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ABSTRACT 

The growing complexity and size of computer systems calls for 

improved methods to describe and analyze them. We propose to 

use excess entropy for that purpose. Excess entropy can be 

applied to quantify imbalance and concentration of processing. It 

also allows considering systems composed of subsystems. We 

demonstrate the utility of excess entropy approach by applying it 

to the description of the elements of load in Windows Azure 

compute clusters. Using excess entropy we locate unusual 

situations in the division of load between clusters. We also apply 

excess entropy to describe the imbalance of load in time. 

Categories and Subject Descriptors 

Performance of Systems 

General Terms: Management, Performance. 

Keywords: capacity planning, resource usage, entropy, imbalance, 

probability distributions. 

1. INTRODUCTION 
A modern server has over 2000 performance counters which are 

relevant to the description of its state and usage – that applies to 

both Windows and Unix servers. For one server we can select a 

smaller subset of counters requiring monitoring, but if we have 

several servers running different applications – the size of the 

monitoring set grows quickly. In addition the complexity of 

computer systems is growing, too. We started computer system 

performance analysis and capacity planning with a single 

mainframe. Then we have moved to multiple mainframes and 

groups of servers. That was followed by multiple virtual machines 

running on a single server. The current stage – cloud computing - 

is, in effect, an operating system controlling execution of 

processing on clusters of servers and cluster groups.  

We need to consider both traditional system descriptors as well as 

the new ones arising from the handing server groups and 

virtualization. Examples of new descriptors include estimating 

effects of competition for disk bandwidth between multiple virtual 

machines running on the same server and sharing physical disks - 

or similar competition for network rack switches between virtual 

machines deployed to the same rack of servers. 

Performance analysts and capacity planners have to deal with 

information explosion in two different dimensions. The first one is 

related to the scale of modern web services, when datacenters 

containing tens of thousands of servers are providing hundreds of 

services – thus we have data from a single server multiplied 

100,000 times (or more). Most complexity in this dimension is 

coming from the number of servers. The second dimension is the 

virtualization and cloud artifacts – consideration of deployment 

strategy for virtual machines, consideration of migration options 

for virtual machines to other servers or clusters and management 

of whole clusters of servers.  

 

To manage this information explosion we need descriptors of 

overall system usage that are on higher conceptual level than 

direct performance counters, like processor utilization, number of 

disk operations, memory bytes used, packets transferred through a 

network and other performance counters of this type.  

An example of such higher-level descriptor is Performance Impact 

Factor (PIF) introduced in [7]. Processor utilization reported by 

the system monitor can be misleading – a daily average utilization 

of 0.2 may come from a server which is working evenly all day 

and could handle much more work – or from a server which is 

severely overloaded for four hours per day with disastrous 

consequences to response time and service level agreement. 

Differentiating between these extremes (and all intermediate 

situations) requires looking at daily load chart – but this is an 

impractical option for 100,000 servers. PIF is weighted average of 

processor (or disk or network card) utilization designed to signal 

how the load profile may affect the server response time. In effect 

PIF transforms the data from performance counter space to 

performance impact space. That simplifies analysis of a large 

number of servers, because PIF is a one-number summary and 

captures the information not easily discernible from the original 

counters. 

Another example of a higher-level descriptor is Capacity Usage 

Factor (CUF) introduced in [8]. CUF starts with the notions of 

software work and computer capacity to perform that work and 

combines it with other system descriptions like cost or power . 

CUF is a generalization of utilization coefficient accommodating 

differences between processors (and disks, and network cards). It 

allows comparison of usage levels between servers with different 

hardware and between groups of such machines. 

In this paper we propose another higher-level descriptor based on 

excess entropy. We argue that excess entropy can be used to 

describe imbalance between use of similar components (hardware 

or software) in the system. Alternatively and equivalently excess 

entropy can be viewed as describing the concentration of use of a 

system or a subsystem. 

A parallel paper [9] applies excess entropy to describe usage of 

Windows Azure storage clusters by individual customer accounts. 

This paper applies excess entropy to selected Windows Azure 

compute clusters and cluster groups.   
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2. EXCESS ENTROPY, DISORDER, 

IMBALANCE AND CONCENTRATION 
The notion on entropy has been introduced in thermodynamics in 

mid-19-century by Clausius. Twenty years later Boltzmann 

expanded the notion of entropy to statistical mechanics, which 

started the interpretation of entropy as that of a ‘disorder’. In 

particular entropy describes how the system state is positioned 

among the all possible system states. 

