
Describing Cloud Usage with Excess Entropy

Charles Loboz
Windows Azure

Microsoft Corporation

ABSTRACT

The growing complexity and size of computer systems calls for

improved methods to describe and analyze them. We propose to

use excess entropy for that purpose. Excess entropy can be

applied to quantify imbalance and concentration of processing. It

also allows considering systems composed of subsystems. We

demonstrate the utility of excess entropy approach by applying it

to the description of the elements of load in Windows Azure

compute clusters. Using excess entropy we locate unusual

situations in the division of load between clusters. We also apply

excess entropy to describe the imbalance of load in time.

Categories and Subject Descriptors

Performance of Systems

General Terms: Management, Performance.

Keywords: capacity planning, resource usage, entropy, imbalance,

probability distributions.

1. INTRODUCTION
A modern server has over 2000 performance counters which are

relevant to the description of its state and usage – that applies to

both Windows and Unix servers. For one server we can select a

smaller subset of counters requiring monitoring, but if we have

several servers running different applications – the size of the

monitoring set grows quickly. In addition the complexity of

computer systems is growing, too. We started computer system

performance analysis and capacity planning with a single

mainframe. Then we have moved to multiple mainframes and

groups of servers. That was followed by multiple virtual machines

running on a single server. The current stage – cloud computing -

is, in effect, an operating system controlling execution of

processing on clusters of servers and cluster groups.

We need to consider both traditional system descriptors as well as

the new ones arising from the handing server groups and

virtualization. Examples of new descriptors include estimating

effects of competition for disk bandwidth between multiple virtual

machines running on the same server and sharing physical disks -

or similar competition for network rack switches between virtual

machines deployed to the same rack of servers.

Performance analysts and capacity planners have to deal with

information explosion in two different dimensions. The first one is

related to the scale of modern web services, when datacenters

containing tens of thousands of servers are providing hundreds of

services – thus we have data from a single server multiplied

100,000 times (or more). Most complexity in this dimension is

coming from the number of servers. The second dimension is the

virtualization and cloud artifacts – consideration of deployment

strategy for virtual machines, consideration of migration options

for virtual machines to other servers or clusters and management

of whole clusters of servers.

To manage this information explosion we need descriptors of

overall system usage that are on higher conceptual level than

direct performance counters, like processor utilization, number of

disk operations, memory bytes used, packets transferred through a

network and other performance counters of this type.

An example of such higher-level descriptor is Performance Impact

Factor (PIF) introduced in [7]. Processor utilization reported by

the system monitor can be misleading – a daily average utilization

of 0.2 may come from a server which is working evenly all day

and could handle much more work – or from a server which is

severely overloaded for four hours per day with disastrous

consequences to response time and service level agreement.

Differentiating between these extremes (and all intermediate

situations) requires looking at daily load chart – but this is an

impractical option for 100,000 servers. PIF is weighted average of

processor (or disk or network card) utilization designed to signal

how the load profile may affect the server response time. In effect

PIF transforms the data from performance counter space to

performance impact space. That simplifies analysis of a large

number of servers, because PIF is a one-number summary and

captures the information not easily discernible from the original

counters.

Another example of a higher-level descriptor is Capacity Usage

Factor (CUF) introduced in [8]. CUF starts with the notions of

software work and computer capacity to perform that work and

combines it with other system descriptions like cost or power .

CUF is a generalization of utilization coefficient accommodating

differences between processors (and disks, and network cards). It

allows comparison of usage levels between servers with different

hardware and between groups of such machines.

In this paper we propose another higher-level descriptor based on

excess entropy. We argue that excess entropy can be used to

describe imbalance between use of similar components (hardware

or software) in the system. Alternatively and equivalently excess

entropy can be viewed as describing the concentration of use of a

system or a subsystem.

A parallel paper [9] applies excess entropy to describe usage of

Windows Azure storage clusters by individual customer accounts.

This paper applies excess entropy to selected Windows Azure

compute clusters and cluster groups.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DataCloud-SC’11, November 14, 2011, Seattle, Washington, USA.

