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ABSTRACT 
The design and implementation of higher level data flow 

programming language interfaces are becoming increasingly 

important for data intensive computation. DryadLINQ is a 

declarative, data-centric language that enables programmers to 

address the Big Data issue in the Windows Platform. DryadLINQ 

has been successfully used in a wide range of applications for the 

last five years. The latest release of DryadLINQ was published as a 

Community Technology Preview (CTP) in December 2010 and 

contains new features and interfaces that can be customized in 

order to achieve better performances within applications and in 

regard to usability for developers. This paper presents three design 

patterns in DryadLINQ CTP that are applicable to a large class of 

scientific applications, exemplified by SW-G, Matrix-Matrix 

Multiplication and PageRank with real data. 

Categories and Subject Descriptors 
D.3.2 [Programming Language]: Data-flow languages 

General Terms 
Performance, Design, Languages. 

Keywords 
Dryad, DryadLINQ, MapReduce, Design Pattern, SW-G, Matrix 

Multiply, PageRank 

1. INTRODUCTION 

We are in a Big Data era. The rapid growth of information in 

science requires the processing of large amounts of scientific data. 

One proposed solution is to apply data flow languages and 

runtimes to data intensive applications [1]. The primary function of 

data flow languages and runtimes is the management and 

manipulation of data. Sample systems include the MapReduce [2] 

architecture pioneered by Google and the open-source 

implementation called Hadoop [3]. 

The MapReduce systems provide higher level programming 

languages that express data processing in terms of data flows. 

These systems can transparently deal with scheduling, fault 

tolerance, load balancing and communications while running jobs. 

The MapReduce programming model has been applied to a wide 

range of applications and has attracted enthusiasm from distributed 

computing communities due to its ease of use and efficiency in 

processing large scale distributed data 

However, the rigid and flat data processing paradigm of the 

MapReduce programming model prevents MapReduce from 

processing multiple, related heterogeneous datasets. A higher level 

programming language, such as Pig or Hive, can solve this issue to 

some extent, but is not efficient because the relational operations, 

such as Join, are converted into a set of Map and Reduce tasks for 

execution. For example, the classic MapReduce PageRank is very 

inefficient as the Join step in MapReduce PageRank spawns a very 

large number of Map and Reduce tasks during processing. Further 

optimization of MapReduce PageRank requires developers to have 

sophisticated knowledge of the web graph structure. 

Dryad [4] is a general purpose runtime that supports the processing 

of data intensive applications within the Windows platform. It 

models programs as a directed acyclic graph of the data flowing 

between operations. Thus, it is able to addresses some of the 

limitations that exist in the MapReduce systems. DryadLINQ [5] is 

the declarative, data flow programming language for Dryad. The 

DryadLINQ compiler can automatically translate the LINQ 

(Language-Integrated Query) programs written by .NET language 

into distributed, optimized computation steps that are run on top of 

the Dryad cluster. For some applications, writing the DryadLINQ 

distributed programs are as simple as writing a series of SQL 

queries. In complex cases, developers can port the application 

programs or user-defined functions into the lambda expression of 

the LINQ queries. 

In this paper, we investigate the applicability and efficiency of 

using DryadLINQ to develop scientific applications. Then, we 

abstracted them into three design patterns. The contributions of this 

paper are as follows: 

1. We studied the task granularity in order to improve LINQ’s 

support for coarse-grain parallelization with the DryadLINQ 

CTP data model and interface. 

2. We demonstrated that a hybrid parallel programming 

model not only utilizes parallelism in multiple nodes, but also 

in multiple cores.  

3. We investigated the three distributed grouped aggregation 

approaches and the feature of input data that affects the 

efficiency of these approaches. 

The structure of this paper is as follows. Section 2 illustrates the 

DryadLINQ basic programming model. Section 3 describes the 

implementation of the three classic scientific applications (SW-G, 

Matrix-Matrix Multiplication and PageRank) using DryadLINQ 

CTP. Section 4 discusses related work, while Section 5 concludes 

the paper. As the latest LINQ to HPC was published in June 2011, 

and its interface changed drastically from DryadLINQ CTP, we 

will describe the programming models using pseudo code. 
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2. DRYADLINQ PROGRAMMING MODEL 

Dryad, DryadLINQ and DSC [6] are a set of technologies that 

support the processing of data intensive applications in the 

Windows platform. The software stack for these technologies is 

shown in Figure 1.  

