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ABSTRACT

Database service providers face heterogeneous customer work-
loads with widely varying characteristics. The query schedul-
ing plays a critical role in serving such workloads and in-
volves the careful consideration of specific requirements in-
troduced in service provisioning environments. As a part of
our real platform building process, we have collected spe-
cific requirements for the scheduling framework through ex-
tensive interactions with business organizations that provide
services to real clients. Although there is a very large body
of previous work in the scheduling area, there is no single
scheduling method that is designed to satisfy all of our re-
quirements. However, some of them may address certain
aspects of those requirements. In this work, we rigorously
evaluate a comprehensive set of such scheduling methods
and present how they perform with respect to the full re-
quirements list. We also propose and evaluate an effective
extension to the most promising method, iCBS, we identified
through the evaluations in this space.

1. INTRODUCTION

Cloud computing has emerged as a promising computing
and business model. By providing on-demand scaling capa-
bilities without any large upfront investment or long-term
commitment, cloud computing is attracting a large variety
of applications. The database community has also shown a
great interest in exploiting this new platform for data man-
agement services [1, 3] in a highly scalable and cost-efficient
manner [2, 9, 7, 19].

Cloud computing presents many challenges and opportu-
nities for data management services. For instance, database
service providers may face heterogeneous customer work-
loads with widely varying characteristics. To serve such
workloads, they may have to use a diverse set of specialized
database products and technologies to ensure that customers
obtain the benefits of those products specifically tailored for
their needs.

With this motivation, we are building a data manage-
ment platform in the cloud, called CloudDB [14, 22, 30,
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Figure 1: Conceptual system diagram: main func-
tionality of ICDC

6, 25, 5, 31] at NEC Labs. One important component of
the CloudDB is the Intelligent Cloud Database Coordinator
(ICDC), which is responsible for all functions and decisions
regarding workload dispatching, workload scheduling, and
resource capacity planning, as shown in Figure 1.

When a query! arrives, ICDC first estimates its query
execution time?, based on the workload history and predic-
tion techniques [31]. The dispatcher immediately assigns the
query to one of the servers, according to a dispatching pol-
icy; at each server, a scheduling policy decides which query
should be executed first from the queue. The capacity plan-
ning component is in charge of determining how many re-
sources (i.e., database servers) to be allocated to the system.
The capacity planner is aware of the status of the resource
scheduler and that of the query dispatcher and use them for
capacity planning decisions. While all of these three com-
ponents are important for ICDC, in this paper we focus on
workload scheduling aspect of ICDC. In order to effectively
manage and control CloudDB, a database service offering,
ICDC focuses on Service Level Agreements (SLAs) and the
service provider’s revenue as the two main metrics to opti-
mize, rather than low level system metrics such as average
response time or system throughput.

During the design of such a system, we have collected
specific requirements for the scheduling framework through
extensive interactions with business organizations that pro-
vide services to real clients, as follows:

"We use query and job interchangeably in this paper.

2As an alternative, one may estimate the low-level resource
demand of individual queries (e.g. CPU, I/O, and memory)
and manage scheduling, dispatching, and capacity based on
that, as done in [4]. In this paper, we take a higher level ap-
proach based on execution time, an approach that we believe
to be more manageable and yet quite effective [15].



e Service providers’ profit should be the main metric of
optimization.

e There should be a capability to model and manage
SLAs that translate varying levels of service quality
into service providers’ profit or penalty, e.g. a step
function, which we refer to as soft SLA in this paper.

e There should be a capability to define a separate ser-
vice level objective (i.e. termed hard SLA in this pa-
per) for some or all of the jobs in addition to the soft
SLAs above: it is highly desired to meet the hard SLA,
while its violation may or may not have direct mone-
tary penalties.

e The system should be able to manage the SLAs at the
finest granularity level, i.e., per job basis, as opposed
to coarser granularity levels, such as a percentile basis.

e The system should be able to support multiple users,
who share the same system resources, with multiple job
classes, and multiple SLA definitions corresponding to
those job classes.

e The complexity of the scheduling framework should be
very small to cope with a high job arrival rate or bursts
in the real system.