In economics the distribution of various forms of wealth in the 

society was a topic of interest and various quantitative measures 

of economic inequality were proposed over the years [2,3,4,5]. In 

the end the measures based on entropy were introduced and 

became the mainstream. 

2.1 Imbalance in computer systems 
This subsection introduced the concept of imbalance and 

illustrates its use on a simple example of utilization of a disk set. 

Imbalance in various forms is frequently one of the symptoms of 

suboptimal or inefficient usage of a server or group of servers. For 

example a server with several disks will perform sub-optimally if 

one of the disks is handling all the requests and other disks are 

doing nothing - majority of the requests will be heavily queuing 

on one disk resulting in high overall application response time.  

Discovering the imbalance of usage between two disks is trivial - 

we only need to compare two numbers. Estimating imbalance 

when larger number of disks is involved is easy in extreme cases - 

we can just look at utilization charts. However, when the 

imbalance is less extreme, differentiating between different 

situations is difficult. Figure 1 shows example utilization of three 

disk sets - deciding which set is more imbalanced is not an easy 

task even when the number of disks in each set is the same. 

Another practical issue occurs when the number of disks on our 

servers is not identical - how do you compare imbalance level of 

4-disk server with 6-disk server?  

Estimation and comparison of imbalance gets more complicated 

when we have hundreds or thousands of servers. Eyeballing 

multiple charts is not an option - we need quantitative measure of 

imbalance to estimate how many servers need disk balancing and 

prioritize the task to handle the most imbalanced servers first. 

Also, with that number of servers there is more chance that some 

of them will have different number of disks than others. 

The issue of imbalance in computer systems usage is not limited 

to disk use. It can be applied to groups of servers processing 

transaction load or web queries, to a set of network devices, use of 

various applications performing similar service and so on. 

2.2 The measures of imbalance 
For a system described by set of values             the 

excess entropy (EE) is computed by: 
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Excess entropy is the difference between the maximum 

entropy possible in the system and the entropy present in the 

system. The maximum value of EE is ln(n) - when all 

elements but one are equal; the maximum EE depends thus 

on the set size. 

We can view EE as a description of how concentrated is the 

use of some resource – large values mean fewer users use most of 

the resource. When comparing systems with differing number of 

elements it is convenient to use normalized excess entropy: 
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Examining the    formula we can derive several properties:  

 the ratio         describes how much element    is 

above or below the average for the whole set. Thus    

involves only the ratios - not the absolute values of the 

elements.  

 the    is dimensionless – thus allows to compare 

imbalance between sets of substantially different 

quantities, for example when one set contains disk 

utilizations and another set contains response times.  

 

 

 

Figure 1 Example utilizations for sets of disks 

 

 the minimum value of    is zero - when all elements of 

the data set are identical. The maximum value of EE 

is.     .  



We can view    as a description of how concentrated are the 

values in the data set – large values of EE mean fewer set 

elements contribute to the sum of all values in the set, small 

values mean more equal contribution. 

Excess entropy was introduced in economics by Henri Theil to 

measure inequality of income and is known there as the Theil 

index [2, 3].  

2.3 Sample application of    
This section uses synthetic examples of groups of disks and their 

utilizations to develop some intuition, illustrate the calculation 

and interpretation of   . Then we consider other (than utilization) 

bases for computing Imbalance coefficient and consider some 

operational characteristics of nEE. 

We compute solutions for three cases: a set of four disks, testing 

whether tuning reduced imbalance, and comparing imbalance 

between two sets of disks of differing sizes. 

2.3.1 Imbalance of a set of disks 
We compute the imbalance coefficient for a set of four disks with 

utilization coefficients: (0.5, 0.1, 0.7, 0.3), where disk utilization 

is defined as fraction of time the disk is busy (see Figure 1, top 

picture). 