Copyright 2011 ACM 978-1-4503-1144-1/11/11...$10.00

2. EXCESS ENTROPY, DISORDER,

IMBALANCE AND CONCENTRATION
The notion on entropy has been introduced in thermodynamics in

mid-19-century by Clausius. Twenty years later Boltzmann

expanded the notion of entropy to statistical mechanics, which

started the interpretation of entropy as that of a ‘disorder’. In

particular entropy describes how the system state is positioned

among the all possible system states.

In economics the distribution of various forms of wealth in the

society was a topic of interest and various quantitative measures

of economic inequality were proposed over the years [2,3,4,5]. In

the end the measures based on entropy were introduced and

became the mainstream.

2.1 Imbalance in computer systems
This subsection introduced the concept of imbalance and

illustrates its use on a simple example of utilization of a disk set.

Imbalance in various forms is frequently one of the symptoms of

suboptimal or inefficient usage of a server or group of servers. For

example a server with several disks will perform sub-optimally if

one of the disks is handling all the requests and other disks are

doing nothing - majority of the requests will be heavily queuing

on one disk resulting in high overall application response time.

Discovering the imbalance of usage between two disks is trivial -

we only need to compare two numbers. Estimating imbalance

when larger number of disks is involved is easy in extreme cases -

we can just look at utilization charts. However, when the

imbalance is less extreme, differentiating between different

situations is difficult. Figure 1 shows example utilization of three

disk sets - deciding which set is more imbalanced is not an easy

task even when the number of disks in each set is the same.

Another practical issue occurs when the number of disks on our

servers is not identical - how do you compare imbalance level of

4-disk server with 6-disk server?

Estimation and comparison of imbalance gets more complicated

when we have hundreds or thousands of servers. Eyeballing

multiple charts is not an option - we need quantitative measure of

imbalance to estimate how many servers need disk balancing and

prioritize the task to handle the most imbalanced servers first.

Also, with that number of servers there is more chance that some

of them will have different number of disks than others.

The issue of imbalance in computer systems usage is not limited

to disk use. It can be applied to groups of servers processing

transaction load or web queries, to a set of network devices, use of

various applications performing similar service and so on.

2.2 The measures of imbalance
For a system described by set of values the

excess entropy (EE) is computed by:

∑

Excess entropy is the difference between the maximum

entropy possible in the system and the entropy present in the

system. The maximum value of EE is ln(n) - when all

elements but one are equal; the maximum EE depends thus

on the set size.

We can view EE as a description of how concentrated is the

use of some resource – large values mean fewer users use most of

the resource. When comparing systems with differing number of

elements it is convenient to use normalized excess entropy:

∑

Examining the formula we can derive several properties:

 the ratio describes how much element is

above or below the average for the whole set. Thus

involves only the ratios - not the absolute values of the

elements.

 the is dimensionless – thus allows to compare

imbalance between sets of substantially different

quantities, for example when one set contains disk

utilizations and another set contains response times.

Figure 1 Example utilizations for sets of disks

 the minimum value of is zero - when all elements of

the data set are identical. The maximum value of EE

is. .

We can view as a description of how concentrated are the

values in the data set – large values of EE mean fewer set

elements contribute to the sum of all values in the set, small

values mean more equal contribution.

Excess entropy was introduced in economics by Henri Theil to

measure inequality of income and is known there as the Theil

index [2, 3].

2.3 Sample application of
This section uses synthetic examples of groups of disks and their

utilizations to develop some intuition, illustrate the calculation

and interpretation of . Then we consider other (than utilization)

bases for computing Imbalance coefficient and consider some

operational characteristics of nEE.

We compute solutions for three cases: a set of four disks, testing

whether tuning reduced imbalance, and comparing imbalance

between two sets of disks of differing sizes.

2.3.1 Imbalance of a set of disks
We compute the imbalance coefficient for a set of four disks with

utilization coefficients: (0.5, 0.1, 0.7, 0.3), where disk utilization

is defined as fraction of time the disk is busy (see Figure 1, top

picture).

Applying the formula we get the imbalance coefficient:

1/4 * [0.279 + -0.347 + 0.979 + -0.216]/log(4) = 0.126

The components of the sum also allow to quantify the input of

each disk to the total imbalance of the whole set. This is different

from the mean value – it gives the insight into the sizes of factors

contributing to the nEE. We see that disk3 contributes the most:

0.979 while disk1 contributes only 0.07. It is obvious that disk3 is

most utilized, so tuning should start with disk3 - we do not need

the nEE to tell us that. The nEE computation also quantifies that -

to reduce imbalance - working on reducing the load on disk3 is

about three times more effective (0.973/0.279) than reducing load

by the same amount on disk1.