Although there is a very large body of previous work in the
scheduling literature [27], to the best of our knowledge there
is no single scheduling method that is designed to satisfy all
of our requirements. However, some of them may address
certain aspects of those requirements. In this work, our goal
is to rigorously evaluate a comprehensive set of such schedul-
ing methods and present how they perform with respect to
the full requirements list. We also propose and evaluate an
extension to the most promising method, iCBS [5], based on
our evaluations.

As mentioned in the requirements, we consider two types
of SLAs, namely soft SLAs and hard SLAs: the soft SLAs
describe SLA profit as a function of response time. For ex-
ample, a job that incurs no penalty for the service provider if
it finishes within 500 ms and $1 penalty otherwise. As there
are a number of users in the system with individual SLAs,
the service provider may choose to serve the jobs from dif-
ferent users at varying levels instead of trying to serve them
equally to optimize the profit. A hard SLA specifies a sin-
gle firm deadline objective for each job. The objective is
defined either by the user or the service provider. The vio-
lation of the objective may (e.g., penalty payment or service
fee discount) or may not (e.g., poor user experience or a bad
company image) have direct monetary consequences. While
some systems have only one of these two SLA types, we con-
sider the case where the two co-exist, which is the case for
our system. We seek to manage both SLA profit under soft
SLAs and the deadline violation count under hard SLAs.

Toward this goal, we make the following contributions:

Identification of Dual-SLA Problem We identify and
formalize the profit and deadline violation management un-
der soft and hard SLAs.

Scheduling for both Soft and Hard SLAs We pro-
pose a scheduling policy called iCBS-DH, which is an ex-
tension of existing cost-aware scheduler called iCBS [5]. By
adding a small but effective feature called deadline hint to
the deadline-unaware iCBS, we create a new scheduler that
can handle both soft and hard SLAs.
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Figure 2: SLA revenue and penalty cost functions

Experimental study We evaluate a comprehensive set
of scheduling policies in an extensive experimental study.
The experimental study covers a wide range of variables in
real systems, including various shapes of SLA functions and
deadlines, varying workload characteristics, system load lev-
els, and service cost structures etc.

2. SLA AND PROFIT MODELS

2.1 Service Level Agreements

SLAs in general may be defined in terms of various cri-
teria, such as service latency, throughput, consistency, se-
curity, etc. In this paper, we focus on service latency, or
response time. Even for the response time alone, there can
be different specification methods such as based on i) the
average query response time [34], ii) the tail distribution
of query response time [21], or iii) the individual query re-
sponse time [15]. We choose the last one, as we outlined in
our requirements

For each specification method, we can also design SLA
either as a soft SLA or a hard SLA as follows.

e Soft SLA: A soft SLA corresponds to agreed levels of
service in the contract. An SLA penalty (cost) func-
tion may have various shapes, such as a linear function,
a stepwise function, piecewise linear function, or any
general curve. As in [34], we believe that the step-
wise function shown in Figure 2(a) is one of the most
natural choices for the real-world contracts since it is
easy to be described in natural language. In the SLA
revenue function shown in Figure 2(a), the client pay
i) Ry if the corresponding query finishes within X1, ii)
R; if the query finished between X7 and X, or iii) Ra
if the query response time is more than X,. 3

e Hard SLA: A hard SLA has a single hard deadline to
meet, and if the deadline is missed, it is counted as a
violation. The specification of this type of SLAs (also
referred to as constraints in this paper) may come from
the client or the cloud service provider. For example,
there are cases where a cloud provider needs to use
hard SLAs as a tool to control various business objec-
tives, e.g., controlling the worst case user experience.
Therefore the violation of a hard SLA may or may

3Note that when the response time becomes long enough to
enter the last cost step, service providers may choose to drop
the job since they already incurred the highest SLA cost
possible, and they have no economic incentive to continue
serving the job. In this paper, for simplification, we never
intentionally drop a job.



not correspond to direct financial terms in the client
contracts.

2.2 Profit Model

In our system, we support multiple clients, where each
client has its own database and an independent workload.
Each client has one or more job classes, where each job class
has a common SLA, shared by all jobs in the job class.

Given the SLA revenue function, R(x), defined as above,
we derive the SLA penalty cost function, C(x), as:

C(x) = Ro — R(x)

An example is shown in Figure 2(b). Note that profit maxi-
mization based on R(z), which is our objective, is equivalent
to minimizing SLA penalty cost based on C(z). In the rest
of the paper, we focus on minimization of C'(x).