Dryad is a general purpose runtime that supports the processing of 

data intensive applications in Windows platform. A Dryad job is 

represented as a directed acyclic graph (DAG), which is called the 

Dryad graph. One Dryad graph consists of vertices and channels. A 

graph vertex is an independent instance of the data processing 

program in a certain step. Graph edges are the channels 

transferring data between the vertices. The Distributed Storage 

Catalog (DSC) is the component that works with the NTFS in 

order to provide data management functionalities, such as data sets 

storage, replication and load balancing within the HPC cluster. 

DryadLINQ is a high level programming language and compiler 

for Dryad. The DryadLINQ API is based on the LINQ 

programming model. It takes advantage of the standard query 

operators defined within the LINQ and adds query extensions 

specific to Dryad. Developers can easily apply LINQ operators, 

such as Join or GroupBy, to a set of .NET data objects, which 

increase the speed of the development of the data intensive 

applications. 

 
Fig.1: Software Stack for DryadLINQ CTP 

 

2.1. Pleasingly Parallel Programming Model 

Many pleasingly parallel applications are of the Single Program 

Multiple Data (SPMD) model. DryadLINQ supports a unified data 

and programming model in the representation and processing of 

pleasingly parallel applications. DryadLINQ data objects are 

collections of strong .NET type objects, which can be split into 

partitions and distributed across cluster. These DryadLINQ data 

objects are represented as DistributedQuery<T> or 

DistributedData<T> objects to which the LINQ operators can 

apply. DryadLINQ applications can create the DistributeData<T> 

objects from the existing data stored in the DSC or convert it from 

the IEnumerable<T> objects using AsDistributed() and 

AsDistributedFromPartitions() operators. Then, these DryadLINQ 

data objects are partitioned and distributed to the nodes. 

Developers can deal with these distributed DryadLINQ data 

objects by invoking the user-defined function within the Select() or 

ApplyPerPartition() operators. The pseudo code for this 

programming model is as follows: 

 

Var inputs= inputDataSet.AsDistributedFromPartitions(); 
//Construct DryadLINQ Distributed Data Objects--inputs 
Var outputs= inputs.Select(distributedObject => 
User_Defined_Function(distributedObject)); 
//Process DryadLINQ Distributed Data Objects with UDF 

A wide range of pleasingly parallel applications can be 

implemented using the above DryadLINQ primitives [7], which 

include the CAP3 DNA sequence assembly application, High 

Energy Physics data analysis application and the all pair gene 

sequences SW-G computation.    

 

2.2. Hybrid Parallel Programming Model 

Dryad is supposed to process coarse-granularity tasks for large 

scale distributed data. It usually schedules tasks for the resources 

in the unit of compute nodes rather than the cores. In order to 

increase the utilization of the multi-core Windows cluster, one 

direct approach is to invoke PLINQ (parallel LINQ) queries within 

the lambda expression of the DryadLINQ query. This approach is 

not only convenient, but, also, efficient as the LINQ query is 

naturally built within the DryadLINQ query. The other approach is 

to apply the multi-core technologies in .NET, such as TPL, and the 

thread pool to the user-defined function within in lambda 

expression of the DryadLINQ query. The pseudo code for this 

programming model is as follows:  

Var inputs= inputDataSet.AsDistributedFromPartitions(); 
//Construct DryadLINQ Distributed Data Objects--inputs 
Var outputs = 
inputs.ApplyPerPartition(distributedObject => 
distributedObject.AsParallel().Select(parallelObject=> 

User_Defined_Function(parallelObject))); 
//Process DryadLINQ Distributed Data Object with PLINQ 

In the above hybrid model, Dryad handles the parallelism between 

the cluster nodes, while the PLINQ, TPL and thread pool 

technologies deal with the parallelism on the multi-core of each 

node. The hybrid parallel programming model in 

Dryad/DryadLINQ has been proven to be successful and has been 

applied to data clustering applications [7], such as the GTM 

interpolation and MDS interpolation. Most of the pleasingly 

parallel applications can be implemented using this model.  