2.3.2 Estimate imbalance before and after tuning
We analyze whether the tuning reduced the imbalance - in a 'live'

system.

Assume that, after analyzing and rearranging the load and file

layout, we repeat the utilization measurement and obtain

following utilization coefficients: (0.2,0.8,0.4,0.6) [see Figure 1,

top and middle pictures]. We want to estimate whether tuning had

reduced the imbalance. The measurements are taken from the live

system, so – after tuning - we have both different utilization

distribution between disks as well as slightly different overall

utilization.

Using the same formula we find that the imbalance coefficient

after tuning is 0.077 - much lower than the original imbalance of

0.126. Thus quantifies the improvement achieved by tuning.

The imbalance looks rather similar on pictures; the difference in

quantitative measure is much larger.

The naive approach here would be to use some measure only

tangentially related to imbalance, for example standard deviation

of utilizations. That creates a host of mathematical problems for

further usage. Among others, it does not differentiate well - for

both sets of utilizations the standard deviation is identical at 0.258

- yet the imbalance coefficients are quite different. So, at the

minimum, the Imbalance Coefficient describes a different aspect

of the system than standard deviation.

2.3.3 Imbalance when sets of disks are of different

size
We compare the imbalance between two sets of disks, each set

having different number of disks.

Assume we have two disk sets, one consisting of four disks with

utilizations c(0.2,0.8,0.4,0.6) and another consisting of six disks

with utilizations c(0.2,0.8,0.2,0.4,0.6,0.2,0.7) [Figure 1, middle

and bottom pictures]. Applying the formula we see that the excess

entropies for two disk sets are, respectively, 0.77 and 0.70 –

suggesting that the first disk set is slightly more imbalanced than

the second and should be tuned first.

Trying to assess the imbalance intuitively is more complicated

when the number of elements differs in each set. Also, in the first

and second examples we could have used EE instead of nEE.

Here, to compare sets with differing numbers of disks, we had to

use the normalized version of EE.

2.3.4 Other bases for imbalance computation.
In the examples above we have used disk utilization to illustrate

computations of imbalance. However, we can use other bases for

computing imbalance. Selection of the base for imbalance

computation depends on our goal.

In some cases other (than utilization) disk characteristics may be

more relevant to the overall system performance - the number of

input/output operations, the number of bytes transferred, operation

time, queuing time or disk response time. The goal may be to

assure balance of, say, queuing times or normalized (for

transaction type or size) response times rather than utilizations.

The same formula can be used for all such calculations but the

resulting may have significantly different value when

different bases are used. For example computing nEE using disk

response times is likely to give larger than for disk

utilizations – as response times grow disproportionately when

utilization is high.

We must note that even when the nEE computed for a disk

set using various bases usually will have different values; the

underlying meaning of nEE is still the same. means total

concentration of resource use or characteristic on element,

 means perfectly equal distribution. If we want to

achieve balance of response times, we should move files around

to obtain the lowest response time nEE – even though that may

result in high nEE for utilization.

2.3.5 Some operational characteristics of nEE
The formula has a simple interpretation – it tells us

about the concentration of use. High nEE means that most of

overall disk use is concentrated in a small number of disks. Low

nEE means that the disk use is spread more evenly. At the

extremes, if only one disk had non-zero utilization, the nEE would

have been equal to 1. If all the disks had the same utilization the

nEE would have been zero. The underlying mathematical

apparatus is to keep consistency on all intermediate situations.

The spots the imbalance even at low levels of load -

thus giving an early warning signal that, if the load grows, the

imbalance can impact performance. For example with two disks at

utilization levels 0.05 and 0.4 the overall system performance is

unlikely to be affected and such server may easily be overlooked

during analysis. Were the load on this server to grow by a factor

of two, the utilization levels may grow to 0.1 and 0.8 - and that

combination of level of utilization and imbalance is likely to

impact the performance of the overall system. Thus the imbalance

coefficient works in a load-level-independent fashion and can be

used as an early warning system.

