
Dynamic Split Model of Resource Utilization in MapReduce

Xiaowei Wang
Institute Of Computing

Technology
Chinese Academy Of

Sciences
jessica_2011_gucas@-

126.com

Jie Zhang
Institute Of Computing

Technology
Chinese Academy Of

Sciences
zhangjie@-

software.ict.ac.cn
Huaming Liao

Institute Of Computing
Technology

Chinese Academy Of
Sciences

lhm@ict.ac.cn

Li Zha
Institute Of Computing

Technology
Chinese Academy Of

Sciences
char@ict.ac.cn

ABSTRACT
MapReduce is gaining increasing popularity as a parallel
programming model for large-scale data processing. We
find however some traditional MapReduce platforms have
a poor performance in terms of cluster resource utilization
since the traditional multi-phase parallel model and some
existing schedule policies used in the cluster environment
have some drawbacks. We address these problems through
our experience in designing a Dynamic Split Model of the
resources utilization which contains two technologies, Dy-
namic Resource Allocation considering the phase priority as
well as job requirement when allocating resources and Re-
source Usage Pipeline which can assign tasks dynamically.
We verify our optimization on top of Hadoop and the results
show that these technologies can improve the throughput by
21.72%, the average wall time gain is 55.83%. And we im-
prove the percentage of user CPU utilization by 12.93%, re-
duce the percentage of iowait CPU and idle CPU utilization
by 6.61% and 6.73%. The upstream speed and downstream
speed are increased by 11.3% and 23.5%. What’s more, we
have relieved the Disk I/O bottleneck by 30.3%.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed
Systems

General Terms
Algorithms, Design, Performance

Keywords
MapReduce, Dynamic Schedule, Resource, Pipeline, Parallel
Process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DataCloud-SC’11, November 14, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-1144-1/11/11 ...$10.00.

1. INTRODUCTION
We are entering a new era of data deluge with technologies

to store and process massive data becoming more widespread.
So the system which can satisfy the above meets takes on
an urgency, which we refer to as Data-Intensive Super Com-
puting (DISC) system [2]. MapReduce [4] is a program-
ming model put forward by Google used for large-scale data
processing. Some DISC system platforms are built on top
of MapReduce: Dryad [7] introduced by Microsoft uses a
Directed Acyclic Graph (DAG) based execution model in
its distributed execute engine, and Hadoop [1] is the open
source version of Google MapReduce. The mainstream of
parallel processing also captures the academic world atten-
tion. Sector/Sphere [5] is a distributed computing platform
similar to Google GFS/MapReduce. It contains a parallel
runtime Sphere as well as a distributed file system Sector.
Another parallel runtime is phaser [9] which is a coordinate
construct for dynamic parallelism under the environment of
multi-processors instead of multi-nodes.

The essence underlying these parallel programming frame-
works mentioned above is that they are all derived from
multi-phase parallel model [6]. The traditional multi-phase
model has bad performance on the resource utilization effi-
ciency. This problem comes from two aspects. On the one
hand different phases have different priorities as well as dif-
ferent resource usage bias and must be executed strictly to
that priority which causes resource usage unbalance. Some
methods can loosen the strict execution order among dif-
ferent phases by sub-operations overlap execution such as
phaser accumulator [8] or streaming pipeline in Hadoop
Online prototype [3]. However the unbalance still exists if
the resource need in sub-operations’ overlap execution is the
same. On the other hand some DISC platforms ignore the
cluster load and the jobs requirement when they allocate re-
source. Take Hadoop for example, it allocated resource by
a static configuration and can not be changed according to
the cluster load. This can lead to a ”slot hoarding” problem
and a ”resource allocation unbalance” problem which could
cause inefficient resource usage.

Our technology in this paper to address the above problem
is called Dynamic Split Model of Resources Utilization which

includes two basic technologies: Resource Usage Pipeline
(RUP) and Dynamic Resource Allocation (DRA). In order
to make the resource pipeline feasible we need to take some
measures to divide the mixture of different resource usages
into separate ones dynamically and launch a task at a prop-
er point. Another technology Dynamic Resource Allocation
will count the system load and the status of each job in order
to allocate our resource more efficient.. And we use Hadoop
to verify that our optimization. We have implemented and
tested the technologies RUP and DRA. And the final exper-
iments show that our overall optimization can offer a per-
formance gain over the conventional one by about 21.72%,
improve the average will time by 55.83%, and use resource
more reasonable and efficient. Although our optimization is
implemented on Hadoop, the problem we address is by no
means constrained to Hadoop even MapReduce computing
model. In general effective resource utilization can provide
a more significant performance in DISC system.
The rest of paper is organized as follows. Section 2 pro-

vides background of Hadoop and the resource utilization
problem as well as our solution is described in Section 3.
Section 4 presents our Dynamic Resource Allocation tech-
nology, and the Resource Usage Pipeline is provided in Sec-
tion 5. Our optimization is evaluated in section 6. We
will surveys some related work in section 7 and conclude in
section 8.