Applying the    formula we get the imbalance coefficient: 

1/4 * [0.279 +  -0.347 +  0.979 + -0.216]/log(4) = 0.126 

The components of the sum also allow to quantify the input of 

each disk to the total imbalance of the whole set. This is different 

from the mean value – it gives the insight into the sizes of factors 

contributing to the nEE. We see that disk3 contributes the most: 

0.979 while disk1 contributes only 0.07. It is obvious that disk3 is 

most utilized, so tuning should start with disk3 - we do not need 

the nEE to tell us that. The nEE computation also quantifies that - 

to reduce imbalance - working on reducing the load on disk3 is 

about three times more effective (0.973/0.279) than reducing load 

by the same amount on disk1. 

2.3.2 Estimate imbalance before and after tuning 
We analyze whether the tuning reduced the imbalance - in a 'live' 

system. 

Assume that, after analyzing and rearranging the load and file 

layout, we repeat the utilization measurement and obtain 

following utilization coefficients: (0.2,0.8,0.4,0.6) [see Figure 1, 

top and middle pictures]. We want to estimate whether tuning had 

reduced the imbalance. The measurements are taken from the live 

system, so – after tuning - we have both different utilization 

distribution between disks as well as slightly different overall 

utilization. 

Using the same formula we find that the imbalance coefficient 

after tuning is 0.077 - much lower than the original imbalance of 

0.126. Thus    quantifies the improvement achieved by tuning. 

The imbalance looks rather similar on pictures; the difference in 

quantitative measure is much larger. 

The naive approach here would be to use some measure only 

tangentially related to imbalance, for example standard deviation 

of utilizations. That creates a host of mathematical problems for 

further usage. Among others, it does not differentiate well - for 

both sets of utilizations the standard deviation is identical at 0.258 

- yet the imbalance coefficients are quite different. So, at the 

minimum, the Imbalance Coefficient describes a different aspect 

of the system than standard deviation. 

2.3.3 Imbalance when sets of disks are of different 

size 
We compare the imbalance between two sets of disks, each set 

having different number of disks.  

Assume we have two disk sets, one consisting of four disks with 

utilizations c(0.2,0.8,0.4,0.6) and another consisting of six disks 

with utilizations c(0.2,0.8,0.2,0.4,0.6,0.2,0.7) [Figure 1, middle 

and bottom pictures]. Applying the formula we see that the excess 

entropies for two disk sets are, respectively, 0.77 and 0.70 – 

suggesting that the first disk set is slightly more imbalanced than 

the second and should be tuned first. 

Trying to assess the imbalance intuitively is more complicated 

when the number of elements differs in each set. Also, in the first 

and second examples we could have used EE instead of nEE. 

Here, to compare sets with differing numbers of disks, we had to 

use the normalized version of EE. 

2.3.4 Other bases for imbalance computation.  
In the examples above we have used disk utilization to illustrate 

computations of imbalance. However, we can use other bases for 

computing imbalance. Selection of the base for imbalance 

computation depends on our goal. 

In some cases other (than utilization) disk characteristics  may be 

more relevant to the overall system performance - the number of 

input/output operations, the number of bytes transferred, operation 

time, queuing time or disk response time. The goal may be to 

assure balance of, say, queuing times or normalized (for 

transaction type or size) response times rather than utilizations.  

The same formula can be used for all such calculations but the 

resulting    may have significantly different value when 

different bases are used. For example computing nEE using disk 

response times is likely to give larger     than for disk 

utilizations – as response times grow disproportionately when 

utilization is high. 

We must note that even when the nEE computed for a disk 

set using various bases usually will have different values; the 

underlying meaning of nEE is still the same.       means total 

concentration of resource use or characteristic on element, 

      means perfectly equal distribution. If we want to 

achieve balance of response times, we should move files around 

to obtain the lowest response time nEE – even though that may 

result in high nEE for utilization.  

2.3.5 Some operational characteristics of nEE 
The    formula has a simple interpretation – it tells us 

about the concentration of use. High nEE means that most of 

overall disk use is concentrated in a small number of disks. Low 

nEE means that the disk use is spread more evenly. At the 

extremes, if only one disk had non-zero utilization, the nEE would 

have been equal to 1. If all the disks had the same utilization the 

nEE would have been zero. The underlying mathematical 

apparatus is to keep consistency on all intermediate situations. 