2.3. Distributed Grouped Aggregation 

The GROUP BY operator in the parallel database is often followed 

by the aggregate function, which groups the input records into 

partitions by keys and then merges the records for each group 

using certain attribute values. This common pattern is called the 

distributed grouped aggregation. Sample applications for this 

pattern include sales data summarizations, log data analysis and 

social network influence analysis [8] [9].    

Several approaches exist by which to implement the distributed 

grouped aggregation. A direct approach is to use the hash partition 

operator to redistribute the records to the compute nodes so that 

identical records are stored on the same node. After that this 

approach merges the records of each group on each node.  

The implementation of the hash partition is simple, but creates a 

large amount of network traffic when the number of input records 

is very large. A common way to optimize this approach is to apply 

pre-aggregation, which aggregates the local records of each node 

and then hash partitions the aggregated partial results across a 

cluster based on their key. This approach is better than the direct 



hash partition because the number of records transferred across the 

cluster becomes much smaller after the local aggregation 

operation.  

Two additional ways exist by which to implement the pre-

aggregation: 1) hierarchical aggregation and 2) an aggregation tree 

[10]. A hierarchical aggregation usually contains two or three 

aggregation layers, each having an explicit synchronization phase. 

An aggregation tree is a tree graph that guides a job manager to 

perform the pre-aggregation for the many subsets of the input 

records. The workflow of the three distributed grouped aggregation 

approaches is shown in Figure 2.  

 
Fig. 2: Three Distributed Grouped Aggregation Approaches: Hash 

Partition, Hierarchical Aggregation, and Aggregation Tree. 

3. IMPLEMENTATIONS 

We implemented SW-G, Matrix-Matrix Multiplication and 

PageRank using the DryadLINQ CTP and then evaluated their 

performances on two Windows HPC clusters and one Linux 

cluster. The hardware resources used in this paper are as follows: 

Table 1: 32 Nodes Homogeneous HPC Cluster TEMPEST 

 TEMPEST TEMPEST-CNXX 

CPU Intel E7450 Intel E7450 

Cores 24 24 

Memory 24.0 GB 50.0 GB 

Memory/Core 1 GB 2 GB 

Table 2: 7 Nodes Inhomogeneous HPC Cluster STORM 

 STORM-
CN01,CN02, 

CN03 

STORM-
CN04,CN05 

STORM-
CN06,CN07 

CPU AMD 2356 AMD 8356 Intel E7450 

Cores 8 16 24 

Memory 16 GB 16 GB 48 GB 

Memory/Core 2 GB 1 GB 2 GB 

Table 3: 230 Nodes Homogeneous Linux Cluster Quarry 

 Head Node PG-XX 

CPU Intel E5335 Intel E5335 

Cores 8 8 

Memory 8 GB 16 GB 

Memory/Core 1 GB 2 GB 

3.1.Pleasingly Parallel Application 
The Alu clustering problem [11] [12] is one of the most challenging 
problems when sequencing clustering because Alus represent the 
largest repeat families in the human genome. About one million 
copies of the Alu sequence exist in the human genome. Most 
insertions can be found in other primates and only a small fraction 
(~7000) are human-specific. This feature indicates that the 
classification of Alu repeats can be deduced solely from the one 
million human Alu elements. Notably, Alu clustering can be viewed 
as a classical case study for the capacity of computational 
infrastructures because it is not only of intrinsic biological interest, 
but, also, a problem on a scale that will remain as the upper limit of 
many other clustering problems in bioinformatics for the next few 
years, e.g. the automated protein family classification for a few 
million proteins predicted from large meta-genomics projects. 

 
Fig. 3: DryadLINQ Implementation of SW-G Application 

 
We implemented the DryadLINQ application in order to calculate 
the pairwise SW-G distances in parallel for a given set of gene 
sequences. In order to clarify our algorithm, we considered an 
example with 10,000 gene sequences, which produced a pairwise 
distance matrix of 10,000 × 10,000. We decomposed the overall 
computation into a block matrix D of 8 × 8, each block containing 
1250 × 1250 sequences. Due to the symmetry of the distances D(i,j) 
and D(j,i), we only calculated the distances in the 36 blocks of the 
upper triangle of the block matrix as shown in Figure 3. These 36 
blocks were constructed as 36 DryadLINQ distributed data objects. 
Then, our program split the 36 DryadLINQ objects into 6 partitions, 
which spawned 6 DryadLINQ tasks. Each Dryad task invoked the 
user-defined function PerformAlignments() in order to process the 
six blocks that were dispatched to each Dryad task. One should bear 
in mind that different partition scheme will cause different task 
granularity. The DryadLINQ developers can control task 
granularity by simply specify the number of partition with 
RangePartition() operator.  