2. BACKGROUND
MapReduce is a programming model which is well-suited

in DISC system. A job expressed in the form of MapRe-
duce usually consists of two sequential phases Map and Re-
duce. In the Map phase, users can apply their user-defined
map function to input data which is a set of (key, value)
pairs. The intermediate output of another kind of (key, val-
ue) pairs is produced and transferred to reduce function.
Reduce function will process all values belong to the same
key one time and output the final (key, value) pairs.
Hadoop is the most popular open source implementation

of Google GFS/MapReduce. It is made up of two parts
Hadoop Distributed File System (HDFS) and MapReduce
compute framework. MapReduce framework is built on top
of HDFS containing a Job Tracker and several Task Track-
ers. A job submitted to the Job Tracker is made up of two
phases map phase and reduce phase. In the map phase the
job is divided into map tasks whose number is equal to the
amount of split and in the reduce phase reduce tasks number
of a job is decided by the configuration.

2.1 Map Task
A map task belonging to a specific job will read a split

which is a portion of the input file from HDFS. The execu-
tion steps are listed as follows.

• MapRunner reads a (key, value) pair from the assigned
split in HDFS using RecordReader and applies the
user-defined map function to the pair.

• After processing one pair, map task outputs the result
to a fixed-size buffer. If the buffer is overflow it will
apply a quick-sort to the full buffer first and then store
the content of the buffer to a spill file so the buffer
becomes empty and can therefore receive more results.
This process will take place repeatedly until all records
are used up.

• Map task merges all the spills on the disk into a sort
file and stores it to the local file system as well as a
corresponding index file referring to that data file.

Task Tracker will ask for a new task from Job Tracker as
soon as this map task finishes and releases a slot.

2.2 Reduce Task
A reduce task will not start until a portion of map tasks

belonging to the same job finish and commit their output
to local disk. A reduce task execution is divided into three
phases.

• In the shuffle phase reduce task fetches a specific par-
tition of every map task output using HTTP request
and puts them into memory first. If the memory is full
it will apply merge sort to the memory and output the
result to a temp file.

• After all partition is fetched, reduce task enters the
sort phase where it sorts all sorted files stored in mem-
ory or disk using merge sort grouping all records to the
same key together.

• The reduce phase applies the user-defined reduce func-
tion to each key and the set of values belonging to the
same key.

3. DYNAMIC SCHEDULING MODEL
Figure 1 shows the real execution situation on a single

node in the raw version hadoop. Where we can see the raw
version hadoop does have several flaws which puts a serious
impact on the system resource efficient utilization.

• Single node resource usage unbalance: Figure 1 tells
us within a round of map task or reduce task differen-
t phases have different resource usage bias especially
when homogenous tasks execute at the same pace some
resources such IO or CPU may be underused while the
others overused.

• Reduce slot hoarding: In MapReduce, each reduce
copies its portion of the results of each map, and can
only apply the user’s reduce function once it has re-
sults from all map. However if we submit a big job,
which will take a long time to finish all map tasks. It
will hold reduce slots for a long time until all the map
tasks are finished, and starve small jobs and underuti-
lize resource.

• Resource allocation unbalance within job: MapReduce
will allocate resource by a static configuration, which
does not consider the system load and the jobs require-
ment. This will lead to resource allocation unbalance.
From Figure 1 we can see no matter how many map
tasks and reduce tasks to run, the system slot number
is never changed.

By and large there is a mismatch between the dynamic work-
load and static resource assignment. To address the above
problems we develop a Dynamic Split Model of Resource U-
tilization to make a more reasonable and intelligent use of
a single node resource . Figure 2 demonstrates our design
result.

• We separate resource usage within a phase into two
periods: CPU period and IO period. And we use ad-
vanced scheduling to launch a task at a proper point.
It is shown in Figure 2 where one task’s sub-operation
can overlapped with the other in case their resource
usage is complementary.

• We collect the system load and the status of each job
at run time to allocate resource dynamically. Figure 2
illustrates this clearly that at the three arbitrary time
point the number of slot is not the same and can be
modified according to system load.

Static configuration map slot 6 and reduce slot 5

Job1
Allocate 3 map slot and

2 reduce slot

Allocate 1 map slot and

1 reduce slot
Job2

Job3
Allocate 2 map slot and

2 reduce slot

Running time

Slot ratio 6:5 Slot ratio 6:5 Slot ratio 6:5

map reduce

io cpu io cpu

map

map reduce

io cpu io cpu

reduce

io cpu io cpu

io cpu io cpu

io cpu io cpu

Figure 1: job execution situation on a single node in
raw version hadoop the red dash dotted line stands
for three arbitrary time point in the execution pro-
cess.

Dynamic configuration total slot 11

Job1

cpu

cpu

cpu io

io

Job2

Job3

Running time

io

io

cpu

cpu

io

io

cpu

cpu

io

io

cpu

io cpu

io cpu

io cpu

reduce
map

cpu

cpu

io

io io cpu

io cpu

cpu io

cpu io

cpu io

io cpu

io cpu

io cpu

io cpu

reduce

map

reduce

map

Slot ratio 11:0

Slot ratio 5:6
Slot ratio 1:10

Figure 2: job execution situation on a single node
in new version hadoop the red dash dotted line s-
tands for three arbitrary time point in the execution
process

Figure 2 illustrates this clearly that at the three arbitrary
time point the number of slot is not the same and can be
modified according to system load.