That load-independence of poses potential danger. The

practical use of imbalance coefficient must take into account the

noise level in the data. For example with four disks with

utilizations (0.001, 0.001, 0.001, 0.009) we have high of 0.4

- but at these load level the usage is effectively just noise - so

there is little point in tuning effectively unused disks. At the same

time, if the utilizations were like (0.001,0.001,0.001,0.1) – that is

one disk was used in a non-trivial way and the others not at all –

we could have had an imbalance situation. Fortunately, in most

practical cases we can easily define the appropriate noise level for

any basis and avoid mis-interpreting spurious high imbalance

coefficients.

Computation of the level of imbalance may include

adjustments for differences (if any) between disks in the disk set.

For example, assume we have two disks with one being much

faster than the other. Computing the imbalance metric using the

number of operations per second would lead to equalizing the

number of operations on both disks - which would be

operationally incorrect - the faster disk can process more

operations. A better approach here would be to consider the

maximum capacity of each disk (in operations per second) and

compute imbalance using the measured fractions of that capacity.

2.3.6 An aside on nEE and response time
This paper is about general definition and selected sample

applications of excess entropy. The response time is not one of the

applications described here because we did not have data

available at the time of writing. Since response time is frequently

the critical customer-side parameter so we will make few

comments on response time and excess entropy.

Our examples so far were based on utilization – which has

limited range from 0% to 100%. In addition utilization below, say,

1% can be considered a pure noise for most practical purposes.

In contrast the response time is much more

multidimensional. We have to keep in mind that the response time

is a combination of processing time and queuing time – so the

imbalance in response time is a combination of these two effects.

Small response times are not noise – they are essential

information. The range is much wider - even when we consider

just the disk response time – it varies from less that 1ms (cached

requests) to tens of seconds (similar to the range of variables like

network transfers). If we consider averaging response time over

long time periods with large number of individual response times

in each period the average response time may be sufficient base

for IC calculations. However, a single time period with a small

number of response times and one of them being large may sway

the average significantly. Thus using percentiles may be

preferable to using averages when comparing disk response times

– and keeping track of the number of events in the time period

will be important, too.

Another aspect is that of specialization – in a system with

multiple transaction types some transactions may be ‘large’ and

addressing the information on specific disk – thus resulting in

large average response time on that disk.

These elements are not newly introduced by the use of excess

entropy – they apply to utilization and all earlier aspects of

evaluating system performance – we need to be aware of the

context in which any measure or system description is applied.

3. EXCESS ENTROPY AND CLUSTER

LOAD
This section describes application of excess entropy to a load in a

cluster group consisting of several Windows Azure compute

clusters. We have hourly and daily data for several months. In

particular we consider two load characteristics: (1) ComputeHours

– the number of hours used by by virtual machines on the cluster;

and (2) Egres – the transfer between the cluster and the outside

world. [Values for both load characteristics are normalized to the

largest value in the considered time period for confidentiality

reasons. This does not affect any distributional computations; in

particular it does not affect any excess entropy computations].

We start with examples of hourly load and high/low EE values

and load configurations. Then we observe EE and load evolution

over several months.

3.1 Hourly excess entropy for a cluster group
We consider first the network egress of six clusters over 20 hours.

Figure 2 shows (top picture) the load for each of the clusters

between hours 5151 and 5170. The bottom picture shows the

normalized excess entropy for the cluster group computed for

each hour. The smallest nEE, at hour 5159, is about 0.02. Looking

at the load of each of the clusters at the same hour we see the load

of five clusters within the narrow range and the sixth cluster

having large load.

Figure 2 Cluster loads for six clusters (top picture) and excess

entropy for the cluster group over 20 hours. Cluster loads are

scaled so the maximum group usage over the whole

measurement period is 1.0

Table 1 gives details for the evolution of load preceding the

minimum excess entropy. Four hours before the minimum, at hour

5156 (first row) the load on clusters 3 to 4 was around 0.05 with

clusters 1 and 2 having load over 0.2 – resulting in nEE=0.16.

Four hours later (last row) we had clusters 2 to 6 with the load

ranging from 0.14 to 0.17 and cluster 1 with the load of 0.25,

resulting in nEE=0.2 – eight time smaller than before. At the

minimum value of nEE the load is spread almost evenly across all

clusters.

