
Neil Chue Hong
Director, Software Sustainability Institute

N.ChueHong@epcc.ed.ac.uk
+44 131 650 5957

Evaluating the suitability
of MapReduce for

surface temperature
analysis codes

Vinay Sudhakaran and Neil Chue Hong
The Second International Workshop on

Data-Intensive Computing in the Clouds

14th November 2011, Seattle, USA

Surface Temperature Analysis

•  Global surface temperature anomalies relative to base
–  On average, successive decades 0.17 degrees warming

•  Warming in recent decades is larger over land than ocean
–  US: 50%
–  Eurasia: 2x
–  Poles: 3x

2

Motivation for investigating MapReduce

•  Urbanisation significantly
impacts accuracy of
temperature measured
by stations located in or
near urban areas

•  Global satellite measurement of night lights allow check of
magnitude of urban influence
–  Perform adjustments on temperature data for “bright” urban stations

to agree with the temperature data of nearby rural stations.

•  This adjustment is relatively computationally intensive
–  But also has non-trivial (if simple) data access patterns
–  Interesting for D3Science/3DPAS and UK CloudSIG communities

3

MapReduce – Weather Data Example

•  Map processes a key/value pair to generate a set of intermediate key/value pairs

•  Reduce merges intermediate values associated with the same key

•  Temperature record sets

•  Find highest temperature for each year

4

GISSTEMP/ccc-gistemp/mrjob
•  Open-source model for estimating the global temperature change written in

Fortran
–  Implemented by NASA Goddard Institute of Space Studies (GISS)

•  ccc-gistemp is a re-implementation of the NASA GISTEMP in Python from
Clear Climate Code (CCC) for improved clarity.

•  Merits of ccc-gistemp:
•  Improved readability and maintainability
•  Efficient use of Python data-structures and iterators
•  Extensible programming style
•  Discussion groups to clarify doubts and share ideas
•  Almost identical results produced to that of the original GISS code

•  mrjob is a package that provides a simple abstraction for writing MapReduce
jobs in Python and Hadoop by defining steps for specifying ‘mapper’ and
‘reducer’ functions, input and output file format (protocol) and paths

–  ability to write multi-step jobs (one map-reduce step feeds into the next)
–  custom switches which can be added to jobs, including file options
–  Implements efficient cPickle module for serialising/deserialising complex data

structures

5

ccc-gistemp workflow

6

Profiling original code

•  Majority of code spent in Steps 0, 1, 2 and 3
–  Step 0 is the pre-processing step where all datasets (GHCN, USHCN,

SCAR, Hohenpeissenberg) are read and joined
–  Appears ideal for

parallelisation but
requires global
synchronisation
with a compare-
merge operation

–  mrjob+hadoop not
designed to
simultaneously
operate on two
independent input
sources

–  Step 0 not ported
to MapReduce

7

Revised ccc-gistemp workflow

8

Benchmarking Infrastructure

•  EDIM1: “Amdahl-
balanced” cluster

•  Used a 16 node
partition of EDIM1
–  1 master node,

1 job tracker, 14 slaves (28 cores)
–  Averaged over consecutive executions
–  Observed variance between runs always less than +/-1%

•  Dataset: http://www.ncdc.noaa.gov/ghcnm/
–  6000 temperature, 7500 precipitation, 2000 pressure stations
–  Many years of data (earliest 1697, 1650+ records greater than 100

years)
–  ~60MB in total 

9

Step 1: Combine station records

10

Step 1: Combine station records

•  Trivially data-parallel and well suited to MapReduce.
–  Hadoop implementation incurs considerable start-up costs which are

usually amortised when processing large amounts of data
–  However, if the data-set is small, these initial start-up costs dominate

even when executed on large number of nodes (e.g. HDFS distribute)

11

Step 2: Clean data / urban adjustments

12

Step 2: Clean data / urban adjustments

•  Uneven distribution of workload due to uneven distribution of
values associated with a ‘key’
–  MapReduce assigns all values associated with the same key to

 a single reduce task
–  Large number of records with station id beginning with ‘42’ (USA)
–  Code modified to

use different part
of station id as key

–  Merge Step 1 and
Step 2 to avoid
excessive
“pickling/depickling”

13

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 5 10 15 20 25 30

Sp
ee

du
p

Number of Cores

Original Code (Dataset = 100%) Optimized Code (Dataset = 100%) Optimized Code (Dataset = 50%)

Step 3: Convert to gridded anomaly sets

•  Conventional approach
–  Output of Step 2 as input of

Step 3

•  Optimised approach
–  No direct input to Step 3
–  Read regions directly
–  Convert to key/value pairs
–  Choose 1 of the 4-tuples

(lat/long) as key and tuple
of region + associated
subboxes as value

–  Choose longitude over
latitude for better balancing

14

Step 3: Convert to gridded anomaly sets

•  Hadoop load balancing ideally suited for jobs that are large,
but can be divided into smaller units of nearly equal size
–  A single large task can slow the overall performance

•  Unique keys limited by longitudes dividing sphere
–  Scaling beyond

maximum number
of reduce tasks
that can be
created causes
a significant
decline in
performance due
to the presence
of idle processing
units

15

Comparison of original and ported code

16

Serial Code
Step 0: 9.9%
Step 1: 16.7%
Step 2: 16.5%
Step 3: 60.4%
Step 4: 0.1%
Step 5: 2.3%

MR code 16cores
Step 0: 17.2%
Step 1: 16.2%
Step 2: 15.7%
Step 3: 46.5%
Step 4: 0.1%
Step 5: 4.1%

MR/Serial
Step 1: 55.4%
Step 2: 85.2%
Step 3: 44.0%

Conclusions
•  It’s not essential to comprehend the entire algorithm to be able to port

codes
–  Complexities with data partitioning, scheduling, handling machine-failures and

communication are automatically handled by the framework

•  Skewed data can have a significant impact on performance of Hadoop
–  Essential to understand data-access patterns to be able to modify the algorithm to

operate on well-distributed key/value pairs, and to lessen the need for global
synchronisation across all reduce tasks

•  Choosing the right key is the key!

•  Future work
–  Performance comparison on EDIM1, UK HE clouds & AWS/EMR up to 128+ cores
–  Porting of ccc-gistemp to other scalable systems intended for data-intensive

computing such as Dryad, All-Pairs and Pregel
–  Performance evaluation of the available key/value stores such as Voldemort,

HBase, PostgreSQL and Redis
–  Investigate implementations of MapReduce utilising high-performance filesystems

and key-value store based MapReduce

17