4. DYNAMIC RESOURCE ALLOCATION

4.1 Reduce Slot Hoarding Problem
MapReduce normally launches reduce tasks for a job as

soon as its first few maps finish, so these reduces can begin
copying map outputs while the remaining maps are running.
However, in a large job, the map phase may take a long time
to complete. The job will hold any reduce slots it receives
during this until its maps finish. So the other jobs, which
submitted later, will starve until the large job finishes. This
is called ”reduce slot hoarding” problem, which will waste
resource and delay the wall time of jobs.

It may appear that this problem could be solved by start-
ing reduce tasks later or making them suspended, but [10]
pointed out that this solution is not feasible. And their solu-
tion is to split reduce tasks into two logically distinct types
of tasks, copy tasks and compute tasks, with separate forms
of admission control. This solution can relieve this prob-
lem, but powerless for the ”resource allocation unbalance”
problem, which will be described in the next section.

4.2 Resources Allocation unbalance Problem
Another issue we meet in MapReduce is that the MapRe-

duce will allocate the maximum number of slots by a static
configuration, such as the parameters: mapred.tasktracker.map.-
tasks.maximum and mapred.tasktracker.reduce.tasks.maximum,
and will never be changed when the cluster is running. How-
ever,the requirement for slots varies along with job proceed-
ing. For example, if a job is submitted at its first several
seconds, it just needs map slots, because there is not data
for reduce tasks to copy; Then, if some map tasks are fin-
ished, it needs more map slots to run map tasks and a little
reduce slots to copy output; when all map tasks of the job
are finished, it just need reduce slots to copy output and
apply the user’s reduce function. Obviously, static slot con-
figuration can’t adapt to these requirements. It will cause a
problem that, sometimes the cluster has a surplus map slots
but reduce slots insufficient, and vice versa. This is called
”resource allocation unbalance” problem, which will lead to
poor performance.

4.3 Our Solution: Dynamic Resource Alloca-
tion

Our proposed solution to these problems is dynamic re-
source allocation. We will allocate resource according to the
cluster load and all jobs run-time status.

As we mentioned above, during the execution of a job, the
resource requirement is changing every time. We need more
map slots at the beginning; with the map tasks’ completion,
the required map slots is gradually decreased, but the re-
quirement to reduce slots increased; And more reduce slots
are needed when all map tasks are finished. Therefore, for
a job, the resource requirement is changing with job status
changing. Here the job status means the completion rates
of map tasks and reduce tasks. So we define the dynamic
weight of the map phase and the reduce phase according
to the job status to simulate the dynamic requirement for
resource.

Suppose the weight of map phase is wm, the weight of
reduce phase is wr. We normalized the weight:

wm + wr = 1 (1)

Suppose: the percentage of map phase completion is x.

x = Ftask/Ttask(0 <= x <= 1) (2)

Where Ftask is the number of finished map tasks, Ttask is
the total number of map tasks in the job. And We hope the
variation trend of weight with the changing of job status,
as shows in figure 3. We have tried straight-line formula,
polynomial formula and exponential formula to simulate the
dynamic weight, and found the exponential formula closest
to the curves shows in figure 3. So we defined the wm as
bellow:

wm = 1− 1

e6 − 1

(
e6x − 1

)
(3)

Because of Equation(1), we have the following:

wr = 1− wm =
1

e6 − 1

(
e6x − 1

)
(4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

W
ei

gh
t

w
m

w
r

Figure 3: The dynamic weight of map phase and
reduce phase with the changing of job status.

If only one job in the cluster, then the job could take up
resource alone. So we can allocate resource according to wm

and wr.
Suppose the number of slots in the cluster is R, and Rm

slots use for map phase, Rr slots use for reduce phase. Then
we get:

Rm =
wmR

wm + wr
= wmR = (1− e6x − 1

e6 − 1
)R (5)

Rr =
wrR

wm + wr
= wrR =

(e6x − 1)

e6 − 1
R (6)

So there are Rm map slots, and Rr reduce slots in cluster,
and if there is a map task finished, the cluster will automat-
ically re-allocate the resource.
In a cluster, there may be lots of users submit jobs, one

user may submit some jobs at the same time, and jobs sub-
mitted by different users may have different weights. To
describe this scenario, we suppose: there are n jobs running
in the cluster, and each job i has a weight wi. The resource
for job i is Ri, and the map phase gets resource Rim, the
reduce phase gets resource Rir.
Definition: in a cluster, a job will get the resource by its

weight wi, and within the job, map phase and reduce phase
will get resource by wm and wr. So job i gets resource:

Ri =
wi

n∑
i=1

wi

R (7)