3. SCHEDULING ALGORITHMS

In this section, we introduce the scheduling algorithms.

3.1 Cost- and Deadline-unaware Scheduling

FCFS: First-Come First-Served. This is the most popular
type of scheduling policy, where jobs are executed in the
order of arrival.

SJF: Shortest Job First. Among the jobs in the queue,
the one with the shortest execution time (i.e. service time) is
scheduled first. Once scheduled, the job runs to finish with-
out preemption. SLA cost function or deadline information
is not used for the scheduling decision.

3.2 Deadline-aware Scheduling

EDF: Earliest Deadline First. The job with the earliest
deadline is executed first. SLA cost function is not used for
the scheduling decision.

AED: Adaptive EDF, proposed in [15]. It tries to avoid
the weakness of EDF, which is the domino effect under the
overload situation, where all jobs misses the deadline. It
does not use SLA cost function information or execution
time information. Two parameters in the paper, HITbatch
and ALLbatch, are both set to 200, which performed well
for our workload.

3.3 Cost-aware Scheduling

BEValue2: A scheduling algorithm proposed in [18]. BE-
Value2 is a modified version of EDF that addresses EDF’s
weakness at overload. We consider BEValue2 as cost-aware
scheduler, rather than deadline-aware one, since they use
the term deadline to refer to the time where the SLA cost
increases suddenly, similar to our soft SLA cost step time,
and it is different from our hard deadline, which does not
have any explicit cost associated. So we give SLA cost func-
tion information to BEValue2, and not the deadline. It also
exploits execution time information. For the scheduler pa-
rameter, overload probability threshold, we use 0.4, which
is suggested in the paper.

FirstReward: A scheduling algorithm proposed in [17].
While this is a highly sophisticated scheduling policy consid-
ering benefit and opportunity cost of each scheduling choice,
each scheduling has a high overload of O(n?), where n is the
number of jobs in the queue, and this is often very slow.
Note that iCBS below avoids this problem. FirstReward
uses SLA cost function information and execution time in-

formation, but not the deadline. For the parameters, alpha
and discountRate, we use 0.3 and 0.01.

iCBS: Peha and Tobagi have proposed a heuristic-based
cost-based scheduling policy, called CBS [23, 24], which has
superior performance in terms of query cost minimization.
The high level idea is to first re-evaluate the priorities of
all jobs in the queue at the moment when a scheduling de-
cision is needed and then pick the query with the highest
priority, at that given moment, which in turn maximizes
the expected global total profit. To evaluate the priority of
job i, CBS considers two possible cases: i) the job is chosen
to be scheduled now, or ii) some other job is chosen. The
former case will incur a cost of ¢;(t) to the job i, where c¢;(t)
is the cost function of job i and ¢ is the time job i has been
staying in the queue so far. For the case ii, it is assumed
that the job gets delayed by an additional wait time, 7, be-
fore it is served, which will result in a cost of ¢;(¢+ 7). Since
the value of 7 is not known, CBS uses a probability density
function of 7, a(7), and compute the ezpected cost using it.
Based on these two scenarios, the CBS priority for a job 4 is
defined as:

pi(t) = /Oooa(T) cei(t+7) dr — () (1)

After the p;(¢) value is computed, it is then divided by the
job’s service time, since longer job occupies the server for
a longer time, delaying other jobs for a longer time. CBS
chooses the job with the highest priority among all jobs in
the queue.

In general, it is difficult to find an optimal a(7), but the
authors show that the exponential function, a(r) = 1/5 -
eiT/ﬁ, works well in practice. 8 needs to be set to average
execution time and we use f=1 msec in our evaluation.

CBS has a time complexity of O(n), where n is the number
of jobs in the queue. This is because CBS examines all the
jobs in the queue in order to pick the one with the highest
priority. In real systems where queues can grow arbitrarily
long and job service time can be very short, O(n) may not
be acceptable. To address this problem, [5] proposes iCBS,
that incrementally maintains CBS priority score, and keeps
the scheduling overhead at O(log*n).