Table 1 Normalized excess entropy and cluster loads for four

hours preceding the minimum nEE at hour 5159

#hour nEE cl1 cl2 cl3 cl4 cl5 cl6

5156 0.16 0.27 0.21 0.06 0.06 0.04 0.04

5157 0.08 0.26 0.22 0.12 0.07 0.05 0.14

5158 0.04 0.26 0.17 0.13 0.07 0.12 0.14

5159 0.02 0.25 0.17 0.14 0.14 0.14 0.15

Figure 3 shows (top picture) the load for each of the clusters

between hours 5291 and 5310. This time the maximum nEE=0.4

is much larger than before.

Figure 3 Cluster loads for six clusters (top picture) and excess

entropy for the cluster group over 20 hours. Cluster loads are

scaled so the maximum group usage over the whole

measurement period is 1.0

Table 2 shows the details – the source of high nEE at hour 5298 is

drop in load (to almost none) of clusters 3 to 7 with the load in

clusters 1 and 2 being order of magnitude higher. Thus, at the

maximum value of nEE the load is concentrated in two out of six

clusters.

These examples illustrate that differences in load between clusters

are translated by nEE into a numerical estimate of the imbalance

or, (equivalently) concentration of the processing among clusters.

What is intuitively obvious in extreme cases is translated into a

single numerical value describing the degree of concentration.

Table 2 Normalized excess entropy and cluster loads for four

hours preceding the maximum nEE at hour 5130

#hour nEE cl1 cl2 cl3 cl4 cl5 cl6

5294 0.09 0.31 0.18 0.12 0.12 0.03 0.11

5295 0.18 0.29 0.18 0.06 0.11 0.02 0.03

5296 0.31 0.28 0.11 0.04 0.06 0.01 0.00

5297 0.39 0.28 0.11 0.01 0.03 0.01 0.01

5298 0.41 0.27 0.11 0.01 0.02 0.01 0.01

3.2 Excess entropy and daily load
We consider excess entropy of a cluster group over 300 days. The

cluster group started with five clusters and was extended later to

seven clusters.

Figure 4 ComputeHours and excess entropy for a cluster

group over 300 days.

Figure 4 shows the load for each cluster (top picture) in the

number of compute hours used by virtual machines deployed on

each cluster (the values are scaled so the maximum

ComputeHours for the cluster group in the measured period is

1.0). The bottom picture shows the normalized excess entropy of

the cluster group describing imbalance between clusters’ load. In

the first few days there are five clusters with loads differing by a

factor of three. That disparity is gradually decreasing. One of the

clusters is exhibiting very variable load around day 25 – and we

can see that reflected in outliers on the nEE plot below. Overall

the load is getting more evenly distributed and the nEE is tending

down till the day 150. At that time a new cluster is introduced

(dashed blue line) and remains unpopulated (but monitored) for

few days. That creates a large jump in imbalance. Around the day

185 the load on that new cluster rapidly grows and the imbalance

is rapidly coming down to the previous level.

Another new cluster is added around the day 240, but this time its

load is non-zero from day one and grows quickly. The imbalance

disturbance is much smaller and goes back to the values typical to

this cluster group much faster.

The next Figure 5 shows the load and imbalance for the same date

range and cluster group – but this time for Egres. Overall Egress

load and excess entropy values are more volatile than

ComputeHours (The ‘quantum’ of deployment is a virtual

machine measured in hours, but the ‘quantum’ of Egress is a

single byte; in additiona different uses tend to use network

differently).

Figure 5 Egres and excess entropy for a cluster group over 300

days.

Volatility of nEE is not the only difference between these system

characteristics. The overall imbalance for Egress is higher than

the imbalance for ComputeHours. The nEE for Egress stayed

mostly above 0.05, while for ComputeHours were below 0.02.

The disturbances in imbalance of Egres, caused by the

introduction of new clusters, are still visible but relatively smaller

than for ComputeHours. We have imbalance of 0.4 around day 25

and another high imbalance of 0.3 around the day 310 – and they

are not related to the introduction of new clusters but caused by

variations in the activity between the existing clusters.

The examples show that we can use excess entropy as a general

indicator of disturbances in load distribution between clusters.

