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Surface Temperature Analysis 

•  Global surface temperature anomalies relative to base 
–  On average, successive decades 0.17 degrees warming 

•  Warming in recent decades is larger over land than ocean 
–  US:  50%  
–  Eurasia: 2x  
–  Poles: 3x 
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Motivation for investigating MapReduce 

•  Urbanisation significantly 
impacts accuracy of 
temperature measured 
by stations located in or 
near urban areas 

•  Global satellite measurement of night lights allow check of 
magnitude of urban influence 
–  Perform adjustments on temperature data for “bright” urban stations 

to agree with the temperature data of nearby rural stations.  

•  This adjustment is relatively computationally intensive 
–  But also has non-trivial (if simple) data access patterns 
–  Interesting for D3Science/3DPAS and UK CloudSIG communities 
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MapReduce – Weather Data Example 

•  Map processes a key/value pair to generate a set of intermediate key/value pairs 

•  Reduce merges intermediate values associated with the same key 

•  Temperature record sets 

•  Find highest temperature for each year 
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GISSTEMP/ccc-gistemp/mrjob 
•  Open-source model for estimating the global temperature change written in 

Fortran 
–  Implemented by NASA Goddard Institute of Space Studies (GISS) 

•  ccc-gistemp is a re-implementation of the NASA GISTEMP in Python from 
Clear Climate Code (CCC) for improved clarity. 

•  Merits of ccc-gistemp: 
•  Improved readability and maintainability 
•  Efficient use of Python data-structures and iterators 
•  Extensible programming style 
•  Discussion groups to clarify doubts and share ideas 
•  Almost identical results produced to that of the original GISS code 

•  mrjob is a package that provides a simple abstraction for writing MapReduce 
jobs in Python and Hadoop by defining steps for specifying ‘mapper’ and 
‘reducer’ functions, input and output file format (protocol) and paths 

–  ability to write multi-step jobs (one map-reduce step feeds into the next) 
–  custom switches which can be added to jobs, including file options 
–  Implements efficient cPickle module for serialising/deserialising complex data 

structures 
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ccc-gistemp workflow 
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Profiling original code 

•  Majority of code spent in Steps 0, 1, 2 and 3 
–  Step 0 is the pre-processing step where all datasets (GHCN, USHCN, 

SCAR, Hohenpeissenberg) are read and joined 
–  Appears ideal for  

parallelisation but  
requires global  
synchronisation  
with a compare- 
merge operation 

–  mrjob+hadoop not  
designed to  
simultaneously  
operate on two  
independent input  
sources 

–  Step 0 not ported 
to MapReduce 
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Revised ccc-gistemp workflow 
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Benchmarking Infrastructure 

•  EDIM1: “Amdahl- 
balanced” cluster 

•  Used a 16 node  
partition of EDIM1 
–  1 master node,  

1 job tracker, 14 slaves (28 cores) 
–  Averaged over consecutive executions  
–  Observed variance between runs always less than +/-1%  

•  Dataset: http://www.ncdc.noaa.gov/ghcnm/ 
–  6000 temperature, 7500 precipitation, 2000 pressure stations 
–  Many years of data (earliest 1697, 1650+ records greater than 100 

years) 
–  ~60MB in total  
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Step 1: Combine station records 
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Step 1: Combine station records 

•  Trivially data-parallel and well suited to MapReduce. 
–  Hadoop implementation incurs considerable start-up costs which are 

usually amortised when processing large amounts of data 
–  However, if the data-set is small, these initial start-up costs dominate 

even when executed on large number of nodes (e.g. HDFS distribute) 
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Step 2: Clean data / urban adjustments 
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Step 2: Clean data / urban adjustments 

•  Uneven distribution of workload due to uneven distribution of 
values associated with a ‘key’ 
–  MapReduce assigns all values associated with the same key to 

 a single reduce task  
–  Large number of records with station id beginning with ‘42’ (USA) 
–  Code modified to  

use different part  
of station id as key 

–  Merge Step 1 and  
Step 2 to avoid  
excessive  
“pickling/depickling” 
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Step 3: Convert to gridded anomaly sets 

•  Conventional approach 
–  Output of Step 2 as input of 

Step 3 

•  Optimised approach 
–  No direct input to Step 3 
–  Read regions directly 
–  Convert to key/value pairs 
–  Choose 1 of the 4-tuples 

(lat/long) as key and tuple 
of region + associated 
subboxes as value 

–  Choose longitude over 
latitude for better balancing 
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Step 3: Convert to gridded anomaly sets 

•  Hadoop load balancing ideally suited for jobs that are large, 
but can be divided into smaller units of nearly equal size 
–  A single large task can slow the overall performance 

•  Unique keys limited by longitudes dividing sphere 
–  Scaling beyond  

maximum number 
of reduce tasks  
that can be  
created causes  
a significant  
decline in  
performance due  
to the presence  
of idle processing  
units 
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Comparison of original and ported code 
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Serial Code 
Step 0: 9.9% 
Step 1: 16.7% 
Step 2: 16.5% 
Step 3: 60.4% 
Step 4: 0.1% 
Step 5: 2.3% 

MR code 16cores 
Step 0: 17.2% 
Step 1: 16.2% 
Step 2: 15.7% 
Step 3: 46.5% 
Step 4: 0.1% 
Step 5: 4.1% 

MR/Serial 
Step 1: 55.4% 
Step 2: 85.2% 
Step 3: 44.0% 



Conclusions 
•  It’s not essential to comprehend the entire algorithm to be able to port 

codes 
–  Complexities with data partitioning, scheduling, handling machine-failures and 

communication are automatically handled by the framework 

•  Skewed data can have a significant impact on performance of Hadoop 
–  Essential to understand data-access patterns to be able to modify the algorithm to 

operate on well-distributed key/value pairs, and to lessen the need for global 
synchronisation across all reduce tasks 

•  Choosing the right key is the key! 

•  Future work 
–  Performance comparison on EDIM1, UK HE clouds & AWS/EMR up to 128+ cores 
–  Porting of ccc-gistemp to other scalable systems intended for data-intensive 

computing such as Dryad, All-Pairs and Pregel 
–  Performance evaluation of the available key/value stores such as Voldemort, 

HBase, PostgreSQL and Redis 
–  Investigate implementations of MapReduce utilising high-performance filesystems 

and key-value store based MapReduce 
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