
Design Patterns for Scientific Applications in DryadLINQ CTP

Hui Li, Yang Ruan, Yuduo Zhou, Judy Qiu, Geoffrey Fox
School of Informatics and Computing, Pervasive Technology Institute

Indiana University Bloomington

{lihui, yangruan, yuduo, xqiu, gcf}@indiana.edu

ABSTRACT
The design and implementation of higher level data flow

programming language interfaces are becoming increasingly

important for data intensive computation. DryadLINQ is a

declarative, data-centric language that enables programmers to

address the Big Data issue in the Windows Platform. DryadLINQ

has been successfully used in a wide range of applications for the

last five years. The latest release of DryadLINQ was published as a

Community Technology Preview (CTP) in December 2010 and

contains new features and interfaces that can be customized in

order to achieve better performances within applications and in

regard to usability for developers. This paper presents three design

patterns in DryadLINQ CTP that are applicable to a large class of

scientific applications, exemplified by SW-G, Matrix-Matrix

Multiplication and PageRank with real data.

Categories and Subject Descriptors
D.3.2 [Programming Language]: Data-flow languages

General Terms
Performance, Design, Languages.

Keywords
Dryad, DryadLINQ, MapReduce, Design Pattern, SW-G, Matrix

Multiply, PageRank

1. INTRODUCTION

We are in a Big Data era. The rapid growth of information in

science requires the processing of large amounts of scientific data.

One proposed solution is to apply data flow languages and

runtimes to data intensive applications [1]. The primary function of

data flow languages and runtimes is the management and

manipulation of data. Sample systems include the MapReduce [2]

architecture pioneered by Google and the open-source

implementation called Hadoop [3].

The MapReduce systems provide higher level programming

languages that express data processing in terms of data flows.

These systems can transparently deal with scheduling, fault

tolerance, load balancing and communications while running jobs.

The MapReduce programming model has been applied to a wide

range of applications and has attracted enthusiasm from distributed

computing communities due to its ease of use and efficiency in

processing large scale distributed data

However, the rigid and flat data processing paradigm of the

MapReduce programming model prevents MapReduce from

processing multiple, related heterogeneous datasets. A higher level

programming language, such as Pig or Hive, can solve this issue to

some extent, but is not efficient because the relational operations,

such as Join, are converted into a set of Map and Reduce tasks for

execution. For example, the classic MapReduce PageRank is very

inefficient as the Join step in MapReduce PageRank spawns a very

large number of Map and Reduce tasks during processing. Further

optimization of MapReduce PageRank requires developers to have

sophisticated knowledge of the web graph structure.

Dryad [4] is a general purpose runtime that supports the processing

of data intensive applications within the Windows platform. It

models programs as a directed acyclic graph of the data flowing

between operations. Thus, it is able to addresses some of the

limitations that exist in the MapReduce systems. DryadLINQ [5] is

the declarative, data flow programming language for Dryad. The

DryadLINQ compiler can automatically translate the LINQ

(Language-Integrated Query) programs written by .NET language

into distributed, optimized computation steps that are run on top of

the Dryad cluster. For some applications, writing the DryadLINQ

distributed programs are as simple as writing a series of SQL

queries. In complex cases, developers can port the application

programs or user-defined functions into the lambda expression of

the LINQ queries.

In this paper, we investigate the applicability and efficiency of

using DryadLINQ to develop scientific applications. Then, we

abstracted them into three design patterns. The contributions of this

paper are as follows:

1. We studied the task granularity in order to improve LINQ’s

support for coarse-grain parallelization with the DryadLINQ

CTP data model and interface.

2. We demonstrated that a hybrid parallel programming

model not only utilizes parallelism in multiple nodes, but also

in multiple cores.

3. We investigated the three distributed grouped aggregation

approaches and the feature of input data that affects the

efficiency of these approaches.

The structure of this paper is as follows. Section 2 illustrates the

DryadLINQ basic programming model. Section 3 describes the

implementation of the three classic scientific applications (SW-G,

Matrix-Matrix Multiplication and PageRank) using DryadLINQ

CTP. Section 4 discusses related work, while Section 5 concludes

the paper. As the latest LINQ to HPC was published in June 2011,

and its interface changed drastically from DryadLINQ CTP, we

will describe the programming models using pseudo code.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DataCloud-SC’11, November 14, 2011, Seattle, Washington, USA.

Copyright 2011 ACM 978-1-4503-1144-1/11/11…$10.00.

2. DRYADLINQ PROGRAMMING MODEL

Dryad, DryadLINQ and DSC [6] are a set of technologies that

support the processing of data intensive applications in the

Windows platform. The software stack for these technologies is

shown in Figure 1.

Dryad is a general purpose runtime that supports the processing of

data intensive applications in Windows platform. A Dryad job is

represented as a directed acyclic graph (DAG), which is called the

Dryad graph. One Dryad graph consists of vertices and channels. A

graph vertex is an independent instance of the data processing

program in a certain step. Graph edges are the channels

transferring data between the vertices. The Distributed Storage

Catalog (DSC) is the component that works with the NTFS in

order to provide data management functionalities, such as data sets

storage, replication and load balancing within the HPC cluster.