The     spots the imbalance even at low levels of load - 

thus giving an early warning signal that, if the load grows, the 

imbalance can impact performance. For example with two disks at 

utilization levels 0.05 and 0.4 the overall system performance is 

unlikely to be affected and such server may easily be overlooked 

during analysis. Were the load on this server to grow by a factor 

of two, the utilization levels may grow to 0.1 and 0.8 - and that 

combination of level of utilization and imbalance is likely to 

impact the performance of the overall system. Thus the imbalance 



coefficient works in a load-level-independent fashion and can be 

used as an early warning system. 

That load-independence of     poses potential danger. The 

practical use of imbalance coefficient must take into account the 

noise level in the data. For example with four disks with 

utilizations (0.001, 0.001, 0.001, 0.009) we have high     of 0.4 

- but at these load level the usage is effectively just noise - so 

there is little point in tuning effectively unused disks. At the same 

time, if the utilizations were like (0.001,0.001,0.001,0.1) – that is 

one disk was used in a non-trivial way and the others not at all – 

we could have had an imbalance situation. Fortunately, in most 

practical cases we can easily define the appropriate noise level for 

any basis and avoid mis-interpreting spurious high imbalance 

coefficients. 

Computation of the level of imbalance may include 

adjustments for differences (if any) between disks in the disk set. 

For example, assume we have two disks with one being much 

faster than the other. Computing the imbalance metric using the 

number of operations per second would lead to equalizing the 

number of operations on both disks - which would be 

operationally incorrect - the faster disk can process more 

operations. A better approach here would be to consider the 

maximum capacity of each disk (in operations per second) and 

compute imbalance using the measured fractions of that capacity. 

2.3.6 An aside on nEE and response time 
This paper is about general definition and selected sample 

applications of excess entropy. The response time is not one of the 

applications described here because we did not have data 

available at the time of writing. Since response time is frequently 

the critical customer-side parameter so we will make few 

comments on response time and excess entropy. 

Our examples so far were based on utilization – which has 

limited range from 0% to 100%. In addition utilization below, say, 

1% can be considered a pure noise for most practical purposes.  

In contrast the response time is much more 

multidimensional. We have to keep in mind that the response time 

is a combination of processing time and queuing time – so the 

imbalance in response time is a combination of these two effects. 

Small response times are not noise – they are essential 

information. The range is much wider - even when we consider 

just the disk response time – it varies from less that 1ms (cached 

requests) to tens of seconds (similar to the range of variables like 

network transfers). If we consider averaging response time over 

long time periods with large number of individual response times 

in each period the average response time may be sufficient base 

for IC calculations. However, a single time period with a small 

number of response times and one of them being large may sway 

the average significantly. Thus using percentiles may be 

preferable to using averages when comparing disk response times 

– and keeping track of the number of events in the time period 

will be important, too. 

Another aspect is that of specialization – in a system with 

multiple transaction types some transactions may be ‘large’ and 

addressing the information on specific disk – thus resulting in 

large average response time on that disk.  

These elements are not newly introduced by the use of excess 

entropy – they apply to utilization and all earlier aspects of 

evaluating system performance – we need to be aware of the 

context in which any measure or system description is applied. 

3. EXCESS ENTROPY AND CLUSTER 

LOAD 
This section describes application of excess entropy to a load in a 

cluster group consisting of several Windows Azure compute 

clusters. We have hourly and daily data for several months. In 

particular we consider two load characteristics: (1) ComputeHours 

– the number of hours used by by virtual machines on the cluster; 

and (2) Egres – the transfer between the cluster and the outside 

world. [Values for both load characteristics are normalized to the 

largest value in the considered time period for confidentiality 

reasons. This does not affect any distributional computations; in 

particular it does not affect any excess entropy computations]. 

We start with examples of hourly load and high/low EE values 

and load configurations. Then we observe EE and load evolution 

over several months. 

3.1 Hourly excess entropy for a cluster group 
We consider first the network egress of six clusters over 20 hours.  

Figure 2 shows (top picture) the load for each of the clusters 

between hours 5151 and 5170. The bottom picture shows the 

normalized excess entropy for the cluster group computed for 

each hour. The smallest nEE, at hour 5159, is about 0.02. Looking 

at the load of each of the clusters at the same hour we see the load 

of five clusters within the narrow range and the sixth cluster 

having large load. 

