevant records that may not join in 
subsequent phases 

 Use side-way information passing to reduce the 
#intermediate tuples that are loaded, sorted, and 
transferred in intermediate steps 

Challenge: Adapting SIP to MapReduce 
 Pipelined or Operation parallelism absent. Only 

partitioned parallelism support 
- Each job is blocked until the completion of a previous job 

- Which operators should generate / receive summary 

- All operators cannot run at the same time 

 Limited direct communication method between units 

- Shared memory/Message passing/TCP communication  



Enabling Information-Passing in 
Hadoop Plans 

Parser 

Compiler Optimizer 

Abstract Syntax Tree 

Query 

Modified Executor 

Hadoop Job Plan 

Hadoop Framework 

Each Job in the Job Plan 

IP Planner 

Hadoop Job Plan  IP Plan 

Benefit Estimator 

Compile-time IP preparation 

An IP plan consists of  

 Dataflow graph  

 Job dependency 
graph 

 IP descriptors 



Inter-Job Information Passing 

HDFS 

Map Phase 

Reduce Phase 

Summarizer 

job1 

Summarizer 

job2 job3 

Record Pruner 

Summary 

Input Table Input Table 

Intermediate Intermediate 

Summary 

Summary is either in a bloom-filter or in a compressed format. 

Output 

DistributedCache 



Evaluation 
  Setup: 5-node Hadoop clusters on NCSU’s 

Virtual Computing Lab*  

  Dataset: Synthetic benchmark dataset 
generated using BSBM** tool  

Evaluating TripleGroup based Query Plans 
     using N-triple format (max. 44GB – approx. 170 million triples) 

 Task A – Scalability with increasing size of RDF graphs 

 Task B –Scalability with increasing cluster sizes 

 Task C – Comparative Study of hybrid plans 

Evaluating Inter-Job Information Passing 
 using SQL-dump (max. 50GB – 500000 products) 

 Task D – Scalability with increasing size of RDF graphs 

  *https://vcl.ncsu.edu  

  **http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/ 



Experimental Results…(Task A) 

Cost Analysis across Increasing size of RDF graphs (5-node) 

Key Observations: 

Benefit of TripleGroup based processing seen across data sizes – up 

to 60% in most cases    

 TODO - delineate different types of  TripleGroups after star-joins  

Query Pattern:  

Two star-join structures 

Total of 6 triple patterns 

Naïve – 5 join ops 

N-way join – 3 join ops 

NTGA – 2 join ops 



Experimental Results…(Task B) 

Cost Analysis across Increasing Cluster Sizes 

Query pattern with three star-joins 

and two chain-joins (32GB) 

Key Observations: 

 NTGA has 56% gain for 10-

node cluster over Pig approaches 

 Pig approaches catch up with 

increasing cluster size 

 Increasing nodes decrease 

probability of disk spills with 

the SPLIT approach 

 NTGA still maintains 45% gain 

across the experiments 

 

NTGA 



Experimental Results…(Task C) 

Comparative Study of Hybrid Plans (5-node) 

Key Observations: 

 NTGA-StarJoin and NTGA have 42% to 46% performance gain 

over Pig 

 NTGA better than NTGA-StarJoin for denser query patterns 

 PigStarJoin worse than Pig due to overhead of  

     flattening n-tuples into TripleGroups 

Query Patterns: 3 star-joins 

q-small – 1,3,1 triple patterns in 

each star 

q-dense – 3 triple patterns in 

each star 

Pig-StarJoin: Compute only star-joins 

using Pig ’s JOIN;   

NTGA-StarJoin: Compute only star-

joins using NTGA’s TG_GroupBy  



Experimental Results…(Task D) 

Cost Analysis across Increasing size of RDF graphs (5-node) 

Key Observations: 

IP-enabled Hive shows more than 35% 

performance improvement in terms of 

execution time   

 

Query Pattern:  

-retrieves products which 

have two certain 

properties and are 

classified to a certain 

type (three joins). 

-Generates summary on 

the output of the 2nd join 

and 3rd job prunes 

records by using the 

summary. 