3.1.1. Workload Balance for Inhomogeneous Tasks 
The workload balance is a common issue when scheduling 

inhomogeneous tasks on homogeneous resources or vice versa. In 

order to solve this issue, Dryad provides a unified data model and 

flexible interface for developers to tune task granularity. The 

following experiments will study workload balance issue in 

DryadLINQ SW-G application.    

The SW-G is a pleasingly parallel application, but the pairwise 

SW-G computations are inhomogeneous in CPU time. The task of 

splitting all of the SW-G blocks into partitions with an even 

number of blocks still experiences a workload balance issue when 

processing the partitions on the homogeneous computational 

resources. One approach for this issue is to split the skewed 

distributed input data into many finer granularity tasks. In order to 

verify this approach, we constructed a set of gene sequences with a 



given mean sequence length (400) using varying standard 

deviations (50, 150, 250). Then, we ran the SW-G dataset on the 

TEMPEST cluster using a different number of data partitions. As 

shown in Figure 4, as the number of partitions increased, the 

overall job turnaround time decreased for the three skewed 

distributed input datasets. This phenomenon occurs because the 

finer granularity tasks can achieve the better overall system 

utilization by dynamically dispatching available tasks to idle 

resources. However, when the number of partitions continually 

increases, the scheduling costs become the dominant factor in 

regard to overall performance. 

 
Fig. 4: Performance Comparison for Skewed Distributed Data with 

Different Task Granularity. 

 

3.1.2. Workload Balance for Inhomogeneous Cluster 
Clustering or extending existing hardware resources may lead to 

the problem of scheduling tasks on an inhomogeneous cluster with 

different CPUs, memory and network capabilities between nodes 

[13]. Allocating the workload to resources according to their 

computational capability is a solution, but requires the runtimes to 

know the resource requirement of each job and availability of 

hardware resources. Another solution is to split the entire job into 

many finer granularity tasks and dispatch available tasks to idle 

computational resources. 

 
Fig. 5: CPU and Scheduling Time of the Same SW-G Job with 

Various Partition Granularities 

 We verified the second approach by executing 4,096 sequences 

for SW-G jobs on the inhomogeneous HPC STORM using 

different partition granularities. Figure 5 shows the CPU and task 

scheduling times of the same SW-G job with a different number of 

partitions: 6, 24 and 192. In the first SW-G job, the entire job was 

split into six partitions. The difference in CPU time for each task 

was caused by the difference in the computational capability of the 

nodes. The second and third jobs in Figure 5 clearly illustrate that 

finer partition granularity can deliver a better load balance on the 

inhomogeneous computational nodes. However, it also showed 

that the task scheduling cost increased as the number of partitions 

increased. 

 

3.1.3. Compare with Hadoop 
As shown in Figures 4 and 5, the task granularity is important for 

the workload balance issue in DryadLINQ. Further, we compared 

the task granularity issue of DryadLINQ with that of Hadoop. The 

DryadLINQ/PLINQ SW-G experiments were run with 24 cores per 

node on 32 nodes in TEMPEST. The input data was 10,000 gene 

sequences. The number of DryadLINQ tasks per vertex ranged 

from 1 to 32. The Hadoop SW-G experiments were run with 8 

cores per node on 32 nodes in Quarry. Eight mappers and one 

reducer were deployed on each node. The number of map tasks per 

mapper ranged from 1 to 32. As shown in Figure 6, when the 

number of tasks per vertex was bigger than 8, the relative parallel 

efficiency of DryadLINQ jobs decreased noticeably. This decrease 

occurred because the number of tasks per vertex was bigger than 8 

and the number of SW-G blocks allocated to each DryadLINQ task 

was less than 12, which is only half of the number of cores in each 

node in TEMPEST. Dryad can run only one DryadLINQ task on 

each compute node. Thus the relative parallel efficiency was low 

for fine task granularity in DryadLINQ.  

 
Fig. 6: Relative Parallel Efficiency of Hadoop and DryadLINQ with 

Different Task Granularity. 