3.4 Cost- and Deadline-aware Scheduling

iCBS-DH: While CBS and iCBS considers the SLA cost
function and tries to minimize the cost, they cannot support
the hard deadlines. In this section, we discuss how we extend
iCBS into iCBS-DH, to address this problem.

We uses iCBS as is, to leverage its cost-optimizing feature,
and make some modification to the SLA cost function as fol-
lows. For a given job, we shift up cost(t) to cost(t) + Chint,
at response time t > deadline, with a given constant value,
Chint, the hint cost. This is illustrated in Figure 3. With
this modified SLA cost function, iCBS performs its origi-
nal cost-minimizing scheduling algorithm, which effectively
minimizes deadline violation as well as soft SLA cost. We
call this scheduling method, iCBS-DH (i.e. deadline hint).

Note that we introduce a parameter, hint cost. The hint
cost value determines the importance of the hard deadline:
high hint cost will make the deadline a higher priority, com-
pared to the soft SLA cost steps, and low hint cost will
make the deadline a lower priority. In general, we use the
hint cost of $1000 for our evaluation, which sets a high pri-
ority on the deadline enforcement given that soft SLA cost



Query | ExTime || CostDensity | CostStepTime (msec) | HardDeadlineTime (msec)

Type | (msec) || 1 2 3 1 2 3 4 1 2 3 4 5
Q1 0.23 3 1 5 20 10 30 20-40 |10 20 30 10 30
Q2 0.23 3 2 4 20 15 25 2040 |10 20 30 15 25
Q3 0.30 3 3 3 20 20 20 2040 [ 10 20 30 20 20
Q4 0.41 3 4 2 20 25 15 2040 |10 20 30 25 15
Q5 0.54 3 5 1 20 30 10 20-40 |10 20 30 30 10

Table 1: Experiment parameters for soft and hard deadlines. ExTime is the average query execution time
for the given query type. CostDensity has the unit of $/msec.

Original cost
SLA Cost Y
. 1 !
Function _ .
Xy response time

+
Deadline deadline

ﬂ Xy response time
SLA Cgst cost
Function w/ hint cost
Deadline Y| —
Hint X, Xy response time

Figure 3: iCBS-DH: iCBS with Deadline Hint

steps are lower than $2. We experimentally study the effect
of the deadline hint cost in Section 4.2.6.

4. EVALUATION
4.1 Setup

Systems and Workload The server machine has Intel
Xeon 2.4GHz, two single-core CPUs and 16GB memory. We
use MySQL 5.5 and InnoDB 1.1.3, and 1GB of memory is
used for InnoDB bufferpool. The client machine has Xeon
2.4GHz, two quad-core CPUs. The client code is in Java.

We use TPC-W 1GB dataset and six queries obtained
from the same benchmark. Each query gives us a query
template or a query type, from which we generate query
instances using randomly generated parameters. We use
uniform distribution among the query types used in each
experiment. We run open-system workload [28], where new
queries arrive at the system queue, independent of finish-
ing of existing queries. In order to vary the system load,
i.e. the query arrival rate divided by the service rate, or
equivalently, the average query execution time divided by
the mean interarrival time, we control the arrival rate as de-
scribed further later. As a default, 85% system load is used,
except in Section 4.2.3 where we vary the load and observe
its effect. Given the arrival rate, Poisson distribution is used
to generate individual query arrival timestamps. We report
the average of five repeats for each data point, where indi-
vidual run duration is 5 seconds: this may sound short, but
for our queries that are shorter than 1 msec, we get more
than 10,000 queries finished during this interval, which is a
large enough sample size for scheduling performance study.

Query Execution Time Estimate Some scheduling
policies, i.e. SJF, FirstReward, BEValue2, iCBS, iCBS-DH,
rely on the query execution time estimates for their schedul-
ing decisions. While there are recent works on query exe-
cution time estimate [10, 8], in our experiments, we use a
simple, but highly effective method for per-template execu-
tion time estimation, as follows. For each query template,
we continuously maintain the mean and the standard devia-
tion (SD) of all query execution times. From these measure-
ments, we get mean+SD?* and use it as the query execution
time estimate. This worked well across different load and
MPL (multi-programming level) values in our evaluation.