 

Figure 2 Cluster loads for six clusters  (top picture) and excess 

entropy for the cluster group over 20 hours. Cluster loads are 

scaled so the maximum group usage over the whole 

measurement period is 1.0 

Table 1 gives details for the evolution of load preceding the 

minimum excess entropy. Four hours before the minimum, at hour 

5156 (first row) the load on clusters 3 to 4  was around 0.05 with 

clusters 1 and 2 having load over 0.2 – resulting in nEE=0.16. 



Four hours later  (last row) we had clusters 2 to 6 with the load 

ranging from 0.14 to 0.17 and cluster 1 with the load of 0.25, 

resulting in nEE=0.2 – eight time smaller than before. At the 

minimum value of nEE the load is spread almost evenly across all 

clusters. 

Table 1 Normalized excess entropy and cluster loads for four 

hours preceding the minimum nEE at hour 5159 

#hour nEE cl1 cl2 cl3 cl4 cl5 cl6 

5156 0.16 0.27 0.21 0.06 0.06 0.04 0.04 

5157 0.08 0.26 0.22 0.12 0.07 0.05 0.14 

5158 0.04 0.26 0.17 0.13 0.07 0.12 0.14 

5159 0.02 0.25 0.17 0.14 0.14 0.14 0.15 
 

Figure 3 shows (top picture) the load for each of the clusters 

between hours 5291 and 5310. This time the maximum nEE=0.4 

is much larger than before. 

 

Figure 3 Cluster loads for six clusters (top picture) and excess 

entropy for the cluster group over 20 hours. Cluster loads are 

scaled so the maximum group usage over the whole 

measurement period is 1.0 

Table 2 shows the details – the source of high nEE at hour 5298 is 

drop in load (to almost none) of clusters 3 to 7 with the load in  

clusters 1 and 2 being order of magnitude higher. Thus, at the 

maximum value of nEE the load is concentrated in two out of six 

clusters. 

These examples illustrate that differences in load between clusters 

are translated by nEE into a numerical estimate of the imbalance 

or, (equivalently) concentration of the processing among clusters. 

What is intuitively obvious in extreme cases is translated into a 

single numerical value describing the degree of concentration. 

Table 2 Normalized excess entropy and cluster loads for four 

hours preceding the maximum nEE at hour 5130 

#hour nEE cl1 cl2 cl3 cl4 cl5 cl6 

5294 0.09 0.31 0.18 0.12 0.12 0.03 0.11 

5295 0.18 0.29 0.18 0.06 0.11 0.02 0.03 

5296 0.31 0.28 0.11 0.04 0.06 0.01 0.00 

5297 0.39 0.28 0.11 0.01 0.03 0.01 0.01 

5298 0.41 0.27 0.11 0.01 0.02 0.01 0.01 
 

3.2 Excess entropy and daily load 
We consider excess entropy of a cluster group over 300 days. The 

cluster group started with five clusters and was extended later to 

seven clusters.  

 

Figure 4 ComputeHours and excess entropy for a cluster 

group over 300 days. 

Figure 4 shows the load for each cluster (top picture) in the 

number of compute hours used by virtual machines deployed on 

each cluster (the values are scaled so the maximum 

ComputeHours for the cluster group in the measured period is 

1.0). The bottom picture shows the normalized excess entropy of 

the cluster group describing imbalance between clusters’ load. In 

the first few days there are five clusters with loads differing by a 

factor of three. That disparity is gradually decreasing. One of the 

clusters is exhibiting very variable load around day 25 – and we 

can see that reflected in outliers on the nEE plot below. Overall 

the load is getting more evenly distributed and the nEE is tending 

down till the day 150. At that time a new cluster is introduced 

(dashed blue line) and remains unpopulated (but monitored) for 

few days. That creates a large jump in imbalance. Around the day 



185 the load on that new cluster rapidly grows and the imbalance 

is rapidly coming down to the previous level.  

Another new cluster is added around the day 240, but this time its 

load is non-zero from day one and grows quickly. The imbalance 

disturbance is much smaller and goes back to the values typical to 

this cluster group much faster. 

The next Figure 5 shows the load and imbalance for the same date 

range and cluster group – but this time for Egres. Overall Egress 

load and excess entropy values are more volatile than 

ComputeHours (The ‘quantum’ of deployment is a virtual 

machine measured in hours, but the ‘quantum’ of Egress is a 

single byte; in additiona different uses tend to use network 

differently). 