3.2. Hybrid Parallel Programming Model 

In order to explore the hybrid parallel programming model, we 

implemented the DryadLINQ Matrix-Matrix Multiplication using 

three algorithms and three multi-core technologies. The three 

matrix multiplication algorithms were: 1) row partition algorithm, 

2) row/column partition algorithm and 3) two dimension block 

decomposition in the Fox algorithm [14]. The multi-core 

technologies were: 1) PLINQ, 2) TPL, and 3) Thread Pool.  

 

3.2.1. Matrix-Matrix Multiplication Algorithms  
The row partition algorithm split matrix A by rows. It scattered the 

rows of the blocks of matrix A across the compute nodes, and then 

copied all of matrix B to every compute node. Each Dryad task 

multiplied some of the rows of the blocks of matrix A by the entire 

matrix B, and then retrieved the partial output results to the main 

program and added these results to the corresponding rows of 

blocks of matrix C.   
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The row/column partition algorithm [15] split matrix A into rows 

and matrix B into columns. The column blocks of matrix B were 

scattered across the cluster in advance. Then, the entire 

computation was divided into several steps. In each step, one task 

multiplied one row of blocks of matrix A by one column of blocks 

of matrix B on the compute node. The output results were sent 

back to the main program and aggregated into one row of blocks of 

matrix C. The main program collected the results in all of the steps 

in order to generate the final results of matrix C.  

The two dimensional block decomposition in the Fox algorithm is 

called the Broadcast-Multiply-Roll (BMR) algorithm. In the initial 

stage of the Fox algorithm, it splits matrix A and matrix B into 

square mesh of square sub-matrices. These sub-matrices are evenly 

scattered into a square processor mesh. Figure 7 is the work flow 

of the Fox algorithm on a mesh of 2*2 compute nodes.  
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Fig. 7: Work Flow of the Fox Algorithm on a Mesh of 2*2 Nodes 

 
We evaluated the three algorithms by running matrix 

multiplication jobs with various matrices sizes whose scales ranged 

from 2,400 to 19,200. By default, we used a square matrix in the 

experiments and the elements of the matrices were double 

numbers. The experiments were run with one core per node on the 

16 compute nodes in TEMPEST. 

 
Fig. 8: Mflops of Three Algorithms with 1 Core per Node on 16 

Nodes 

As shown in Figure 8, the Fox algorithm performed better than the 
other two algorithms for the large matrices. The RowPartition 
algorithm had the simplest logic and least amount of scheduling 
costs. It did not perform as well as the Fox algorithm due to the fact 
that it did not parallelize the communications when broadcasting 
matrix A and scattering sub-matrices B over the cluster. The 

RowColumnPartition algorithm performed worse than the 
RowPartition as it had additional startup costs in the multiple steps. 

3.2.2. Parallelism in the Core Level 
We evaluated the multi-core technologies in .NET 4.0 by running 
matrix-matrix multiplication jobs with various matrices sizes whose 
scales ranged from 2,400 * 2,400 to 19,200 * 19,200 on a 24-core 
machine. Figure 9 shows the performance results for the three 
multi-core technologies. As illustrated in Figure 9, the PLINQ had 
the best performance compared to the other technologies.  

 
Fig. 9: Parallel Efficiency for Different Technologies of Multi-Core 

Parallelism on the 24 Core Compute Node 

 

3.2.3. Porting Multi-core Tech into Dryad Tasks  
We investigated the overall performance of the three matrix 
multiplication algorithms when porting PLINQ to the DryadLINQ 
tasks. The experiments were run with 24 cores per node on 16 
nodes in TEMPEST. The matrices sizes ranged from 2,400 * 2,400 
to 19,200 * 19,200. As shown in Figure 8 and 10, 1) the 
performance of programs using 24 cores were much faster than that 
of using 1 core, 2) each of the three algorithms scaled out for the 
large matrices and 3) the Fox algorithm performed better than the 
other algorithms for the large matrices.  