Related Work 
MapReduce-based Processing 

Graph Pattern Matching 
 HadoopRDF[Husain10], SHARD[Rohloff10],  

 [Huang11], RDF-Molecules([Newman08], [Hunter08]) 

High-level Dataflow Languages:  
 Pig Latin[Olston08], [HiveQL], [JAQL] 

Efficient Join Techniques 

 Map-Reduce-Merge[Yang07], [Afrati10],  

 Hadoop++ [Dittrich10], Log Processing[Blanas10] 

DB/MR Hybrid Architecture  

 HadoopDB [Abadi09] 

Reasoning  

  [Urbani07]  



Conclusion  
Generalized query plan strategy for 

efficient processing of RDF data  

 TripleGroup based processing to minimize #MR 
cycles 

 Inter-job information passing to minimize 
intermediate data 

Future work: 
Support for inferencing e.g. sameAs for multiple support 

datasets and subsumption hierarchies 

Compression of URIs 

Integrating both strategies in the same system 
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Possible Optimizations (1) 18/45 

Issues 

 SPLIT operator for RDF data, 

           #sub flows = #unique property types 

        might be a large number of subflows 

Concurrent sub flows compete for memory resources  

Higher risk of disk spills  increased I/O costs 



Our Approach : RAPID+ 
 Goal : Minimize I/O and communication costs 
by reducing MR cycles 
Reinterpret and refactor operations into a more 
suitable (coalesced) set of operators – NTGA 
algebra 
 Foundation: 
 Re-interpret multiple star joins as a grouping 
operation 
leads to “groups of Triples” (TripleGroups) 
instead of n-tuples 
different structure BUT “content equivalent”  

 NTGA- algebra on TripleGroups 

22/45 



Possible Optimizations (1) 
Vertical Partitioning (VP) in 1 MR cycle 

 Input file read only once  better!! 

 In Pig Latin, VP can be achieved using the 
SPLIT operator 

17/45 

LOAD all the RDF triples  

Sub  Prop  Obj 
R1    type  Ranking 
R2    type  Ranking 

typeRanking 

Sub   Prop        Obj 
UV1  destURL  url1 
UV2  destURL  url1 

destURL 

Sub  Prop         Obj 
R1    pageURL  url1 
R2    pageURL  url2 

pageURL 

Sub  Prop           Obj 
R1    pageRank  11 
R2    pageRank  27 

pageRank 

Sub   Prop   Obj 
UV1  type   userVisits 
UV2  type   userVisits 

typeUV 

Sub   Prop   Obj 
UV1  scrIP   158.112.27.3 
UV2  scrIP   159.222.21.9 

srcIP 

Sub   Prop     Obj 
UV1  adRev   339.08142 
UV2  adRev   330.51248 

adRev 

Sub   Prop          Obj 
UV1  visitDate   1979/12/12 
UV2  visitDate   1980/02/02 

visitDate 

SPLIT into pageURL IF prop=pageURL, typeRanking IF prop=type and Obj= Ranking, …  



NTGA Operators…(2) 
  TG_GroupFilter – retain only TripleGroups 

that satisfy the required query sub structure 

     Structure-based filtering 

 

TG_GroupFilter 

{ (&V1, label,    vendor1),                                            
  (&V1, country,   US),                                                                
  (&V1, homepage, www.ven..) },                           
 
{ (&Offer1, price,     108), 
  (&Offer1, vendor,  &V1),     
  (&Offer1, product, &P1), 
  (&Offer1, delDays, 2)  } , 
 
{ (&Offer2, vendor,  &V2),     
  (&Offer2, product, &P3), 
  (&Offer2, delDays, 1)  } }   

{ (&Offer1, price,     108), 
  (&Offer1, vendor,  &V1),     
  (&Offer1, product, &P1), 
  (&Offer1, delDays, 2)  }     

(TG, {price, vendor, delDays, product}) 

TG TG{price, vendor, delDays, product} 

Eliminate TripleGroups 
with missing triples (edges) 



NTGA Operators…(3) 
  TG_Filter – filter out triples that do not satisfy 

the filter condition (FILTER clause) 