Were the number of clusters small (like two-three) we could just

look at the loads of individual clusters and notice unusual

situations. However, even with 5-7 clusters spotting of unusual

situations by looking at individuals loads is becoming problematic

- excess entropy allows better aggregate description.

The examples above also show that we can compare imbalance of

significantly different usage characteristics of the cluster (these

characteristics are not even measured in the same units).

4. Excess entropy in time dimension
Previous section applied excess entropy to describe imbalance in

load (concentration of load) in clusters of a cluster group at given

moment in time. This application is similar to that described in the

introduction – imbalance between server disks or evaluation of

performance of some load balancer. We considered evolution in

time of the imbalance between system elements – the ‘natural’

application of excess entropy.

Here we consider a non-obvious application of excess entropy to

describe the variability of load in time – how imbalanced

(concentrated) is the load within the day or week. Here we do not

consider imbalance between usage characteristics of similar

system elements. We consider one element – cluster group load –

and compute excess entropy for given day using hourly load

levels.

We analyze the total load of the cluster group (normalized to the

maximum, as before).

4.1 Intra-day imbalance
First we consider the concentration of load within each day. We

take the load in each of the 24 hours of the day and compute

excess entropy for that day. We repeat the process for each day.

That daily excess entropy characterizes the spectrum of hourly

loads.

Figure 6 shows the daily load for the cluster group (top picture)

and intra-day imbalance for each day (bottom picture). The daily

load is not directly related to the intra-day imbalance – we see

significant growth in daily load but with no corresponding growth

in imbalance. We also see high imbalance for days 14, 20, and 76

– while the daily load on these days appears does not differ from

the neighboring days..

Figure 6 Total Egress for the cluster group and intra-day

imbalance.

Figure 7 shows the intra-day hourly load history for two days with

high imbalance (14, 76 – black lines) and two days with low

imbalance (6, 321 - blue lines).

Hourly load history for high-imbalance days shows large jumps

from the average. In contrast, low-imbalance days – one with high

load, another with low load – show more even profile. Again, the

load level is not related to the nEE – dashed blue line for day 321

shows the load at the level of 0.3 but the nEE for that day is

similar to day 6 (solid blue line) with load level 0.06 – five times

lower – this is because the excess entropy measures effectively the

differences from the average relative to that average.

4.2 Systems of subsystems
An important property of entropy-based measures of inequality is

that they are composable, that is the excess entropy of the total

system can be computed as a composition of excess entropies of

subsystems. Since most large systems are composed of

subsystems, that composition capability gives an obvious

advantage to excess entropy over other approaches (like Gini

index, still popular in economics and elsewhere [4]).

Such composition capability is important as it allows applying

imbalance considerations to any hierarchical system. Thus we are

able to apply excess entropy to a data center consisting of a set of

clusters and to a region consisting of a set of datacenters.

4.2.1 Composite Excess Entropy
We have a group consisting of M subgroups. Subgroup m with

excess entropy used fraction of the total resource used by

the group. Also, is the average value in subgroup , and

 is the global average value. The formula for composite

excess entropy (CEE) is [2,3]:

Figure 7 Intra-day load histories for selected days. Blue: days

with low nEE, black: days with high nEE.

 ∑

 ∑

Thus the composite excess entropy of the group is the sum of (1)

excess entropy within subgroups weighted by the fraction of

resources used by these subgroups and (2) excess entropy between

the subgroups weighted by the fraction of resources used by each

subgroup. This approach allows us to decompose the imbalance of

the total system into imbalances of its subsystems and identify

which subsystems contribute most of the overall imbalance. In

addition we can quantify whether contribution of a subsystem to

overall imbalance is caused by internal imbalance within that

subsystem or by the imbalance between that subsystem and other

subsystems.

That allows us, for example, to compute the imbalance for the

whole data center as a function of internal imbalance of individual

clusters and differences between clusters[9]. In the process we can

quantify how much each cluster contributes to the datacenter

imbalance and whether that contribution is coming from the

internal imbalance within that cluster or a difference between that

cluster and other clusters in the data center.

4.2.2 Weekly and daily imbalance
We apply the composition of excess entropy to compute

imbalance in weekly load – composed of imbalances in daily

loads within that week.