SLA Design In order to evaluate scheduling algorithms
against various SLA cost functions and deadlines, we design
the experiment parameters as follows. First, we model the
SLA cost function as a step function with two (or three)
steps, where the response time greater than a cost-step-time
incurs a certain penalty, or monetary SLA cost. We use two
parameters for soft SLA cost, CostDensity and CostStep-
Time, and one for hard deadline, HardDeadlineTime. The
full parameter code-value mapping is shown in Table 1.

e CostStepTime (msec): SLA cost increases at the
point where the query response time becomes greater
than CostStepTime. It corresponds to the time X; in
Figure 3. As shown in Table 1, CostStepTime takes
one code between 1 and 4. Code 1, for example, means
that all queries have the second cost step at X;1=20
msec (and no more steps). Code 4 is a special case
where we have three cost steps, like X; and Xs in
Figure 2(b): X1=20 msec and X2=40 msec.

e CostDensity ($/msec): When the response time be-
comes greater than CostStepTime, the cost jumps: as
high as Y7 in the example of Figure 3. The cost jump is
determined as the query execution time, i.e. ExTime,
multiplied by CostDensity. For example, given Cost-
Density code 1, Q1 has the cost jump of Y1=0.23 msec
x $3/msec = $0.69, at the cost step X1. Note that
we control and use cost density rather than cost value
itself, since we consider density as a more meaningful
parameter: queries have different execution times and
long-running queries often have more value/cost than
short queries. For the special case of CostStepTime
code 4, ExTimex CostDensitythe determines the sec-
ond step’s cost, i.e. Y7 in Figure 2(b), and the third
step’s cost is twice that, i.e. Y2 =2- Y.

4We tried mean as the estimate as well, which gave us a poor
result: schedulers like iCBS makes scheduling decisions with
an absolute trust on the estimate, and the estimate without
margin often result in missed cost steps.
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Figure 5: Performance of Scheduling Policies under Varying SLA Cost Functions and Deadlines (DTH=1x1)

e HardDeadlineTime (msec): For different types of
soft and hard deadline interaction, we design different
cases using HardDeadlineTime: HardDeadlineTime is
earlier than CostStepTime (i.e. a preventative dead-
line designed to avoid SLA cost), or it is later than
CostStepTime (i.e. a deadline for worst-case quality
control even after incurring SLA cost).

Since these three parameters decide the soft and hard SLA
used in an experiment, so we concatenate the three codes
together and call it DTH code®, or simply DTH. For in-
stance, with DTH=131 means that CostDensity code is 1,
CostStepTime code is 3, and HardDeadlineTime code is 1.
Given these parameter codes, different queries have different
parameter values: in case of Q1, this indicates CostDensity
value of $3/msec, CostStepTime value of 30 msec, and Hard-
DeadlineTime value of 10 msec.

SDTH: CostDensity, CostStepTime, HardDeadlineTime

4.2 Results

4.2.1 Varying SLA and Deadlines

We first show the performance of eight scheduling algo-
rithms under varying SLA cost function and hard deadlines.
Figures 4, 5, and 6 show the results. With the default
DTH=111, we vary one parameter at a time in each fig-
ure: HardDeadlineTime in Figure 4 (i.e. DTH=11x), Cost-
StepTime in Figure 5 (i.e. DTH=1x1), and CostDensity in
Figure 6 (i.e. DTH=x11).

Observations on deadline violations are as follows: i) for
deadline violation, iCBS-DH performs the best, keeping the
violation at 5.1% or lower in all cases. After that follow
SJF (as high as 10.0% violation), BEValue2 (up to 17.3%),
iCBS (up to 27.3%), and AED (up to 23.3%). Note that
their deadline performance fluctuate depending on their SLA
cost function shape and deadline while iCBS-DH maintains
low violation overall all ranges. ii) FCFS and EDF have
rather high deadline violations at around 40% as both are
vulnerable to (temporary) overloads, causing domino effects,
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Figure 7: Performance of Scheduling Policies under Varying Percentage of Deadline-Having Queries

and they run queries even when they already missed the
deadline. iii) FirstReward misses almost all deadlines, due
to its high scheduling overhead of O(n?).