DryadLINQ is a high level programming language and compiler

for Dryad. The DryadLINQ API is based on the LINQ

programming model. It takes advantage of the standard query

operators defined within the LINQ and adds query extensions

specific to Dryad. Developers can easily apply LINQ operators,

such as Join or GroupBy, to a set of .NET data objects, which

increase the speed of the development of the data intensive

applications.

Fig.1: Software Stack for DryadLINQ CTP

2.1. Pleasingly Parallel Programming Model

Many pleasingly parallel applications are of the Single Program

Multiple Data (SPMD) model. DryadLINQ supports a unified data

and programming model in the representation and processing of

pleasingly parallel applications. DryadLINQ data objects are

collections of strong .NET type objects, which can be split into

partitions and distributed across cluster. These DryadLINQ data

objects are represented as DistributedQuery<T> or

DistributedData<T> objects to which the LINQ operators can

apply. DryadLINQ applications can create the DistributeData<T>

objects from the existing data stored in the DSC or convert it from

the IEnumerable<T> objects using AsDistributed() and

AsDistributedFromPartitions() operators. Then, these DryadLINQ

data objects are partitioned and distributed to the nodes.

Developers can deal with these distributed DryadLINQ data

objects by invoking the user-defined function within the Select() or

ApplyPerPartition() operators. The pseudo code for this

programming model is as follows:

Var inputs= inputDataSet.AsDistributedFromPartitions();
//Construct DryadLINQ Distributed Data Objects--inputs
Var outputs= inputs.Select(distributedObject =>
User_Defined_Function(distributedObject));
//Process DryadLINQ Distributed Data Objects with UDF

A wide range of pleasingly parallel applications can be

implemented using the above DryadLINQ primitives [7], which

include the CAP3 DNA sequence assembly application, High

Energy Physics data analysis application and the all pair gene

sequences SW-G computation.

2.2. Hybrid Parallel Programming Model

Dryad is supposed to process coarse-granularity tasks for large

scale distributed data. It usually schedules tasks for the resources

in the unit of compute nodes rather than the cores. In order to

increase the utilization of the multi-core Windows cluster, one

direct approach is to invoke PLINQ (parallel LINQ) queries within

the lambda expression of the DryadLINQ query. This approach is

not only convenient, but, also, efficient as the LINQ query is

naturally built within the DryadLINQ query. The other approach is

to apply the multi-core technologies in .NET, such as TPL, and the

thread pool to the user-defined function within in lambda

expression of the DryadLINQ query. The pseudo code for this

programming model is as follows:

Var inputs= inputDataSet.AsDistributedFromPartitions();
//Construct DryadLINQ Distributed Data Objects--inputs
Var outputs =
inputs.ApplyPerPartition(distributedObject =>
distributedObject.AsParallel().Select(parallelObject=>

User_Defined_Function(parallelObject)));
//Process DryadLINQ Distributed Data Object with PLINQ

In the above hybrid model, Dryad handles the parallelism between

the cluster nodes, while the PLINQ, TPL and thread pool

technologies deal with the parallelism on the multi-core of each

node. The hybrid parallel programming model in

Dryad/DryadLINQ has been proven to be successful and has been

applied to data clustering applications [7], such as the GTM

interpolation and MDS interpolation. Most of the pleasingly

parallel applications can be implemented using this model.

2.3. Distributed Grouped Aggregation

The GROUP BY operator in the parallel database is often followed

by the aggregate function, which groups the input records into

partitions by keys and then merges the records for each group

using certain attribute values. This common pattern is called the

distributed grouped aggregation. Sample applications for this

pattern include sales data summarizations, log data analysis and

social network influence analysis [8] [9].

Several approaches exist by which to implement the distributed

grouped aggregation. A direct approach is to use the hash partition

operator to redistribute the records to the compute nodes so that

identical records are stored on the same node. After that this

approach merges the records of each group on each node.

The implementation of the hash partition is simple, but creates a

large amount of network traffic when the number of input records

is very large. A common way to optimize this approach is to apply

pre-aggregation, which aggregates the local records of each node

and then hash partitions the aggregated partial results across a

cluster based on their key. This approach is better than the direct

hash partition because the number of records transferred across the

cluster becomes much smaller after the local aggregation

operation.

Two additional ways exist by which to implement the pre-

aggregation: 1) hierarchical aggregation and 2) an aggregation tree

[10]. A hierarchical aggregation usually contains two or three

aggregation layers, each having an explicit synchronization phase.

An aggregation tree is a tree graph that guides a job manager to

perform the pre-aggregation for the many subsets of the input

records. The workflow of the three distributed grouped aggregation

approaches is shown in Figure 2.

Fig. 2: Three Distributed Grouped Aggregation Approaches: Hash

Partition, Hierarchical Aggregation, and Aggregation Tree.