We consider one week of hourly Egress load data for a week

starting at day 95. Figure 8, top picture, shows daily load for each

day with the hourly range in the day marked by grey bar and 10-

90 inter-quantile range marked by a black bar. The bottom picture

shows intra-day hourly load evolution with weekday number

overlayed. We see that weekday 6 (day 100) was very different

from other days having both higher average load and wider range.

we see (top picture) that nEE for days 99 and 100 was similar in

size and much higher than for all other days if this week.

However, their contribution to the weekly composite EE was

different.

Figure 8 Daily and hourly load for week 14 (days 95 to 101)

Looking at various excess entropy characterizations in Figure 9

The bottom picture of Figure 9 shows contributions to CEE for

each day (scaled, so the sum of all contributions in the week is

equal to 1). The circles denote contributions from the first term in

the CEE formula (inequality within subgroups/days), the crosses

denote contributions from the second term (inequality between

subgroups/days). Day 100 contribution to the weekly CEE is large

and comes almost exclusively from the difference between this

day and other days. Day 99 contribution to the weekly CEE is

much smaller than that of day 100 - even though intra-day EEs for

both days were similar. .

Overall the contribution to the weekly CEE from intra-day excess

entropy is small – very close to zero for all days. The weekly CEE

depends mostly in differences in load between days. Also, the first

two days of the week do not contribute much in either dimension.

Figure 10 shows the same information as Figure 9, but for week

19 (days 137 to 143). We see that that weekday 2 had much larger

intra-day imbalance than other days (top picture). Overall

contributions from intra-day imbalance to the CEE (bottom

picture) were small, similar to week 14. The largest contribution

to the weekly CEE came, as before, from weekday 6 and it was

almost entirely caused by the between-days imbalance.

Figure 9 Excess entropy and composition of excess entropy for

week 14; the circles in the bottom picture denote (scaled)

contribution of intra-day imbalance, the crosses denote the

scaled contributions of between-days imbalance.

Contribution pattern shown in the two sample weeks suggests that

the weekday 6 may be different from other weekdays. We

compute (scaled)) between-day contributions of weekday 1 to of

of the 45 weeks and repeat the computation for weekday 6.

Figure 11 shows that the spectrum of between-days contributions

for weekday 1 is shifted to the left (top picture) with median value

of -0.54 , while similar spectrum for weekday 6 is shifted to the

right (bottom picture) with median value 0.31, with similar

differences between respective 25th and 75th percentiles.

So the differences between these two weekday days in

contributions to weekly excess entropy is real and not caused by

some outlier. The Egres processing by the cluster group is usually

higher on weekday 6 than on weekday 1 and that is not related to

intra-day volatilies.

Applying CEE we get additional, quantitative insights into

contributions of individual subsystems (days) to the imbalance of

the overall system.

Figure 10 Excess entropy and composition of excess entropy

for week 19; the circles in the bottom picture denote (scaled)

contribution of intra-day imbalance, the crosses denote the

scaled contributions of between-days imbalance

5. Summary
As computer systems grow in complexity and size additional

system descriptors need to complement the existing ones to

manage the information explosion. We have introduced Excess

Entropy (EE) as a way to characterize imbalance (or, equivalently,

concentration of processing) in computer systems. A variant of

EE, normalized excess entropy (nEE) enables comparison

between different systems, even if these systems have different

number of elements or are measured in different units. Another

variant, composite excess entropy (CEE), allows hierarchical

composition (and decomposition) of imbalance in subsystems into

imbalance in overall system. CEE also allows discovery which

subsystems contribute most to the overall imbalance – and why.

All variants of the EE are dimensionless and their normalized

versions exist. That allows for quantitative comparison of usage

profile between different types of resources – for example

imbalance of ComputeHours can be compared with imbalance of

Egres, even though both resources are measured in different units.

Excess entropy of subsystems can be composed into an excess

entropy of the total system and quantify how much each

subsystem contributes to the overall imbalance and whether their

contribution comes from high internal imbalance or difference

from other subsystems.

Operationally, the formulas for computation of all EE coefficients

described here are straightforward. They can be implemented

trivially in a spreadsheet and their computation time is trivial.

Figure 11 Distribution of between-days contribution to CEE

from weekday 1 and weekdays 6.