SLA cost performance is summarized as follows: i) iCBS
achieves minimum SLA cost in most cases. Compared with
FCFS, the most popular and simple scheduling, SLA cost is
reduced by the factor of 10. ii) BEValue2 follows iCBS, and
iCBS-DH, SJF, AED comes next. Note that iCBS-DH has
a fluctuating cost performance over different DTH codes:
when deadline observance helps SLA cost (e.g. DTH=111,
112), iCBS-DH cost is as low as that of iCBS. When dead-
line observance does not necessarily help SLA cost (e.g.
DTH=113), iCBS-DH cost is rather high. iii) FCFS, EDF,
and FirstReward incur high SLA cost for the same reason
mentioned in deadline violations above.

4.2.2  Varying Portion of Deadline-Having Queries

In the previous experiment, we have assumed that all
queries have hard deadlines. Depending on the business re-

quirements, however, only a portion of queries may have
hard deadlines. For example, 25% of all queries are queries
coming from important users or applications (e.g. VIPs,
shopping applications) and have deadlines, while the oth-
ers can be served best effort under the soft SLA. We study
the scheduling performance where a subset of queries have
a deadline, and report the corresponding results in Fig-
ure 7. On the x-axis, we vary the portion of deadline-having
queries, i.e. 10%, 25%, 50%, 75%, and 100%. The deadline
violation percentage on the y-axis indicates the percentage
out of all jobs.

Highlights on deadline performance are as follows: i) iCBS-
DH consistently performs the best in most of the cases. ii)
EDF performs as well when 50% or less jobs have deadlines,
where no (temporary) overload causes a domino effect. With
75% or higher jobs having deadline, however, EDF is hit by
the overload problem and gets very high deadline violations.

For cost performance, note that EDF has a similar behav-
ior as in deadline performance mentioned above. iCBS-DH
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Figure 9: Performance of Scheduling Policies under Varying Multi-Programming Level (MPL)

achieves low SLA cost, comparable to that of iCBS, when
the portion of deadlined jobs is 25% or lower. This is a nice
adaptive feature that iCBS-DH gives just enough attention
for the deadline satisfaction, and puts rest of its effort on
cost reduction like iCBS.

4.2.3 Varying Load

We now vary the query arrival rates, to observe the be-
havior of scheduling algorithms under different system loads.
We set the arrival rates at six different levels, and measure
the average execution time, from which we compute the load
as arrival rate divided by service rate, or arrival rate multi-
plied by average execution time. Given a query type, note
that the execution times are slightly different for the differ-
ent arrival rates: with higher arrival rate, individual queries
run faster, which seems to be affected by the performance
behavior of JDBC connection layer. We report the com-
puted load number and the corresponding deadline and cost
performance.

Figure 8 shows the results, where the x-axis values, or
the table column headers, indicate DTH code and the load
in percentage. For deadline violation, iCBS-DH again per-
forms the best across all load ranges. BEValue2 and SJF
come close to iCBS-DH, while iCBS, AED, FCFS, EDF,
FirstReward has high violations for the reasons mentioned
above.

For cost performance, iCBS and BEValue2 are consis-
tently the best. While iCBS-DH shows a good cost per-
formance in Figure 8(b) with DTH=111, in general it has
a varying performance: when meeting deadline helps cost,
e.g. DTH=111,112, it performs well on cost, and otherwise
not (e.g. DTH=113).

4.2.4 Varying MPL

In the real-world database systems, it is rarely the case
that one query runs at a time. Instead, multiple queries
are run concurrently to exploit parallelism in the comput-
ing resources, such as CPU and IO0. We vary the concur-



Query | ExTime CostDensity CostStepTime (msec) HardDeadlineTime (msec)
Type (msec) 1|2 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9
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Q5 0.54 315 1 20 | 30 | 10 | 20-40 | 250 | 250 | 500 | 500 || 10 | 20 | 30 | 30 | 10 | 250 | 250 | 500 | 500
Q6 158 3 1 5 250 500 250 500 250 500 250 500
Table 2: Experiment parameters for hard and soft SLAs. Addition to Table 1 is in bold.
90.00 4.00
80.00 3.50
E:, 70.00 3.00 4
,‘% 60.00 - ‘f— 2.50
E 50.00 - § 200 |
@ 4000 1 < 150
= 3000 A 7]
K] 1.00 4
3 2004
10.00 050 1
m I I 0.00 4
0.00 - 156 157 1o8 P 156 157 158 159
= ICBSDH 11.63 1151 1.19 1.04 "1CBSDH 109 109 1.09 109
micBs 12.40 1215 1.56 147 1CBs 110 110 110 110
BEVALUE2 14.73 14.24 1035 10.26 = EDF 123 1.09 131 120
mEDF 24.66 4.88 3.84 0.06 WAED 129 1.08 129 129
= AED 24.77 5.94 491 0.14 B FCFS 1.29 1.29 1.29 1.23
m FCFS 24.37 24.47 0.24 0.08 BEVALUE2 1.29 1.28 1.29 1.30
mSIF 28.30 29.37 13.91 13.15 mSJF 131 134 133 132
FREWARD 82.35 84.16 65.43 65.61 FREWARD 361 263 3.18 3.16