3. IMPLEMENTATIONS

We implemented SW-G, Matrix-Matrix Multiplication and

PageRank using the DryadLINQ CTP and then evaluated their

performances on two Windows HPC clusters and one Linux

cluster. The hardware resources used in this paper are as follows:

Table 1: 32 Nodes Homogeneous HPC Cluster TEMPEST

 TEMPEST TEMPEST-CNXX

CPU Intel E7450 Intel E7450

Cores 24 24

Memory 24.0 GB 50.0 GB

Memory/Core 1 GB 2 GB

Table 2: 7 Nodes Inhomogeneous HPC Cluster STORM

 STORM-
CN01,CN02,

CN03

STORM-
CN04,CN05

STORM-
CN06,CN07

CPU AMD 2356 AMD 8356 Intel E7450

Cores 8 16 24

Memory 16 GB 16 GB 48 GB

Memory/Core 2 GB 1 GB 2 GB

Table 3: 230 Nodes Homogeneous Linux Cluster Quarry

 Head Node PG-XX

CPU Intel E5335 Intel E5335

Cores 8 8

Memory 8 GB 16 GB

Memory/Core 1 GB 2 GB

3.1.Pleasingly Parallel Application
The Alu clustering problem [11] [12] is one of the most challenging
problems when sequencing clustering because Alus represent the
largest repeat families in the human genome. About one million
copies of the Alu sequence exist in the human genome. Most
insertions can be found in other primates and only a small fraction
(~7000) are human-specific. This feature indicates that the
classification of Alu repeats can be deduced solely from the one
million human Alu elements. Notably, Alu clustering can be viewed
as a classical case study for the capacity of computational
infrastructures because it is not only of intrinsic biological interest,
but, also, a problem on a scale that will remain as the upper limit of
many other clustering problems in bioinformatics for the next few
years, e.g. the automated protein family classification for a few
million proteins predicted from large meta-genomics projects.

Fig. 3: DryadLINQ Implementation of SW-G Application

We implemented the DryadLINQ application in order to calculate
the pairwise SW-G distances in parallel for a given set of gene
sequences. In order to clarify our algorithm, we considered an
example with 10,000 gene sequences, which produced a pairwise
distance matrix of 10,000 × 10,000. We decomposed the overall
computation into a block matrix D of 8 × 8, each block containing
1250 × 1250 sequences. Due to the symmetry of the distances D(i,j)
and D(j,i), we only calculated the distances in the 36 blocks of the
upper triangle of the block matrix as shown in Figure 3. These 36
blocks were constructed as 36 DryadLINQ distributed data objects.
Then, our program split the 36 DryadLINQ objects into 6 partitions,
which spawned 6 DryadLINQ tasks. Each Dryad task invoked the
user-defined function PerformAlignments() in order to process the
six blocks that were dispatched to each Dryad task. One should bear
in mind that different partition scheme will cause different task
granularity. The DryadLINQ developers can control task
granularity by simply specify the number of partition with
RangePartition() operator.

3.1.1. Workload Balance for Inhomogeneous Tasks
The workload balance is a common issue when scheduling

inhomogeneous tasks on homogeneous resources or vice versa. In

order to solve this issue, Dryad provides a unified data model and

flexible interface for developers to tune task granularity. The

following experiments will study workload balance issue in

DryadLINQ SW-G application.

The SW-G is a pleasingly parallel application, but the pairwise

SW-G computations are inhomogeneous in CPU time. The task of

splitting all of the SW-G blocks into partitions with an even

number of blocks still experiences a workload balance issue when

processing the partitions on the homogeneous computational

resources. One approach for this issue is to split the skewed

distributed input data into many finer granularity tasks. In order to

verify this approach, we constructed a set of gene sequences with a

given mean sequence length (400) using varying standard

deviations (50, 150, 250). Then, we ran the SW-G dataset on the

TEMPEST cluster using a different number of data partitions. As

shown in Figure 4, as the number of partitions increased, the

overall job turnaround time decreased for the three skewed

distributed input datasets. This phenomenon occurs because the

finer granularity tasks can achieve the better overall system

utilization by dynamically dispatching available tasks to idle

resources. However, when the number of partitions continually

increases, the scheduling costs become the dominant factor in

regard to overall performance.

Fig. 4: Performance Comparison for Skewed Distributed Data with

Different Task Granularity.

3.1.2. Workload Balance for Inhomogeneous Cluster
Clustering or extending existing hardware resources may lead to

the problem of scheduling tasks on an inhomogeneous cluster with

different CPUs, memory and network capabilities between nodes

[13]. Allocating the workload to resources according to their

computational capability is a solution, but requires the runtimes to

know the resource requirement of each job and availability of

hardware resources. Another solution is to split the entire job into

many finer granularity tasks and dispatch available tasks to idle

computational resources.

Fig. 5: CPU and Scheduling Time of the Same SW-G Job with

Various Partition Granularities

 We verified the second approach by executing 4,096 sequences

for SW-G jobs on the inhomogeneous HPC STORM using

different partition granularities. Figure 5 shows the CPU and task

scheduling times of the same SW-G job with a different number of

partitions: 6, 24 and 192. In the first SW-G job, the entire job was

split into six partitions. The difference in CPU time for each task

was caused by the difference in the computational capability of the

nodes. The second and third jobs in Figure 5 clearly illustrate that

finer partition granularity can deliver a better load balance on the

inhomogeneous computational nodes. However, it also showed

that the task scheduling cost increased as the number of partitions

increased.