Resource allocated for the map phase and reduce phase of
this job is:

Rim =
wimRi

wim + wir
= wimRi = (1− e6xi − 1

e6 − 1
)

wi
n∑

j=1

wj

R (8)

Rir =
wirRi

wim + wir
= wirRi = (

e6xi − 1

e6 − 1
)

wi
n∑

j=1

wj

R (9)

We have got the resources allocation for map phase and
reduce phase of each job, so we can calculate the total re-
sources allocation for map slots and reduce slots. Suppose
there are totally RM resources allocated for map slots, and
RR resources allocated for reduce slots. Then:

RM =

n∑
i=1

Rim =

n∑
i=1

(1− e6xi − 1

e6 − 1
)

wi
n∑

j=1

wj

R (10)

RR =
n∑

i=1

Rir =
n∑

i=1

(
e6xi − 1

e6 − 1
)

wi
n∑

j=1

wj

R (11)

The RM and RR define how many resources used for map
slots and reduce slots. When a job is finished, a map task
is completed, or a new job is submitted, all resource allo-
cation formulas will be recalculated automatically, then we
can get a new allocation of resources. Therefore the dy-
namic resource allocation will allocate resource dynamically
according to all jobs status. If we submit a big job in the
cluster, the map phase of this job will get more resources,
and the reduce phase will get little until the map phase is
close to finish. So we solve the ”reduce slot hoarding” prob-
lem using dynamic resource allocation. When the cluster
has a free slot, the dynamic resource allocation will first de-
termine whether this slot is used for the map slot, or reduce
slot; Then ranks all jobs in descending order according to
wm or wr; Finally, allocates the map slot or reduce slot to
the first job.

5. RESOURCE USAGE PIPELINE

5.1 Resource Usage Unbalance problem
There is a configuration contradiction in the parameter

io.sort.mb, a size of buffer to hold map output. If we set
this value too large most map tasks could stay in the same
period IO or CPU for a longer time which results in one
kind of resource usage conflict while the other idle. Howev-
er too small will lead to IO overhead or more frequent disk
IO. The probable value is difficult to set due to the variable
output volume. As for the reduce phase it has a obvious
resource usage bias so if the reduce tasks proceeds at al-
most the same pace it could also cause the resource usage
unbalance problem in a single node.

5.2 Our Solution: Resource Usage Pipeline
To address the single node resource usage unbalance prob-

lem within a phase, we develop a technology called Resource
Utilization Pipeline (RUP). On the contrary to the tradi-
tional task parallelism it provides a finer granularity parallel
mechanism to maximize the complementation of different re-
sources usage. That means not only can different tasks run

simultaneously but also different resource usage periods of
different tasks can be overlapped with each other. In map
phase we use dynamic enlargeable buffer instead of fixed-
size buffer to hold output results which avoids the interme-
diate temporary file IO under most situations and separates
the mixture resources usage period into two individual ones:
CPU and IO. And we use dynamic slot request to sched-
ule tasks in advance to guarantee the above two resource
utilization period can be overlapped with each other.

5.2.1 Dynamic Buffer Enlargement in Map Phase
There are two kinds of buffer in map phase: buffer to

hold (key, value) pairs, kvbuffer for short and buffer contain-
ing indexes referring to the location of (key, value) pairs in
kvbuffer which we call kvoffsets. Both buffer size is decided
by io.sort.mb factor. The logic of dynamic buffer enlarge-
ment applies to both of them. Therefore we use kvbuffer as
an example to demonstrate our technology. The following
procedure is the dynamic buffer enlargement logic:

• Map task allocates a kvbuffer according to the default
io.sort.mb value to hold output (key, value) pairs.

• As the map function puts a (key, value) pair to kvbuffer,
map task will judge whether kvbuffer is full. If kvbuffer
is full it will calculate whether there is enough free
JVM memory to allocate more buffer to hold more
pairs. If there is we will firstly enlarge kvbuffer and
then put the pair into it otherwise we will set a flag
to indicate map task to handle the remaining output
in the way the raw version hadoop does. The method
we use to calculate how much free memory is need-
ed is direct which involves four parameters: total file
size (tfs), processed file size (pfs), and allocated buffer
size (abs) and available free JVM memory (afm). The
judgment formula is:

pfs : tfs = abs : x (12)

x here stands for the memory we need to allocate. If
x is smaller than afm times a threshold kvbuffer can
be expanded to x.

Compute and Sort in

buffer Output to disk Cpu intensive

IO intensive

compute

Sort and output

Raw hadoop

New hadoop

Figure 4: a map task process analysis from resource
usage perspective.

The map phase can be divided into two periods through
dynamic buffer technique each of which has an obvious re-
source usage bias. The first period is to apply map function
to each input pair and output them to memory so it is CPU-
intensive. The final results of a map task will be outputted
to the local disk in the second period at a time which is IO-
intensive. Figure 4 illustrates the traditional and optimized
map phase process logic from the resource usage perspective.