(a) Deadline Violation

(b) SLA Cost

Figure 10: Performance of Scheduling Policies under Varying SLA Cost Function and Deadline, using short-

long query mix (Q5 and Q6)

rency level, also known as multi-programming level (MPL)
between 1 and 32, and observe the performance behavior of
scheduling policies. We choose different arrival rates under
different MPL, so that we achieve about 85% system load in
all MPL cases.

Figure 9 shows the experiment results. For deadline per-
formance, overall violation generally increases with higher
MPL, as average query execution time increases from 0.340
msec (MPL=1) to 1.49 msec (MPL=32), while the dead-
lines remain unchanged. iCBS consistently performs well in
terms of deadline violation under varying MPL. SJF also
minimizes deadline violation by running short queries first
and keeping the violation low with MPL equal to or less
than 16, where deadline is rather far, compared to the exe-
cution time. With MPL=32, the deadline is relatively close
and simple SJF performs worse than iCBS-DH that consid-
ers deadline in scheduling decisions as well. For cost perfor-
mance, overall cost increases with higher MPL as well, while
iCBS performs the best generally.

4.2.5 Varying Query Mix

In previous experiments, we have used Q1 through Q5,
where execution times are in the range of 0.23 to 0.54 msec.
This resembles the OLTP database workloads, where each
query is short, and many such queries are run at high-
throughput with high-MPL. In this subsection, we consider
OLAP query workload, where some analytical queries may
have long execution times (e.g. minutes to hours) while some
are relatively short (e.g. seconds to minutes). We simulate
such a query mix with varying execution time, using Q5 and

Q6. These queries take 0.54 msec and 158 msec, and may
be somewhat small scale, but their 1-to-300 execution time
ratio is close to that of typical OLAP query mix. We create
the mix using 99.62% of Q5 and 0.38% of Q6, so that each
query type contribute about 50% of the total workload. We
design additional DTH code and values for Q5 and Q6, as
shown in Table 2, since Q6 takes 150 msec or more, making
the response time of both Q5 and Q6 slower than before.

Figure 10 shows the results under DTH=15x, where Hard-
DeadlineTime code varies between 6 and 9. iCBS-DH and
iCBS gives good deadline performance in general. They
are, however, outperformed by EDF and AED under the
DTH=157 and 159: under these codes, long-running query
Q6 has a cost step at 250 msec and a deadline at 500 msec.
iCBS-DH and iCBS schedules some of Q6 for SLA cost re-
duction at around 250 msec, and causes increase in deadline
violation, while EDF and AED do not do this, and just focus
on 500 msec deadline, which is a relaxed time budget that
leads to lower deadline violation overall. Cost performance
displays similar results across various scheduling policies, ex-
cept FirstReward that suffers from high scheduling overhead
mentioned above.

4.2.6 Varying Deadline Hint Cost

Lastly, we study the performance behavior of iCBS-DH
that we propose in this paper. We consider the impact of
hint cost value that suggests how importantly the deadline
should be regarded for scheduling decisions. If hint cost
value is high, deadline observation will be more stressed than
regular SLA cost steps. If hint cost value is low, the opposite
will happen. Short queries are used, i.e. Q1 through Q5.
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Figure 11: Performance of iCBS-DH under varying Deadline Hint Cost