3.1.3. Compare with Hadoop
As shown in Figures 4 and 5, the task granularity is important for

the workload balance issue in DryadLINQ. Further, we compared

the task granularity issue of DryadLINQ with that of Hadoop. The

DryadLINQ/PLINQ SW-G experiments were run with 24 cores per

node on 32 nodes in TEMPEST. The input data was 10,000 gene

sequences. The number of DryadLINQ tasks per vertex ranged

from 1 to 32. The Hadoop SW-G experiments were run with 8

cores per node on 32 nodes in Quarry. Eight mappers and one

reducer were deployed on each node. The number of map tasks per

mapper ranged from 1 to 32. As shown in Figure 6, when the

number of tasks per vertex was bigger than 8, the relative parallel

efficiency of DryadLINQ jobs decreased noticeably. This decrease

occurred because the number of tasks per vertex was bigger than 8

and the number of SW-G blocks allocated to each DryadLINQ task

was less than 12, which is only half of the number of cores in each

node in TEMPEST. Dryad can run only one DryadLINQ task on

each compute node. Thus the relative parallel efficiency was low

for fine task granularity in DryadLINQ.

Fig. 6: Relative Parallel Efficiency of Hadoop and DryadLINQ with

Different Task Granularity.

3.2. Hybrid Parallel Programming Model

In order to explore the hybrid parallel programming model, we

implemented the DryadLINQ Matrix-Matrix Multiplication using

three algorithms and three multi-core technologies. The three

matrix multiplication algorithms were: 1) row partition algorithm,

2) row/column partition algorithm and 3) two dimension block

decomposition in the Fox algorithm [14]. The multi-core

technologies were: 1) PLINQ, 2) TPL, and 3) Thread Pool.

3.2.1. Matrix-Matrix Multiplication Algorithms
The row partition algorithm split matrix A by rows. It scattered the

rows of the blocks of matrix A across the compute nodes, and then

copied all of matrix B to every compute node. Each Dryad task

multiplied some of the rows of the blocks of matrix A by the entire

matrix B, and then retrieved the partial output results to the main

program and added these results to the corresponding rows of

blocks of matrix C.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

31 62 124 186 248

Ex
ec

u
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of Partitions

Std. Dev. = 50

Std. Dev. = 100

Std. Dev. = 250

0

200

400

600

800

1000

1200

cn
0

1

cn
0

2

cn
0

3

cn
0

4

cn
0

5

cn
0

6

El
ap

se
d

 T
im

e
(i

n
 s

ec
o

n
d

)

6 partitions

cn
0

1

cn
0

2

cn
0

3

cn
0

4

cn
0

5

cn
0

6

24 partitions

cn
0

1

cn
0

2

cn
0

3

cn
0

4

cn
0

5

cn
0

6

192 partitions

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16 20 24 28 32

Hadoop -- Tasks per Mapper DryadLINQ -- Tasks per Vertex

Number of Tasks per Worker

R
el

at
iv

e
P

ar
al

le
l E

ff
ic

ie
n

cy

The row/column partition algorithm [15] split matrix A into rows

and matrix B into columns. The column blocks of matrix B were

scattered across the cluster in advance. Then, the entire

computation was divided into several steps. In each step, one task

multiplied one row of blocks of matrix A by one column of blocks

of matrix B on the compute node. The output results were sent

back to the main program and aggregated into one row of blocks of

matrix C. The main program collected the results in all of the steps

in order to generate the final results of matrix C.

The two dimensional block decomposition in the Fox algorithm is

called the Broadcast-Multiply-Roll (BMR) algorithm. In the initial

stage of the Fox algorithm, it splits matrix A and matrix B into

square mesh of square sub-matrices. These sub-matrices are evenly

scattered into a square processor mesh. Figure 7 is the work flow

of the Fox algorithm on a mesh of 2*2 compute nodes.

Block

(1,1)

Block

(0,0)

Block

(1,0)

Block

(1,1)

Block

(0,0)
Block

(0,1)

Block

A(1,1)

B(1,0)

Block

A(1,1)

B(1,1)

Block

A(0,0)

B(0,0)

Block

A(0,0)

B(0,1)

Block

(0,1)

Block

(1,0)

Block

(1,1)

Block

(0,0)
Block

(0,1)

Block

A(1,0)

B(0,0)

Block

A(1,0)

B(0,1)

Block

A(0,1)

B(1,0)

Block

A(0,1)

B(1,1)

Matrix BMatrix A

Matrix C

Step 0

Step 1

Block

(1,0)

Block

(1,1)

Block

(0,0)
Block

(0,1)

Block

(1,0)

Block

(1,1)

Block

(0,0)
Block

(0,1)
Preparing

stage
Compute

Node

(1,0)

Compute

Node

(1,1)

Compute

Node

(0,0)

Compute

Node

(0,1)

Compute nodes

Node 1
Node 2

Node 3 Node 4

Block

(1,0)

Fig. 7: Work Flow of the Fox Algorithm on a Mesh of 2*2 Nodes

We evaluated the three algorithms by running matrix

multiplication jobs with various matrices sizes whose scales ranged

from 2,400 to 19,200. By default, we used a square matrix in the

experiments and the elements of the matrices were double

numbers. The experiments were run with one core per node on the

16 compute nodes in TEMPEST.