5.2.2 Dynamic Slot Request of Map Task
Dynamic slot request is built on top of the dynamic buffer.

If we merely use dynamic buffer it will cause resource con-
flict or idle described above. Because IO-intensive period
and CPU-intensive period takes a longer time which lead-
s to a higher probability that most map tasks stay in the
same period. Dynamic slot request allows us to implemen-
t resource utilization pipeline within a map phase so as to
different map task may stay different periods.To implement
resource usage pipeline a map task needs to produce a new
map slot which we call additional map slot at the point it
enters into the IO-intensive period then the task tracker can
ask for a new map task which we call additional map task
different from the normal map task. The additional map
task will enter the CPU-intensive period while the normal
one enters IO-intensive period at the same time. Figure 5
illustrates the pipeline version compared to the raw version
Hadoop. Dynamic slot request has a limitation that is only
the map task whose output can be stored in the kvbuffer at
a time is allowed to produce a new additional map slot. The
additional map slot number is decided by configuration pa-
rameter mapred.tasktracker.map.tasks.maximum which we
know is used for deciding how many map tasks is allowed
to run at a single node simultaneously in the raw version
Hadoop. In new version Hadoop it is interpreted into the
sum of normal map slot and additional map slot, half of
which is assigned to normal map task and the remaining is
to additional map task.

First normal map task Second normal map task

First normal map task with

dynamic buffer

Raw hadoop

New hadoop

Second normal map task without

dynamic buffer

First additional map task

with dynamic bufferAsk for add additional map slot

Map compute

Merge and output to disk

Sort in kvbuffer

Spill to disk

Figure 5: dynamic slot request

5.3 Dynamic Slot Request of Reduce Task
As it is mentioned in section 2 reduce phase has two dis-

tinct resource requirements periods: shuffle period and sort-
compute period which provides the possibility to implement
the resource utilization pipeline. What the new version does
is analogy to map phase that is to assign a new reduce task
to task tracker when a reduce task enters into sort-compute
period so that the IO period of the latter task can be over-
lapped with the CPU period of the former task. However
we failed to take it into consideration that system bottleneck
varies because CPU and Net Work process power is unequal.
We address this issue by dividing the configuration parame-
ter mapred.tasktracker.reduce.tasks.maximum into three sub-
parameters: mapred.tasktracker.reduce.toal.tasks, mapred.-
tasktracker.reduce.shuffle.tasks and mapred.tasktracker.reduce.-
compute.tasks which stand for separately the maximum re-
duce tasks number allowed running simultaneously at one
node, the maximum number shuffling map output at a time
and the maximum doing sort-computing at a time. We

place the following three admission constraints to demon-
strate their relationship:

• Running shuffling tasks is not greater than maximum
shuffling tasks at any time.

• Running sort-computing tasks is not greater than max-
imum sort-computing tasks at any time.

• The total running reduce tasks is not greater than the
maximum reduce tasks at any time.

The admission constrains are performed under the collab-
oration of TaskTracker and ReduceTask. The TaskTracker,
is responsible for asking for a reduce task from JobTrack-
er to enter into a shuffle phase if both the running shuffling
reduce task number and the total running reduce tasks num-
ber are smaller than the corresponding maximum ones. And
it should also keep a record on the running sort-computing
tasks number so that at the time when a reduce task fin-
ishing its shuffle phase enters a sort-compute phase it can
decide whether this reduce task is allowed to go on if both
the running sort-computing tasks number and total running
number are less than the corresponding maximum ones. As
for a reduce task, it will ask for the permission from Task-
Tracker when moving forward to next sort-computing phase.
If not it would place this reduce task into the waiting list
otherwise it looks into the waiting list first to put the head
in the waiting list into execution and let this one wait until a
new free compute slot is released. If the waiting list is null,
this reduce task could get permission to step into the next
round.
Here we have to set three different parameters rather than

one in raw version Hadoop. So how do we decide the values?
We put forward a formula which is apply to both maximum
shuffling tasks slot and maximum sort-computing tasks slot
based on the statistic information. As for the maximum to-
tal tasks slot, it is set to be the larger one of the above two. P
stands for the total number of reduce task, x represents the
maximum reduce tasks number allowed running simultane-
ously in raw hadoop mapred.tasktracker.reduce.tasks.maximum
and Avgx is the average running time in raw version. It is
known that the running time of a reduce task will be shorter
if the parameter mapred.-tasktracker.reduce.tasks.maximum
is smaller. So we set Gainx to be the total gain of a job in re-
duce phase in raw version if mapred.tasktracker.reduce.tasks.-
maximum set to be x and Losex to be the total lose of a job
in a reduce phase. Here we have two values for mapred.-
tasktracker.reduce.tasks.maximum m and n where m is s-
maller than n (m<n). So Gainm and Losem is represented
as follows:

Gainm = (Avgn −Avgm) ∗ P/n (13)

Losem = (P/m− P/n) ∗Avgm (14)

If Gainm > Losem => Avgn/n > Avgm/m, that means we
set mapred.tasktracker.reduce.tasks.maximum to be m is
better than n and vice versa.
Although our admission constraint in this paper is imple-

mented explicitly in terms of slot, its inner mechanism is
based on evaluation to different resources utilization. This
evaluation is static and determined by user configuration.
A dynamic real-time resource utilization detection can be
used to determine when to launch a shuffle reduce task or a
compute reduce task which we will cover in the future work
section.