 

Figure 5 Egres and excess entropy for a cluster group over 300 

days. 

Volatility of nEE is not the only difference between these system 

characteristics. The overall imbalance for Egress is higher than 

the imbalance for ComputeHours. The nEE for Egress stayed 

mostly above 0.05, while for ComputeHours were below 0.02.  

The disturbances in imbalance of Egres, caused by the 

introduction of new clusters, are still visible but relatively smaller 

than for ComputeHours. We have imbalance of 0.4 around day 25 

and another high imbalance of 0.3 around the day 310 – and they 

are not related to the introduction of new clusters but caused by 

variations in the activity between the existing clusters. 

The examples show that we can use excess entropy as a general 

indicator of disturbances in load distribution between clusters. 

Were the number of clusters small (like two-three) we could just 

look at the loads of individual clusters and notice unusual 

situations. However, even with 5-7 clusters spotting of unusual 

situations by looking at individuals loads is becoming problematic 

- excess entropy allows better aggregate description. 

The examples above also show that we can compare imbalance of 

significantly different usage characteristics of the cluster (these 

characteristics are not even measured in the same units).  

4. Excess entropy in time dimension 
Previous section applied excess entropy to describe imbalance in 

load (concentration of load) in clusters of a cluster group at given 

moment in time. This application is similar to that described in the 

introduction – imbalance between server disks or evaluation of 

performance of some load balancer. We considered evolution in 

time of the imbalance between system elements – the ‘natural’ 

application of excess entropy.   

Here we consider a non-obvious application of excess entropy to 

describe the variability of load in time – how imbalanced 

(concentrated) is the load within the day or week. Here we do not 

consider imbalance between usage characteristics of similar 

system elements. We consider one element – cluster group load – 

and compute excess entropy for given day using hourly load 

levels.  

We analyze the total load of the cluster group (normalized to the 

maximum, as before). 

4.1 Intra-day imbalance 
First we consider the concentration of load within each day. We 

take the load in each of the 24 hours of the day and compute 

excess entropy for that day. We repeat the process for each day. 

That daily excess entropy characterizes the spectrum of hourly 

loads.  

Figure 6 shows the daily load for the cluster group (top picture) 

and intra-day imbalance for each day (bottom picture). The daily 

load is not directly related to the intra-day imbalance – we see 

significant growth in daily load but with no corresponding growth 

in imbalance. We also see high imbalance for days 14, 20, and 76 

– while the daily load on these days appears does not differ from 

the neighboring days..  



 

Figure 6 Total Egress for the cluster group and intra-day 

imbalance. 

Figure 7 shows the intra-day hourly load history for two days with 

high imbalance (14, 76 – black lines) and two days with low 

imbalance (6, 321 - blue lines). 

Hourly load history for high-imbalance days shows large jumps 

from the average. In contrast, low-imbalance days – one with high 

load, another with low load – show more even profile. Again, the 

load level is not related to the nEE – dashed blue line for day 321 

shows the load at the level of 0.3 but the nEE for that day  is 

similar to day 6 (solid blue line) with load level 0.06 – five times 

lower – this is because the excess entropy measures effectively the 

differences from the average relative to that average. 

4.2 Systems of subsystems 
An important property of entropy-based measures of inequality is 

that they are composable, that is the excess entropy of the total 

system can be computed as a composition of excess entropies of 

subsystems. Since most large systems are composed of 

subsystems, that composition capability gives an obvious 

advantage to excess entropy over other approaches (like Gini 

index, still popular in economics and elsewhere [4]). 

Such composition capability is important as it allows applying 

imbalance considerations to any hierarchical system. Thus we are 

able to apply excess entropy to a data center consisting of a set of 

clusters and to a region consisting of a set of datacenters. 

4.2.1 Composite Excess Entropy 
We have a group consisting of M subgroups. Subgroup m with 

excess entropy     used fraction   of the total resource used by 

the group. Also,      is the average value in subgroup  , and 

       is the global average value. The formula for composite  

excess entropy (CEE) is [2,3]:  

 

 

Figure 7 Intra-day load histories for selected days. Blue: days 

with low nEE, black: days with high nEE. 