Figure 11 shows the experiment result. We vary hint cost
value between $0.01 and $10000. We also show hint=0 case,
where it works the same as the regular iCBS. For dead-
line performance, the high hint cost reduces violations and
hint=$10 or higher performs similarly. Hint=$1 slightly in-
creases the violation, while hint value less than that gives a
big jump in violation. Hint=$1 forms a critical point because
regular cost steps in this experiment is in the range of $0.69
and $1.62. Note that some hint cost has different impacts
on deadline performance with different SLA cost function
shape and deadline: given DTH=113 and 112, deadline vio-
lation does not change much with low hint cost value, while
the violation increases dramatically with low hint cost given
114,115, and 111. This is because under the DTH=112 and
113, deadline is the same as or later than the SLA cost step,
so the iCBSh-DH’s cost minimization based on iCBS keeps
the deadline violation low even without strong deadline hint.

As expected, cost performance gets worse with higher hint
cost value. With hint cost value $0.1 or $0.01, iCBS-DH per-
forms very similar to iCBS, and hint=$1 gives a slight rise
in the cost. Hint of $10 or higher makes the cost much
higher compared to that of iCBS. Again, different DTH
shows different curve with high hint cost. This is because,
with DTH=113, emphasis on the deadline (i.e. 30 msec af-
ter arrival) means the less attention on the cost step (i.e. 20
msec after arrival), leading to high SLA cost. In other cases,
e.g. DTH=111, 112, 115, emphasis on the deadline does not
hurt the cost given the SLA cost function and deadline.

It seems that iCBS-DH creates an effective tradeoff be-
tween deadline violation and cost minimization with the hint
value. The following is a general rule of thumb we observe
from our experiments. In order to obtain low deadline vio-
lations, we suggest setting the hint cost value as the 10 to
100 times greater than the maximum cost step heights, or
jumps. If one needs to keep both deadline and cost perfor-
mance in balance, we suggest setting the hint value at the
average cost step height, $1 in our experiment above.

S. RELATED WORK

In addition to the previous works mentioned earlier, we
discuss the following related work.

Cost-based Scheduling Recently, in the context of data
warehouse, [13] has proposed a scheduling policy that con-
siders multiple objectives of minimized slowdowns, fairness,
and differentiation. It seems to be an effective scheduling
policy for in-house infrastructure or private clouds where

multiple users belong to a single party. However, it does
not support SLAs, which are crucial in public cloud envi-
ronment where multiple parties share the resources. Also,
SLA cost-aware scheduling policies [17, 26] have been pro-
posed recently. These works assume continuous SLAs and
therefore have very high time complexity. In comparison,
we use discrete SLAs, which are easier to express in plain
English [34], and achieve logarithmic time complexity.

Constraint-conscious Scheduling [16, 32, 33] propose
scheduling policies for both cost optimization and deadline
enforcement. They focus on workflow scheduling, rather
than individual job scheduling that we address in this pa-
per. [12] uses a dual-queue approach with EDF (Earliest
Deadline First) and SRPT (Shortest Remaining Processing
Time). Their purpose, however, is different from ours in
that they focus on tardiness minimization while we aim at
both cost minimization and deadline enforcement.

[20] presents a scheduling algorithm for systems consisting
of certifiable mixed-criticality sporadic tasks. In their work,
a job is either non safety-critical or safety-critical, where
the latter one has more conservative estimation of worst-case
execution time (WCET). The algorithm is designed to assign
an ordering among jobs in a greedy fashion in order to find
a feasible schedule. The problem in [20] is fundamentally
different from our problem: in their problem setting, there is
no concept of utility; instead, they focus on finding a feasible
schedule (the algorithm may fail to find such a schedule),
assuming each job takes its worst-case execution time.

[11] treats the scheduling problem as a sequential decision
problem in the form of Markov decision process, and solves
the scheduling problem using reinforcement learning tech-
niques. [29] uses similar ideas to address periodic workloads.
Although these approaches can handle arbitrary utility func-
tions as well as hard deadlines, these models are limited in
that: there have to be a number of job classes (tasks), for
each class the number of outstanding jobs cannot be too
large, and jobs within the same class must share the same
utility function.

6. CONCLUSIONS

In this paper, we presented workload scheduling under two
different types of SLAs, soft and hard SLA. We proposed a
deadline- and cost-aware scheduler called iCBS-DH. We also
evaluated deadline and cost performance of various schedul-
ing policies under a large range of SLA cost function and
deadline types.
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