     Value-based filtering 

TG_Filterprice<200(TG) 

{ (&Offer1, price,     108), 
  (&Offer1, vendor,  &V1),     
  (&Offer1, product, &P1), 
  (&Offer1, delDays, 2)  } , 
 
{ (&Offer3, vendor,  &V2),     
  (&Offer3, product, &P3), 
  (&Offer3, price,     306), 
  (&Offer3, delDays, 1)  } }   

{ (&Offer1, price,     108), 
  (&Offer1, vendor,  &V1),     
  (&Offer1, product, &P1), 
  (&Offer1, delDays, 2)  }     

TG{price, vendor, delDays, product} 

Eliminate TripleGroups with 
triples that do not satisfy 

filter condition 

TG{price, vendor, delDays, product} 



UPDATE  

 Additional evaluation –  
 Up to 65% performance gain on synthetic benchmark 

dataset* for three/two star-join queries 

 Experiment extended to 30-node clusters with 1 
billion 3-ary triples (43GB) – 41% gain 

RAPID+ now includes a SPARQL interface 

Join us for a demo of RAPID+@VLDB2011* 

 

 

*Kim, H., Ravindra, P., Anyanwu, K : From SPARQL to MapReduce: 

The Journey using a Nested TripleGroup Algebra. To appear In: Proc. 

International Conference on Very Large Data Bases. (VLDB 2011) 



Environment 
Node Specifications 
 Single / duo core Intel X86 

 2.33 GHz processor speed 

 4G memory 

 Red Hat Linux 

Pig 0.8.0  

Hadoop 0.20 
 Block size 256MB 

 



Experiment Results 
Percentage Performance Gain  

= (exec time 1) – (exec time 2) 

              (exec time 1) 

 
 

 



Structured Data Processing in Pig 

srcIP destURL visitDate adRevenue … 

158.112.27.3 url1 1979/12/12 339.08142 …. 

158.112.27.3 url5 1979/12/15 180.334 …. 

150.121.18.6 url1 1979/12/28 550.7889 …. 

… … … … … 

pageRank pageURL avgDur 

11 url1 96 

23 url2 3 

18 url3 87 

… … … 

UserVisits 

Ranking 

Query: Retrieve the pageRank and adRevenue of pages visited by 

particular users between “1979/12/01”  

and “1979/12/30” 

LOAD 
UserVisits 

LOAD 
Ranking 

FILTER(visitDate) 

JOIN UserVisits ON destURL, 
         Ranking ON pageURL; 

STORE 
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Package tuples 

JOIN 
UserVisits ON destURL, 
Ranking ON pageURL; 

JOIN: Pig Latin  MapReduce  
UserVisits Ranking 

Annotate based on 
join key 

map 

reduce 

Reducer 1 Reducer 2 
158.112.27.3 url1 url1 11 … 

srcIP destURL visitDate adRev … 

158.112.27.3 url1 1979/12/12 339.081 … 

158.112.27.3 url2 1979/12/15 180.334 … 

150.121.18.6 url1 1979/12/28 550.78 … 

url2 
url1 

pageRank pageURL avgDur 

11 url1 96 

23 url2 3 

url1 
url2 

url1 

url1 

150.121.18.6 url1 url1 11 … 

url2 
158.112.27.3 url2 url2 3 … 

… srcIP destURL pageURL pageRank … 

… 158.112.27.3 url1 url1 339.081 … 

… 150.121.18.6 url1 url1 550.78 … 

… 158.112.27.3 url2 url2 180.334 … 

11/45 



Background 

• Hadoop Join Processing Techniques 

– Standard Repartitioning Join 

– Fragment-Replication Join 

– Map-Merge Join 

 



Background 

• Hadoop Join Processing Techniques (Cont.) 

– Fragment-Replication Join and Map-Merge Join 

• Alternative Join techniques 

• Process join operation in map-phase 

– Can remove the cost to sort and transfer data between phases 

• Used in very restricted ways  

– In the presence of pre-processing or  

– One of the two input relation is small enough to be buffered 

in available memory) 

 