Table 1: Hardware configuration list
#nodes 11
#CPU in each node 4
#core in each CPU 1
CPU AMD 1.8GHz
Memory in each node 5.9G
Disk in each node 186G
Network Gigabit

6. EVALUATION
We set up two benchmarks to evaluate our techniques in

resources utilization efficiency, one of which is a microbench-
mark in that benchmark every technique is tested one by
one and the other macrobenchmark showing the effects of
all techniques put together. At the same time we imple-
ment two workloads. A single job workload used to test
resource pipeline comes from gridmix2 which is a standard
benchmark in Hadoop and a multi-job workload showing
the results of multi-job scheduling as well as the overal-
l techniques is also a variant of gridmix2. Our single job
workload is called monsterquery which is a configurable job
where map tasks output some keepMap percentage of input
records and reduce tasks output some keepReduce percent-
age of the intermediate records. We also set a new parame-
ter called keepCompute which represents how many mathe-
matic operations we want to perform before processing one
map input record. So we can extend monsterquery into a
CPU-intensive, IO-intensive job or mix job through these
parameters. A mutil-job workload, which contains a CPU-
intensive monsterquery, an IO-intensive monsterquery and a
mix monsterquery, is used to test mutil-job status schedul-
ing. And we submit these jobs by a time interval.

Our benchmarks are performed in the environment shows
in table 1:

The cluster is configured in one rack. Operating system
running on it is CentOS release 5.3, Linux version 2.6.18-
128.el5, Apache Hadoop version 0.20.2 and JDK version
1.6.0 14.

Definition: throughput (T) is the number of jobs finished
in unit time. Suppose: we finished n jobs in time t, so we
get:

T =
n

t
(15)

In the test, we will use the same workload both in the raw
version Hadoop and the new version Hadoop, So:

nraw = nnew (16)

Suppose we used time traw to represent the running time in
the raw version Hadoop, and time tnew in the new version
Hadoop. Then we get the throughput increased by I:

I =
Tnew − Traw

Traw
=

nnew/tnew − nraw/traw
nraw/traw

=
traw
tnew

− 1

(17)
Definition: wall time is the total time from the job submitted
to it finished. Suppose the wall time of job i is t1 in the raw
version, and t2 in the new version. And the percentage of
wall time is reduced by ri, which we also call single job wall
time gain. Then:

ri =
t1 − t2

t1
(18)

Suppose the average wall time gain for all jobs in the work-
load is rave. Then:

rave =
1

n

n∑
i=1

ri (19)

In the test, we will record and evaluate the resource utiliza-
tion using user CPU, system CPU iowait CPU,idle CPU,svctm,await
and network IO whose meaning are the same with LINUX
command iostat.

6.1 Microbenchmark

6.1.1 Impact of Map slot and job type on perfor-
mance

We generate a data input set of 27G using TextWriter and
run a monsterquery job including 200 map tasks and 100
reduce tasks with 128mb block size against it to test the im-
pact of the parameter mapred.tasktracker.map.tasks.maximum
on performance. We know in section 5.1 that this parameter
in the new version Hadoop has a different meaning from the
raw version Hadoop. So we want to know how the running
time change as this parameter varies. And we also tune the
parameters keepMap and keepCompute in monsterquery to
make this job’s map phase into three types: CPU-intensive,
IO-intensive and mix one so that we can evaluate the effect
of our technique on different type jobs.
Figure 6 shows the normalized running time of different

map slot and job type in new version over the raw version.
The ratio of this parameter ranges from 2-2 to 4-4. Firstly
task pipeline in map phase produces a more obvious perfor-
mance gain in mix type job and IO-intensive job than the
CPU-intensive job. Figure 5 in section 5.2.2 tells us that
if the first round additional map task is CPU-intensive that
means it will stay in CPU phase for a long time and a sec-
ond round normal CPU-intensive map task will have CPU
resource conflict with it. In the future we will judge the
map task type in advance using some statistics such as CPU
period duration time, output data volume and output time.
Then schedule different type map tasks to the same node
avoiding single resource competition.
Secondly the ideal point in new version Hadoop is the

time when map total slot is configured to 6 in IO-intensive
job or 8 in mix type job, that is to say, the ratio of normal
slot and additional slot is 3 to 3 or 4 to 4. At present we
do not have some mathematic methods to judge the best
ratio of map slot because map task running time is short-
er compared to reduce task. In the future we will apply a
dynamic configuration policy to every slave node which al-
lows map slot ratio in a single node to change separately
according to that node’s ratio of map task. For example if
the IO-intensive tasks in a node take a larger proportion the
ratio will be set to 3:3. If MIX type task is the major part
or IO-intensive and CPU-intensive is almost equal to each
other after running for a period it will change from 3:3 to
4:4.