The useful operational interpretation of nEE is that of

concentration of resource usage. Higher nEE values imply

resource use by a small number of customers, lower nEE values

indicate more even spread of resource use.

Excess entropy is not a silver bullet. It does not replace existing

approaches to system description (like load, utilization, response

time) – it also does not replace traditional statistics like average,

standard deviation etc. Excess entropy adds to them and offers

additional insights into the analyzed system. For example growth

in load with growth in imbalance signals that only a small subset

of clusters is getting more active. A growth in load with drop in

imbalance signals broadly-based growth.

Imbalance describes only one aspect of the system – but this

aspect has not been quantitatively analyzed earlier in computer

systems (to the best of our knowledge).

The relevance of high or low imbalance in a system is heavily

contextual. Depending on our goals and aspects of the system

under considerations high imbalance can be good, bad or

irrelevant. The change in imbalance, regardless of the level,

signals change in the distribution of load, towards more (or less)

concentrated.

Imbalance between server use in a group of servers managed by a

load balancer is almost always a signal that something is wrong,

so is imbalance in disk loads. However, when overall load is

trivial then even high imbalance can be ignored – though we

should check whether imbalance is growing with load or is

independent of the load level. High imbalance in core usage for

multicore servers may signal that affinity settings were used and a

server working as intended – but it may also signal that an

application is serializing on some software element, therefore its

implementation should be reviewed.

Composite normalized imbalance gave us additional insights into

the structure of imbalances in time, allowing us to identify

unusual load on certain days as well as give a concise description

of load variability in time.

The few applications of quantitative imbalance shown here

represent only a small subset of the potential applications of this

method.

For example we can consider relationships between imbalance of

the hardware components of a server, a rack of servers, a cluster

of servers, a datacenter, a region and the global datacenter set –

thus composing the global from several hierarchical levels

(instead of just two levels considered here). Another application

would be analysis of imbalance at multiple time scales with

detection at which time scale the imbalance picture starts to

diverge – as this could be a signal of some underlying shift in the

internal structure of usage and yield potentially useful

information.

In this paper we have investigated application of imbalance to

some aspects of resource usage in a Windows Azure compute

clusters. In the companion paper [9] we demonstrated multiple

applications of excess entropy to Windows Azure storage clusters.

We have used EE there to describe the concentration of storage

resource usage by a small subset of accounts and evolution of this

concentration in time.

Description of systems by excess entropy can be applied to many

areas – even a single server. It is, however, of particular interest

when describing large systems like cloud computing – description

by excess entropy scales up well with the number of elements and

allows aggregated description of multi-element systems. The

composability of system description by excess entropy also maps

well into the complexity and hierarchical infrastructure of cloud

computing.

6. REFERENCES
[1] F. Alexander Bais, J. Doyne Farmer, The Physics of Information,

arXiv:0708.2837v2

[2] Cowell, F.A. (1995), Measuring Inequality, 2nd edition, Harverster
Wheatsheaf, Hemel Hampstead

[3] Theil, H. (1967). Economics and Information Theory. Chicago:
Rand McNally and Company

[4] Gastwirth, Joseph L. (1972). "The Estimation of the Lorenz Curve
and Gini Index". The Review of Economics and Statistics (The MIT
Press) 54 (3): 306–316. doi:10.2307/1937992. JSTOR 1937992.

[5] Sen, A. (1997). On Economic Inequality. Oxford: Clarendon Press.

[6] Loboz, C. “Cloud resource usage – extreme distributions
invalidating traditional capacity planning models”, ScienceCloud’11,
June 8, 2011, San Jose, California, USA.

[7] Loboz, C., Lee, S., Yuan, J. “How do you measure and analyze
100,000 servers”, Proceedings of the Computer Measurement Group
2009 International Conference, paper 9100

[8] Loboz, C., Lee S. “Capacity, usage, computer work – and daily
analysis of 100,000 servers”, Proceedings of the Computer
Measurement Group 2010 International Conference, paper 5089

[9] Loboz, C. “Quantifying imbalance in computer systems” accepted
for the Computer Measurement Group 2011 International
Conference, paper 1132

[10] R project for statistical computing, www.r-project.org

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.2307%2F1937992
http://en.wikipedia.org/wiki/JSTOR
http://www.jstor.org/stable/1937992
http://www.r-project.org/