Fig. 8: Mflops of Three Algorithms with 1 Core per Node on 16

Nodes

As shown in Figure 8, the Fox algorithm performed better than the
other two algorithms for the large matrices. The RowPartition
algorithm had the simplest logic and least amount of scheduling
costs. It did not perform as well as the Fox algorithm due to the fact
that it did not parallelize the communications when broadcasting
matrix A and scattering sub-matrices B over the cluster. The

RowColumnPartition algorithm performed worse than the
RowPartition as it had additional startup costs in the multiple steps.

3.2.2. Parallelism in the Core Level
We evaluated the multi-core technologies in .NET 4.0 by running
matrix-matrix multiplication jobs with various matrices sizes whose
scales ranged from 2,400 * 2,400 to 19,200 * 19,200 on a 24-core
machine. Figure 9 shows the performance results for the three
multi-core technologies. As illustrated in Figure 9, the PLINQ had
the best performance compared to the other technologies.

Fig. 9: Parallel Efficiency for Different Technologies of Multi-Core

Parallelism on the 24 Core Compute Node

3.2.3. Porting Multi-core Tech into Dryad Tasks
We investigated the overall performance of the three matrix
multiplication algorithms when porting PLINQ to the DryadLINQ
tasks. The experiments were run with 24 cores per node on 16
nodes in TEMPEST. The matrices sizes ranged from 2,400 * 2,400
to 19,200 * 19,200. As shown in Figure 8 and 10, 1) the
performance of programs using 24 cores were much faster than that
of using 1 core, 2) each of the three algorithms scaled out for the
large matrices and 3) the Fox algorithm performed better than the
other algorithms for the large matrices.

Fig. 10: Mflops of the PLINQ Version of the Three Matrix

Multiplication Algorithms with 24 Cores per Node on 16 Nodes

3.2.4. Compare with OpenMPI and Twister

We compared the scalability of the Fox algorithm of

DryadLINQ/PLINQ with that of the OpenMPI/Pthread and

Twister/Thread. The DryadLINQ experiments were run with 24

cores per node on 16 nodes in TEMPEST. The OpenMPI and

Twister experiments were run with 8 cores per node on 16 nodes in

Quarry. The matrices sizes ranged from 2,400*2,400 to

31,200*31,200. As shown in Figure 11, the parallel efficiency of

0

500

1000

1500

2000

2400 4800 7200 9600 12000 14400 16800 19200

Fox RowPartition Row/Column Partition

Matrices Sizes

M
fl

o
p

s

0

0.2

0.4

0.6

0.8

1

1.2

2400 4800 7200 9600 12000 14400 16800 19200

PLINQ TPL Thread

Matrix Sizes

P
ar

al
lE

l E
ff

ic
ie

n
cy

0

5000

10000

15000

20000

25000

2400 4800 7200 9600 12000 14400 16800 19200

Fox RowPartition RowColumnPartition

Matrices Sizes

M
fl

o
p

s

the Fox algorithm of the DryadLINQ/PLINQ was smaller than that

of the OpenMPI/Pthread and Twister/Thread for the small matrices

sizes. The super linear speed up in Twister is due to the cache

behaving better in the parallel case. The experiment results also

indicate that the DryadLINQ implementation is able to scale out

for large matrices.

Fig. 11: Parallel Efficiency of the Fox Algorithm Using the
DryadLINQ/PLINQ, OpenMPI/Pthread and Twister/Thread

3.3. Distributed Grouped Aggregation
We studied the distributed grouped aggregation in the DryadLINQ
CTP using PageRank with real data. Specifically, we investigated
the programming interface and performance of the three distributed
grouped aggregation approaches in the DryadLINQ, which included
the Hash Partition, Hierarchical Aggregation and Aggregation Tree.
Further, we studied the features of the input data that affected the
performance of the distributed grouped aggregation
implementations.

PageRank is already a well-studied web graph ranking algorithm. It
calculates the numerical value of each element of a hyperlinked set
of web pages in order to reflect the probability that a random surfer
will access those pages. The PageRank process can be understood
as a Markov Chain, which needs recursive calculations in order to
converge to the final results. An iteration of the algorithm calculates
the new access probability for each web page based on the values
calculated in the previous computation. The iterations will not stop
until the Euclidian distance between the two subsequent rank value
vectors becomes less than a predefined threshold. In this paper, we
implemented the DryadLINQ PageRank using the ClueWeb09
dataset [16], which contained almost 50 million web pages.