 

    ∑       

 

   

 ∑        
    

      
 

 

   

  

 
Thus the composite excess entropy of the group is the sum of (1) 

excess entropy within subgroups weighted by the fraction of 

resources used by these subgroups and (2) excess entropy between 

the subgroups weighted by the fraction of resources used by each 

subgroup. This approach allows us to decompose the imbalance of 

the total system into imbalances of its subsystems and identify 

which subsystems contribute most of the overall imbalance. In 

addition we can quantify whether contribution of a subsystem to 

overall imbalance is caused by internal imbalance within that 

subsystem or by the imbalance between that subsystem and other 

subsystems. 

That allows us, for example, to compute the imbalance for the 

whole data center as a function of internal imbalance of individual 

clusters and differences between clusters[9]. In the process we can 

quantify how much each cluster contributes to the datacenter 

imbalance and whether that contribution is coming from the 

internal imbalance within that cluster or a difference between that 

cluster and other clusters in the data center.  

4.2.2 Weekly and daily imbalance 
We apply the composition of excess entropy to compute 

imbalance in weekly load – composed of imbalances in daily 

loads within that week. 

We consider one week of hourly Egress load data for a week 

starting at day 95. Figure 8, top picture, shows daily load for each 

day with the hourly range in the day marked by grey bar and 10-

90 inter-quantile range marked by a black bar. The bottom picture 

shows intra-day hourly load evolution with weekday number 

overlayed. We see that weekday 6 (day 100) was very different 

from other days having both higher average load and wider range. 

we see (top picture) that nEE for days 99 and 100 was similar in 

size and much higher than for all other days if this week. 

However, their contribution to the weekly composite EE was 

different.  

 



 

Figure 8 Daily and hourly load for week 14 (days 95 to 101) 

Looking at various excess entropy characterizations in Figure 9 

The bottom picture of Figure 9 shows contributions to CEE for 

each day (scaled, so the sum of all contributions in the week is 

equal to 1). The circles denote contributions from the first term in 

the CEE formula (inequality within subgroups/days), the crosses 

denote contributions from the second term (inequality between 

subgroups/days). Day 100 contribution to the weekly CEE is large 

and comes almost exclusively from the difference between this 

day and other days. Day 99 contribution to the weekly CEE is 

much smaller than that of day 100 - even though intra-day EEs for 

both days were similar. .  

Overall the contribution to the weekly CEE from intra-day excess 

entropy is small – very close to zero for all days. The weekly CEE 

depends mostly in differences in load between days. Also, the first 

two days of the week do not contribute much in either dimension. 

Figure 10 shows the same information as Figure 9, but for week 

19 (days 137 to 143). We see that that weekday 2 had much larger 

intra-day imbalance than other days (top picture). Overall 

contributions from intra-day imbalance to the CEE (bottom 

picture) were small, similar to week 14. The largest contribution 

to the weekly CEE came, as before, from weekday 6 and it was 

almost entirely caused by the between-days imbalance. 

 

 

Figure 9 Excess entropy and composition of excess entropy for 

week 14; the circles in the bottom picture denote (scaled) 

contribution of intra-day imbalance, the crosses denote the 

scaled contributions of between-days imbalance. 

Contribution pattern shown in the two sample weeks suggests that 

the weekday 6 may be different from other weekdays. We 

compute (scaled)) between-day contributions of weekday 1 to of 

of the 45 weeks and repeat the computation for weekday 6.  

Figure 11 shows that the spectrum of between-days contributions 

for weekday 1 is shifted to the left (top picture) with median value 

of -0.54 , while similar spectrum for weekday 6 is shifted to the 

right (bottom picture) with median value 0.31, with similar 

differences between respective  25th and 75th percentiles.  

So the differences between these two weekday days in 

contributions to weekly excess entropy is real and not caused by 

some outlier. The Egres processing by the cluster group is usually 

higher on weekday 6 than on weekday 1 and that is not related to 

intra-day volatilies. 

Applying CEE we get additional, quantitative insights into 

contributions of individual subsystems (days) to the imbalance of 

the overall system. 