 
Fig. 10: Mflops of the PLINQ Version of the Three Matrix 

Multiplication Algorithms with 24 Cores per Node on 16 Nodes 

 

3.2.4. Compare with OpenMPI and Twister 

We compared the scalability of the Fox algorithm of 

DryadLINQ/PLINQ with that of the OpenMPI/Pthread and 

Twister/Thread. The DryadLINQ experiments were run with 24 

cores per node on 16 nodes in TEMPEST. The OpenMPI and 

Twister experiments were run with 8 cores per node on 16 nodes in 

Quarry. The matrices sizes ranged from 2,400*2,400 to 

31,200*31,200. As shown in Figure 11, the parallel efficiency of 
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the Fox algorithm of the DryadLINQ/PLINQ was smaller than that 

of the OpenMPI/Pthread and Twister/Thread for the small matrices 

sizes. The super linear speed up in Twister is due to the cache 

behaving better in the parallel case. The experiment results also 

indicate that the DryadLINQ implementation is able to scale out 

for large matrices. 

 
Fig. 11: Parallel Efficiency of the Fox Algorithm Using the 
DryadLINQ/PLINQ, OpenMPI/Pthread and Twister/Thread 

3.3. Distributed Grouped Aggregation 
We studied the distributed grouped aggregation in the DryadLINQ 
CTP using PageRank with real data. Specifically, we investigated 
the programming interface and performance of the three distributed 
grouped aggregation approaches in the DryadLINQ, which included 
the Hash Partition, Hierarchical Aggregation and Aggregation Tree. 
Further, we studied the features of the input data that affected the 
performance of the distributed grouped aggregation 
implementations.   

PageRank is already a well-studied web graph ranking algorithm. It 
calculates the numerical value of each element of a hyperlinked set 
of web pages in order to reflect the probability that a random surfer 
will access those pages. The PageRank process can be understood 
as a Markov Chain, which needs recursive calculations in order to 
converge to the final results. An iteration of the algorithm calculates 
the new access probability for each web page based on the values 
calculated in the previous computation. The iterations will not stop 
until the Euclidian distance between the two subsequent rank value 
vectors becomes less than a predefined threshold. In this paper, we 
implemented the DryadLINQ PageRank using the ClueWeb09 
dataset [16], which contained almost 50 million web pages. 

We split the entire ClueWeb graph into 1,280 partitions, each 

saved as an Adjacency Matrix (AM) file. The characteristics of the 

input data are described below: 

No of Am Files File Size No of Web Pages No of Links Ave Out-degree 

1280 9.7 GB 49.5 million 1.40 billion 29.3 

3.3.1. PageRank using Three Distributed Grouped 
Aggregation Approaches 

PageRank is a communication intensive application that requires 

joining two input data streams and then performing the grouped 

aggregation over partial results.  

First, we implemented PageRank with the hash partition approach 

with three main functions [17]: Join(), GroupBy(), and user-

defined aggregation function. In the Join stage, we constructed the 

DistributedQuery<Page> objects that represented the web graph 

structure of the AM files. Then, we constructed the 

DistributedQuery<Rank> objects each of which represent a pair 

that contains the identifier number of a page and its current 

estimated rank value. After that, the program joins the pages within 

the ranks in order to calculate the partial rank values. Then, the 

GroupBy() operator hash partition calculated the partial rank 

values to some groups, where each group represented a set of 

partial ranks with the same source page pointing to them. At last, 

the partial rank values in each group were aggregated using the 

user-defined aggregation function. 

Second, we implemented PageRank using the hierarchical 

aggregation approach, which has tree fixed aggregation stages: 1) 

the first pre-aggregation stage for each user-defined aggregation 

function, 2) the second pre-aggregation stage for each DryadLINQ 

partition and 3) the third global aggregation stage to calculate the 

global PageRank rank values.  

The hierarchical aggregation approach may not perform well in the 
computation environment which is inhomogeneous in network 
bandwidth, CPU and memory capability due to the existence of its 
global synchronization stages. In this scenario, the aggregation tree 
approach is a better choice. It can construct a tree graph in order to 
guide the job manager to make the optimal aggregation operations 
for many of the subsets of the input tuples so as to decrease the 
intermediate data transformation. We implemented PageRank using 
the aggregation tree approach by invoking the 
GroupAndAggregate() operator in DryadLINQ CTP [10].  