We split the entire ClueWeb graph into 1,280 partitions, each

saved as an Adjacency Matrix (AM) file. The characteristics of the

input data are described below:

No of Am Files File Size No of Web Pages No of Links Ave Out-degree

1280 9.7 GB 49.5 million 1.40 billion 29.3

3.3.1. PageRank using Three Distributed Grouped
Aggregation Approaches

PageRank is a communication intensive application that requires

joining two input data streams and then performing the grouped

aggregation over partial results.

First, we implemented PageRank with the hash partition approach

with three main functions [17]: Join(), GroupBy(), and user-

defined aggregation function. In the Join stage, we constructed the

DistributedQuery<Page> objects that represented the web graph

structure of the AM files. Then, we constructed the

DistributedQuery<Rank> objects each of which represent a pair

that contains the identifier number of a page and its current

estimated rank value. After that, the program joins the pages within

the ranks in order to calculate the partial rank values. Then, the

GroupBy() operator hash partition calculated the partial rank

values to some groups, where each group represented a set of

partial ranks with the same source page pointing to them. At last,

the partial rank values in each group were aggregated using the

user-defined aggregation function.

Second, we implemented PageRank using the hierarchical

aggregation approach, which has tree fixed aggregation stages: 1)

the first pre-aggregation stage for each user-defined aggregation

function, 2) the second pre-aggregation stage for each DryadLINQ

partition and 3) the third global aggregation stage to calculate the

global PageRank rank values.

The hierarchical aggregation approach may not perform well in the
computation environment which is inhomogeneous in network
bandwidth, CPU and memory capability due to the existence of its
global synchronization stages. In this scenario, the aggregation tree
approach is a better choice. It can construct a tree graph in order to
guide the job manager to make the optimal aggregation operations
for many of the subsets of the input tuples so as to decrease the
intermediate data transformation. We implemented PageRank using
the aggregation tree approach by invoking the
GroupAndAggregate() operator in DryadLINQ CTP [10].

3.3.2. Performance Analysis

We evaluated the performance of the three approaches by running
PageRank jobs using various sizes of input data on 17 compute
nodes on TEMPEST. Figure 12 shows that the aggregation tree and
hierarchical aggregation approaches outperformed the hash partition
approach. In the ClueWeb dataset, the URLs are stored in
alphabetical order and the web pages that belong to the same
domain are likely to be saved in one AM file. Thus, the
intermediate data transfer in the hash partition stage can be greatly
reduced by applying the pre-aggregation to each AM file. The
hierarchical aggregation approach outperforms the aggregation tree
approach because it has a coarser granularity processing unit. In
addition, our experiment environment for the TEMPEST cluster has
a homogeneous network and CPU capability.

Fig. 12: PageRank Execution Time per Iteration with Three

Aggregation Approaches on 17 Nodes

In general, the pre-aggregation approaches work well only when

the number of output tuples is much smaller than the input tuples.

The hash partition works well only when the number of output

tuples is larger than the input tuples. We designed a mathematics

model in order to theoretically analyze how the ratio between the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

DryadLINQ/PLINQ OpenMPI/Pthread Twister/Thread

Matrices Sizes

R
el

at
iv

e
P

ar
al

le
l E

ff
ic

ie
n

cy

0

50

100

150

200

250

320 480 640 800 960 1120 1280

Aggregation Tree
Hash Partition
Hierarchical Aggregation

Number of AM files

Se
co

n
d

 p
er

 It
er

at
io

n

input and output tuples affected the performance of the aggregation

approaches. First, we defined the data reduction proportion (DRP)

[18] in order to describe the ratio as follows:

 (1)

Table 4: Data Reduction Ratios for Different PageRank

Approaches with the Clueweb09 Dataset

Input Size Hash
Aggregation

Pre-
aggregation

Hierarchical
Aggregation

320 files 2.3 GB 1:306 1:6.6:306 1:6.6:2.1:306

640 files 5.1 GB 1:389 1:7.9:389 1:7.9:2.3:389

1,280 files 9.7G 1:587 1:11.8:587 1:11.8:3.7:587

Further, we defined a mathematic model to describe how the DRP

will affect the efficiency of different aggregation approaches. First,

we assumed that the average number of tuples for each group is M

(M=1/DRP) and that there are N compute nodes. Then, we

assumed that the M tuples of each group are evenly distributed on

the N nodes. In the hash partition approach, the M tuples with the

same key are hashed into the same group on one node, which

require M aggregation operations. In the pre-aggregation

approaches, the number of local aggregation operations is M/N on

each node, which produces N partial aggregated results and need N

more aggregation operations. Thus, the total number of

aggregation operations for the M tuples is (M/N)*N+N. Then, the

average number of aggregation operations for each record of the

two approaches is as follows:

{
 (

) ()

 (

) ()

 (2)

Usually, DRP is much smaller than the number of compute nodes.
Taking word count as an example, documents with millions of
words may have several thousands common words. As the web
graph structure obeys zipf’s law, the DRP of the PageRank input
data was not as small as the DRP in regard to word count. Thus, the
pre-aggregation approach in PageRank may not deliver
performance as well as word count [10].

Fig. 13: Execution Time for Two Aggregation Approaches with

Different DRP Values.