 

 



 

Figure 10 Excess entropy and composition of excess entropy 

for week 19; the circles in the bottom picture denote (scaled) 

contribution of intra-day imbalance, the crosses denote the 

scaled contributions of between-days imbalance 

5. Summary 
As computer systems grow in complexity and size additional 

system descriptors need to complement the existing ones to 

manage the information explosion. We have introduced Excess 

Entropy (EE) as a way to characterize imbalance (or, equivalently, 

concentration of processing) in computer systems. A variant of 

EE, normalized excess entropy (nEE) enables comparison 

between different systems, even if these systems have different 

number of elements or are measured in different units. Another 

variant, composite excess entropy (CEE), allows hierarchical 

composition (and decomposition) of imbalance in subsystems into 

imbalance in overall system. CEE also allows discovery which 

subsystems contribute most to the overall imbalance – and why.  

All variants of the EE are dimensionless and their normalized 

versions exist. That allows for quantitative comparison of usage 

profile between different types of resources – for example 

imbalance of ComputeHours can be compared with imbalance of 

Egres, even though both resources are measured in different units.  

Excess entropy of subsystems can be composed into an excess 

entropy of the total system and quantify how much each 

subsystem contributes to the overall imbalance and whether their 

contribution comes from high internal imbalance or difference 

from other subsystems.   

Operationally, the formulas for computation of all EE coefficients 

described here are straightforward. They can be implemented 

trivially in a spreadsheet and their computation time is trivial. 

 

 

Figure 11 Distribution of between-days contribution to CEE 

from weekday 1 and weekdays 6. 

The useful operational interpretation of nEE is that of 

concentration of resource usage. Higher nEE values imply 

resource use by a small number of customers, lower nEE values 

indicate more even spread of resource use. 

Excess entropy is not a silver bullet. It does not replace existing 

approaches to system description (like load, utilization, response 

time) – it also does not replace traditional statistics like average, 

standard deviation etc. Excess entropy adds to them and offers 

additional insights into the analyzed system. For example growth 

in load with growth in imbalance signals that only a small subset 

of clusters is getting more active. A growth in load with drop in 

imbalance signals broadly-based growth. 

Imbalance describes only one aspect of the system – but this 

aspect has not been quantitatively analyzed earlier in computer 

systems (to the best of our knowledge).  

The relevance of high or low imbalance in a system is heavily 

contextual. Depending on our goals and aspects of the system 

under considerations high imbalance can be good, bad or 

irrelevant. The change in imbalance, regardless of the level, 

signals change in the distribution of load, towards more (or less) 

concentrated. 

Imbalance between server use in a group of servers managed by a 

load balancer is almost always a signal that something is wrong, 

so is imbalance in disk loads. However, when overall load is 

trivial then even high imbalance can be ignored – though we 

should check whether imbalance is growing with load or is 

independent of the load level. High imbalance in core usage for 

multicore servers may signal that affinity settings were used and a 

server working as intended – but it may also signal that an 

application is serializing on some software element, therefore its 

implementation should be reviewed. 



Composite normalized imbalance gave us additional insights into 

the structure of imbalances in time, allowing us to identify 

unusual load on certain days as well as give a concise description 

of load variability in time. 

The few applications of quantitative imbalance shown here 

represent only a small subset of the potential applications of this 

method.  

For example we can consider relationships between imbalance of 

the hardware components of a server, a rack of servers, a cluster 

of servers, a datacenter, a region and the global datacenter set – 

thus composing the global from several hierarchical levels 

(instead of just two levels considered here). Another application 

would be analysis of imbalance at multiple time scales with 

detection at which time scale the imbalance picture starts to 

diverge – as this could be a signal of some underlying shift in the 

internal structure of usage and yield potentially useful 

information. 

In this paper we have investigated application of imbalance to 

some aspects of resource usage in a Windows Azure compute 

clusters. In the companion paper [9] we demonstrated multiple 

applications of excess entropy to Windows Azure storage clusters. 

We have used EE there to describe the concentration of storage 

resource usage by a small subset of accounts and evolution of this 

concentration in time. 

Description of systems by excess entropy can be applied to many 

areas – even a single server. It is, however, of particular interest 

when describing large systems like cloud computing – description 

by excess entropy scales up well with the number of elements and 

allows aggregated description of multi-element systems. The 

composability of system description by excess entropy also maps 

well into the complexity and hierarchical infrastructure of cloud 

computing.  
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