 

3.3.2. Performance Analysis 

We evaluated the performance of the three approaches by running 
PageRank jobs using various sizes of input data on 17 compute 
nodes on TEMPEST. Figure 12 shows that the aggregation tree and 
hierarchical aggregation approaches outperformed the hash partition 
approach. In the ClueWeb dataset, the URLs are stored in 
alphabetical order and the web pages that belong to the same 
domain are likely to be saved in one AM file. Thus, the 
intermediate data transfer in the hash partition stage can be greatly 
reduced by applying the pre-aggregation to each AM file. The 
hierarchical aggregation approach outperforms the aggregation tree 
approach because it has a coarser granularity processing unit. In 
addition, our experiment environment for the TEMPEST cluster has 
a homogeneous network and CPU capability. 

 
Fig. 12: PageRank Execution Time per Iteration with Three 

Aggregation Approaches on 17 Nodes 

 
In general, the pre-aggregation approaches work well only when 

the number of output tuples is much smaller than the input tuples. 

The hash partition works well only when the number of output 

tuples is larger than the input tuples. We designed a mathematics 

model in order to theoretically analyze how the ratio between the 
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input and output tuples affected the performance of the aggregation 

approaches. First, we defined the data reduction proportion (DRP) 

[18] in order to describe the ratio as follows: 

    
                       

                      
   (1) 

Table 4: Data Reduction Ratios for Different PageRank 

Approaches with the Clueweb09 Dataset 

Input Size Hash 
Aggregation 

Pre-
aggregation 

Hierarchical 
Aggregation 

320 files 2.3 GB 1:306 1:6.6:306 1:6.6:2.1:306 

640 files 5.1 GB 1:389 1:7.9:389 1:7.9:2.3:389 

1,280 files 9.7G 1:587 1:11.8:587 1:11.8:3.7:587 

 
Further, we defined a mathematic model to describe how the DRP 

will affect the efficiency of different aggregation approaches. First, 

we assumed that the average number of tuples for each group is M 

(M=1/DRP) and that there are N compute nodes. Then, we 

assumed that the M tuples of each group are evenly distributed on 

the N nodes. In the hash partition approach, the M tuples with the 

same key are hashed into the same group on one node, which 

require M aggregation operations. In the pre-aggregation 

approaches, the number of local aggregation operations is M/N on 

each node, which produces N partial aggregated results and need N 

more aggregation operations. Thus, the total number of 

aggregation operations for the M tuples is (M/N)*N+N. Then, the 

average number of aggregation operations for each record of the 

two approaches is as follows: 

{
 (

 

 
)   ( ) 

 (
   

 
)   (       ) 

  (2) 

Usually, DRP is much smaller than the number of compute nodes. 
Taking word count as an example, documents with millions of 
words may have several thousands common words. As the web 
graph structure obeys zipf’s law, the DRP of the PageRank input 
data was not as small as the DRP in regard to word count. Thus, the 
pre-aggregation approach in PageRank may not deliver 
performance as well as word count [10]. 

 
Fig. 13: Execution Time for Two Aggregation Approaches with 

Different DRP Values. 

 
In order to quantitatively analysis how the DRP affected the 
aggregation performance, we compared the two aggregation 
approaches using a set of web graphs with different DRPs by fixing 
the number of output tuples and changing the number of input 

tuples. Figure 13 shows the time per iteration of the PageRank jobs 
for serial datasets whose output tuples ranged from 100,000 to 
1000,000 while input tuples were fixed at 4.3 billion. As shown in 
Figure 13, different grouped aggregation approaches fit well with 
different DRP range of input data. 

 

3.3.3. Compare with Other Runtimes 
We compared the performance of the distributed grouped 

aggregation of DryadLINQ with OpenMPI [19], Twister [20], 

Hadoop, and Haloop [21]. We implemented PageRank using these 

five runtimes for the ClueWeb09 dataset with the Power method 

[22]. The DryadLINQ experiments were run with 24 cores per 

node on 16 nodes in TEMPEST. The MPI, Twister, Hadoop, and 

Haloop experiments were run with 8 cores per node on 16 nodes in 

Quarry.  

 
Fig 14 Parallel Efficiency of Five PageRank Implementation 

As shown in Figure 14, the parallel efficiency of the PageRank jobs 
was noticeably smaller than 1%. The first reason is that PageRank 
is a communication intensive application, and the computation does 
not use a large proportion of the overall PageRank job turnaround 
time. Second, using multi-core technology does not help to increase 
parallel efficiency; instead it decreases overall parallel efficiency. 
The MPI, Twister and Haloop implementations outperformed the 
DryadLINQ implementations, because they could cache loop-
invariable data or static data in the memory in multiple iterations. 
Dryad and Hadoop were slower than the other approaches, as their 
intermediate results were transferred via distributed file systems. 