In order to quantitatively analysis how the DRP affected the
aggregation performance, we compared the two aggregation
approaches using a set of web graphs with different DRPs by fixing
the number of output tuples and changing the number of input

tuples. Figure 13 shows the time per iteration of the PageRank jobs
for serial datasets whose output tuples ranged from 100,000 to
1000,000 while input tuples were fixed at 4.3 billion. As shown in
Figure 13, different grouped aggregation approaches fit well with
different DRP range of input data.

3.3.3. Compare with Other Runtimes
We compared the performance of the distributed grouped

aggregation of DryadLINQ with OpenMPI [19], Twister [20],

Hadoop, and Haloop [21]. We implemented PageRank using these

five runtimes for the ClueWeb09 dataset with the Power method

[22]. The DryadLINQ experiments were run with 24 cores per

node on 16 nodes in TEMPEST. The MPI, Twister, Hadoop, and

Haloop experiments were run with 8 cores per node on 16 nodes in

Quarry.

Fig 14 Parallel Efficiency of Five PageRank Implementation

As shown in Figure 14, the parallel efficiency of the PageRank jobs
was noticeably smaller than 1%. The first reason is that PageRank
is a communication intensive application, and the computation does
not use a large proportion of the overall PageRank job turnaround
time. Second, using multi-core technology does not help to increase
parallel efficiency; instead it decreases overall parallel efficiency.
The MPI, Twister and Haloop implementations outperformed the
DryadLINQ implementations, because they could cache loop-
invariable data or static data in the memory in multiple iterations.
Dryad and Hadoop were slower than the other approaches, as their
intermediate results were transferred via distributed file systems.

4. RELATED WORK

4.1. Pleasingly Parallel Application

We have shown that the DryadLINQ developers could easily tune
task granularity in order to solve the workload balance issue. In the
batch job scheduling systems, such as PBS, the programmers have
to manually group/un-group or split/combine input data in order to
control the task granularity. Hadoop provides an interface that
allows developers to control task granularity by defining the size of
the input records in the HDFS. This approach is an improvement,
but still requires developers to understand the logic format of the
input record in HDFS. DryadLINQ provides a simplified data
model and interface for this issue based on the existing .NET
platform.

4.2. Hybrid Parallel Programming

The hybrid parallel programming combines the inter node

distributed memory parallelization with the intra node shared

memory parallelization. MPI/OpenMP/Threading is the hybrid

programming model that is utilized in high performance

300

400

500

600

700

800

900

1000

1100

1200

Hash Partition Aggregation Tree

Num of Output Tuples

Se
co

n
d

 P
er

 It
re

at
io

n

0%

1%

2%

3%

4%

5%

6%

MPI

Twister

Haloop

Dryad

Hadoop

P
ar

al
le

l E
ff

ic
ie

n
cy

PageRank using 5 Different Runtimes

computing. Paper [23] discusses the hybrid parallel programming

paradigm using MPI.NET, TPL and CCR (Concurrency and

Coordination Runtime) on a Windows HPC server. The results of

the experiments show that the efficiency of the hybrid parallel

programming model has to do with the task granularity, while the

parallel overhead is mainly caused by synchronization and

communication.

Twister and Hadoop can also make use of multiple core systems by
launching multiple task daemons on each compute node. In general,
the number of task daemons is equal to that of the cores on each
compute node. The advantage of these systems is the unified
programming and scheduling model can be used to leverage multi-
core parallelism.

4.3. Distributed Grouped Aggreagtion

MapReduce and SQL database are two programming models that

can perform grouped aggregation. MapReduce has been used to

process a wide range of flat distributed data. However, MapReduce

is not efficient when processing relational operations, such as Join,

which have multiple inhomogeneous input data streams. The SQL

queries are able to process the relational operations of multiple

inhomogeneous input data streams; however, operations in full-

feature SQL database have big overhead that prevents the

application from processing large scale input data.

DryadLINQ lies between SQL and MapReduce, and addresses

some of the limitations found in SQL and MapReduce.

DryadLINQ provides developers with SQL-like queries by which

to process efficient aggregation for single input data streams and

multiple inhomogeneous input streams, but has reduced its

overhead to less than SQL by eliminating some of the functionality

of the database (transactions, data lockers, etc.). Further, Dryad can

build an aggregation tree (some databases also provide this type of

optimization) so as to decrease the data transformation in the hash

partitioning stage.

5. DISCUSSION AND CONCLUSION

In this paper, we discussed the three design patterns in the
DryadLINQ CTP to be used in scientific applications. The Smith
Waterman – Gotoh algorithm (SWG) is a pleasingly parallel
application which consists of Map and Reduce steps. We implement
it using the ApplyPerPartition operator, which can be considered as
distributed version of “Apply” in SQL. In the Matrix Multiplication,
we explored a hybrid parallel programming model that combines
inter-node distributed memory with intra node shared memory
parallelization. The hybrid model is implemented by porting
multicore technologies such as PLINQ and TPL into user-defined
functions within the DryadLINQ queries. PageRank is a
communication intensive application that requires joining two input
data streams and then performing the grouped aggregation over
partial results. We implemented PageRank with the three distributed
grouped aggregation approaches. To our knowledge, these patterns
have covered a wide range of distributed scientific applications.

Further, we discussed the issues that affected the performance of the
applications implemented within these DryadLINQ programming
models. By studying the experiments results, the following results
were evident: 1) DryadLINQ CTP provides a unified data model
and flexible programming interface for developers, which can be
used to solve the workload balance issue for pleasingly parallel
applications; 2) porting multi-core technologies, such as PLINQ and
TPL to DryadLINQ tasks can increase the system utilization for
large input datasets; and 3) the choice of distributed grouped

aggregation approaches with DryadLINQ CTP has a substantial
impact on the performance of data aggregation/reduction
applications.

6. ACKNOWLEDGMENTS

We would like to thank John Naab and Ryan Hartman from IU PTI
for setting up the Windows HPC cluster, and Thilina Gunarathne
and Stephen Tak-lon Wu from IU CS for providing the SW-G
application and data. This work is partially funded by Microsoft.

7. REFERENCES

[1] Jaliya Ekanayake, Thilina Gunarathne, et al. (2010). Applicability of
DryadLINQ to Scientific Applications, Community Grids Laboratory,
Indiana University.

[2] Dean, J. and S. Ghemawat (2004). "MapReduce: Simplified Data
Processing on Large Clusters." Sixth Symposium on Operating
Systems Design and Implementation: 137-150.

[3] Apache (2010). "Hadoop MapReduce." Retrieved November 6, 2010,
from http://hadoop.apache.org/mapreduce/docs/current/index.html.

[4] Isard, M., M. Budiu, et al. (2007). Dryad: distributed data-parallel
programs from sequential building blocks. Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer Systems
2007. Lisbon, Portugal, ACM: 59-72.

[5] Yu, Y., M. Isard, et al. (2008). DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-Level
Language. Symposium on Operating System Design and
Implementation (OSDI). San Diego, CA.

[6] Introduction to Dryad, DSC and DryadLINQ. (2010).
http://connect.micorosft.com/HPC

[7] Ekanayake, J., A. S. Balkir, et al. (2009). DryadLINQ for Scientific
Analyses. Fifth IEEE International Conference on eScience: 2009.
Oxford, IEEE.

[8] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.
Venkatrao, F. Pellow, and H. Pirahesh (1997). Data cube: A relational
aggregation operator geeralizig group-by, cross-tab, and sub-totals.
Data Mining and Knowledge Discovery (1997).

[9] Malewicz, G., M. H. Austern, et al. (2010). Pregel: A System for
Large-Scale Graph Processing. Proceedings of the 2010 international
conference on Management of data, Indianapolis, Indiana.

[10] Yu, Y., P. K. Gunda, et al. (2009). Distributed aggregation for data-
parallel computing: interfaces and implementations. Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles.
Big Sky, Montana, USA, ACM: 247-260.

[11] Moretti, C., H. Bui, et al. (2009). "All-Pairs: An Abstraction for Data
Intensive Computing on Campus Grids." IEEE Transactions on
Parallel and Distributed Systems 21: 21-36.

[12] Batzer MA and Deininger PL (2002). "Alu repeats and human
genomic diversity." Nature Reviews Genetics 3(5): 370-379.

[13] Li, H., Y. Huashan, et al. (2008). A lightweight execution framework
for massive independent tasks. Many-Task Computing on Grids and
Supercomputers, 2008. MTAGS 2008. Austin, Texas.

[14] G. Fox, A. Hey, and Otto, S (1987). Matrix Algorithms on the
Hypercube I: Matrix Multiplication, Parallel Computing, 4:17-31

[15] Jaliya Ekanayake (2009). Architecture and Performance of Runtime
Environments for Data Intensive Scalable Computing.
Supercomputing 2009 (SC09). D. Showcase. Portland, Oregon.

[16] ClueWeb09: http://boston.lti.cs.cmu.edu/Data/clueweb09/

[17] Y. Yu, M. Isard, D.Fetterly, M. Budiu, U.Erlingsson, P.K. Gunda,
J.Currey, F.McSherry, and K. Achan. Technical Report MSR-TR-
2008-74, Microsoft.

[18] S. Helmer, T. Neumann, G. Moerkotte (2003). Estimating the Output
Cardinality of partial Preaggregation with a Measure of

Clusteredness. Proceeding of the 29th VLDB Conference. Berlin,
Germany.

[19] OpenMPI http://www.open-mpi.org/

[20] J.Ekanayake, H.Li, et al. (2010). Twister: A Runtime for iterative
MapReduce. Proceedings of the First International Workshop on
MapReduce and its Applications of ACM HPDC 2010 conference
June 20-25, 2010. Chicago, Illinois, ACM.

[21] Haloop, http://code.google.com/p/haloop/

[22] PageRank wiki: http://en.wikipedia.org/wiki/PageRank

[23] Judy Qiu, Scott Beason, et al. (2010). Performance of Windows
Multicore Systems on Threading and MPI. Proceedings of the 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, IEEE Computer Society: 814-819.

http://code.google.com/p/haloop/