4.  RELATED WORK 

4.1. Pleasingly Parallel Application 

We have shown that the DryadLINQ developers could easily tune 
task granularity in order to solve the workload balance issue. In the 
batch job scheduling systems, such as PBS, the programmers have 
to manually group/un-group or split/combine input data in order to 
control the task granularity. Hadoop provides an interface that 
allows developers to control task granularity by defining the size of 
the input records in the HDFS. This approach is an improvement, 
but still requires developers to understand the logic format of the 
input record in HDFS. DryadLINQ provides a simplified data 
model and interface for this issue based on the existing .NET 
platform. 

4.2. Hybrid Parallel Programming 

The hybrid parallel programming combines the inter node 

distributed memory parallelization with the intra node shared 

memory parallelization. MPI/OpenMP/Threading is the hybrid 

programming model that is utilized in high performance 
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computing. Paper [23] discusses the hybrid parallel programming 

paradigm using MPI.NET, TPL and CCR (Concurrency and 

Coordination Runtime) on a Windows HPC server. The results of 

the experiments show that the efficiency of the hybrid parallel 

programming model has to do with the task granularity, while the 

parallel overhead is mainly caused by synchronization and 

communication.  

Twister and Hadoop can also make use of multiple core systems by 
launching multiple task daemons on each compute node. In general, 
the number of task daemons is equal to that of the cores on each 
compute node. The advantage of these systems is the unified 
programming and scheduling model can be used to leverage multi-
core parallelism. 

4.3. Distributed Grouped Aggreagtion 

MapReduce and SQL database are two programming models that 

can perform grouped aggregation. MapReduce has been used to 

process a wide range of flat distributed data. However, MapReduce 

is not efficient when processing relational operations, such as Join, 

which have multiple inhomogeneous input data streams. The SQL 

queries are able to process the relational operations of multiple 

inhomogeneous input data streams; however, operations in full-

feature SQL database have big overhead that prevents the 

application from processing large scale input data. 

DryadLINQ lies between SQL and MapReduce, and addresses 

some of the limitations found in SQL and MapReduce. 

DryadLINQ provides developers with SQL-like queries by which 

to process efficient aggregation for single input data streams and 

multiple inhomogeneous input streams, but has reduced its 

overhead to less than SQL by eliminating some of the functionality 

of the database (transactions, data lockers, etc.). Further, Dryad can 

build an aggregation tree (some databases also provide this type of 

optimization) so as to decrease the data transformation in the hash 

partitioning stage. 

5.  DISCUSSION AND CONCLUSION 

In this paper, we discussed the three design patterns in the 
DryadLINQ CTP to be used in scientific applications. The Smith 
Waterman – Gotoh algorithm (SWG) is a pleasingly parallel 
application which consists of Map and Reduce steps. We implement 
it using the ApplyPerPartition operator, which can be considered as 
distributed version of “Apply” in SQL. In the Matrix Multiplication, 
we explored a hybrid parallel programming model that combines 
inter-node distributed memory with intra node shared memory 
parallelization. The hybrid model is implemented by porting 
multicore technologies such as PLINQ and TPL into user-defined 
functions within the DryadLINQ queries. PageRank is a 
communication intensive application that requires joining two input 
data streams and then performing the grouped aggregation over 
partial results. We implemented PageRank with the three distributed 
grouped aggregation approaches. To our knowledge, these patterns 
have covered a wide range of distributed scientific applications.  

Further, we discussed the issues that affected the performance of the 
applications implemented within these DryadLINQ programming 
models. By studying the experiments results, the following results 
were evident: 1) DryadLINQ CTP provides a unified data model 
and flexible programming interface for developers, which can be 
used to solve the workload balance issue for pleasingly parallel 
applications; 2) porting multi-core technologies, such as PLINQ and 
TPL to DryadLINQ tasks can increase the system utilization for 
large input datasets; and 3) the choice of distributed grouped 

aggregation approaches with DryadLINQ CTP has a substantial 
impact on the performance of data aggregation/reduction 
applications.  
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