6.1.2 Compare in resource utilization of map phase
Now we choose IO-intensive monsterquery job with map

slot configuration 6 in new version Hadoop and 4 in raw
version Hadoop to investigate our resource utilization im-
provement. We userCPU utilization to measure resource
usage efficiency since IO utilization can also be expressed by
sysCPU and iowaitCPU .

2:2 3:3 4:4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

map slot ration in new version

m
ap

 p
ha

se
 n

or
m

al
iz

at
io

n
ex

ec
ut

io
n

tim
e

CPU−intensive
IO−intensive
MIX

Figure 6: impact of job type and map slot ratio on
performance compared to raw version whose map
slot is set to 4

Table 2: CPU utility percent in map phase
user CPU sys CPU iowait CPU idle CPU

raw version 87.69 6.43 0.81 5.06
dynamic buffer 91.09 5.08 0.69 3.15
new version 93.71 4.00 0.22 2.07

From table 2 we learn that the system cpu percentage in
raw version is higher than dynamic-buffer version and new
version because it has more IO cost due to its intermediate
spills and sorts. Whereas the dynamic-buffer version has
lower user cpu percentage compared to new version since
when a round of map tasks all stay in IO period no any
additional map task runs in CPU period which gives rise to
the cpu resource underuse problem.

Another resource we need to focus on is memory. Since
memory consumption in new version Hadoop is larger than
the raw one. Figure 7 shows under the same output size
128M of every map different JVM configuration has different
execution time using the new version, the larger the faster.
But the worst situation is the same with the raw one because
it can switch to the raw version process logic at run time if
the free memory is not enough.

200 400 600 800 1000 1200 1400
600

610

620

630

640

650

660

670

ex
ec

ut
io

n
tim

e(
s)

memory size(mb)

raw version
new version

Figure 7: Effect with memory size change ranging
from 256 to 1280

6.1.3 Reduce phase performance test
According to the formula listed in section 4.2 experiment

1 is designed to compute the best shuffle slot number and

Table 3: The execution result with different params
avg-shuffle avg-compute total-running shuffle shuffle compute compute
time (s) time (s) time(s) Gain Lose Gain Lose

2 12 28 1078 18 36 12 84
3 15 30 982 15 15 15 30
4 18 33 959 28 18 12 33
5 25 36 959 27 25 36 36
6 33 46 962 - - - -

Table 4: CPU utility percent in reduce phase
user CPU sys CPU iowait CPU idle CPU

raw version 72.05 8.95 4.00 14.95
new version 79.22 11.44 2.36 6.96

compute slot number. We run 5 different configuration mon-
sterquery jobs and the table 3 is the execution result.
We pick up 3 as the optimal number of concurrently shuffle

and 5 concurrently compute. The raw version configuration
is map slot 4, reduce slot 4 which is the best situation in our
cluster, and the new version configuration is map slot 4, re-
duce total slot 5, reduce shuffle slot 3, reduce compute slot 5
or reduce shuffle slot is 4. We use example job in experiment
1 to test the effect. Figure 8 shows normalized running time
of the new version Hadoop over the raw version. Our new
version Hadoop has a better execution performance though
its average copy time and average compute time is longer
than raw one since we could schedule more reduce tasks in
a round and resource usage complementary is more obvious.
Table 4 reveals the user CPU utilization percentage between
raw and new from which we can see the average user CPU
usage of new version is higher than the raw one. But the
raw version outperforms the new version in the term of the
system CPU usage percentage. That is because in the new
one the operating system needs to schedule more processed
than the raw one which has a higher cost in system call.

reduce total time avgcopy avgcompute
0

0.2

0.4

0.6

0.8

1

1.2

1.4

no
rm

al
iz

at
io

n
ex

ec
ut

io
n

tim
e

5:5:3
5:5:4

Figure 8: Running time of different reduce slot ra-
tion in new version compared to raw version which
is set to be 1

6.1.4 Dynamic Resource Allocation test
We pick up a mutil-job workload, because we will nerv-

er met the ”Reduce Slot Hoarding” problem in a single job
workload, to test the performance of dynamic resource al-
location and use FairScheduler as a comparison. The work-
load contains a CPU-intensive monsterquery (job1), which

has lots of calculation in each task (map task and reduce
task), and requires a lot of CPU resource; An IO-intensive
monsterquery (job2), which has a few calculation but need-
s to read and transfer lots of data, so needs IO resource;
And a mix monsterquery (job3), which needs both CPU re-
source and IO resource. We generate 18G data for each
job in the workload, and submit each job by a time interval
which means if we have submitted the job1, we will submit
the job2 after a time interval, and the job3 the next time
interval. We submit jobs like this to simulate the real envi-
ronment, because different users will submit jobs at different
times, even for one user, he will have different needs at dif-
ferent times. We will submit a big job first to reproduce the
”Reduce Slot Hoarding” problem. The figure 9 shows the
execution result:

job1 job2 job3 total
0

200

400

600

800

1000

1200

1400

jo
b

ex
ec

ut
io

n(
m

s)

raw
new

Figure 9: The execution time of each job

Figure 9 shows the execution time of each job and the
total time we finish the whole workload. We set the time
interval to 60 s. In the new version Hadoop, the job1 is a
little slower, but the others jobs are much faster than the
raw version Hadoop. And the total time is less. In the test,
the total time we spend in the raw version Hadoop is 1202s,
in the new version Hadoop is 1081s, so:

I =
traw
tnew

− 1 =
1202

1081
− 1 ≈ 11.2%

So, the average throughput is increased by 11.2%. And we
can get:

rave =
1

3

3∑
i=1

ri = 22.4%

So the average wall time gain is 22.4%. We also recorded
the CPU, Disk I/O and Net I/O resource, as showed in table
5, figure 10, and table 6.

From the result, we can get that the CPU resource allo-
cated is more reasonable in the new version Hadoop. Be-
cause the user CPU is 5.9% higher than the raw version

Table 5: The CPU utility percent in dynamic re-
source allocation test

user CPU sys CPU iowait CPU idle CPU
raw version 78.4 5.4 5.2 11
new version 84.3 4.9 1.5 9.3

UpStream DownStream
0

1000

2000

3000

4000

5000

6000

7000

sp
ee

d
of

 n
et

w
or

k
tr

af
fic

 (
kb

/s
)

raw
new

Figure 10: The Net I/O in dynamic resource alloca-
tion test

Table 6: The bottleneck of Disk I/O in dynamic
resource allocation test

await svctm
raw version 65 21
new version 28 21

Table 7: The macrobenchmark
Job size Big Middle Small
input 25G 10G 2.5G
type CPU/IO CPU/IO/Mix CPU/IO/Mix
number 2 3 5

Hadoop, and the iowait CPU is 3.7% less than the raw ver-
sion Hadoop. For the Net I/O resource, the upstream speed
and downstream speed are increased by 18.1% and 39.9%.
What’s more, in the new version Hadoop, the parameter-
s await and svctm are 56.9% closer than the raw version
Hadoop, so we have relieved the Disk I/O bottleneck.

6.2 Macrobenchmark
We ran a mutil-job benchmark based on monsterquery

job. The benchmark used 10 monsterquery jobs with differ-
ent size and keepMap/keepReduce/keepCompute values,as
show in table 7. We submitted these jobs by a time interval
liked testing the Mutil-job Status Scheduler.
Figure 11 shows the execution result:
From figure 11, we get:

I =
traw
tnew

− 1 =
1457

1197
− 1 = 21.72%

rave =
1

10

10∑
i=1

ri = 55.83%

So we have increased the throughput rate by 21.74% and
reduced the waiting time by 55.83%. We also recorded the
use of resources as shown in table 8, table 9, and figure 12.
From these, we can get that the CPU resource allocated is
more reasonable in the new version Hadoop. Because the us-

job1 job2 job3 job4 job5 job6 job7 job8 job9 job10 total
0

500

1000

1500

jo
b

ex
ec

ut
io

n(
m

s)

raw
new

Figure 11: The time we executed the benchmark

Table 8: CPU utility in the dynamic resource split
test

user CPU sys CPU iowait CPU idle CPU
raw version 70.82 10.16 10.87 8.15
new version 83.75 10.57 4.26 1.42

Table 9: The bottleneck of Disk I/O in the dynamic
resource split test

await svctm
raw version 127 32
new version 96 35

er CPU is 12.93% higher, the iowaitCPU is 6.61% less, and
the idle CPU is 6.73% less than the raw version Hadoop. For
the Net I/O resource, the upstream speed and downstream
speed are increased by 11.3% and 23.5%. What’s more, in
the new version Hadoop, the parameters await and svctm
are 30.3% closer than the raw version Hadoop, so we have
relieved the Disk I/O bottleneck.

7. RELATED WORK
MapReduce simplifies the programming of many parallel

applications. Currently there are several MapReduce im-
plementations available based on the Google’s MapReduce
architecture and some of these have improvements over the
initial model. Through user side configuration as well as
system automatic load balance based on the resource detec-
tion information, some MapReduce implementation such as
hadoop can implement coarse granularity resource control
which guarantees that every slave node in the cluster can
have nearly the same resource assumption. The resource us-
age unbalance of several slave nodes in a large scale cluster
has a smaller effect than in a small scale cluster where we
need a finer granularity resource control to make sure re-
source on every slave node is utilized efficiently. However
for our knowledge there are no other implementations that
support features such as single node resource overlap or slot
assignment policy to support resource usage efficiently as in
our new version hadoop.

Phaser is a new coordination construct that integrates
point-to-point and collective synchronization in the presence
of dynamic parallelism by giving each activity the option of
registering with a phaser in a signal-wait mode for barrier
synchronization. So all processes running in phaser cannot
go on at a certain point until other partner processes get to

UpStream DownStream
0

2000

4000

6000

8000

10000

12000

sp
ee

d
of

 n
et

w
or

k
tr

af
fic

 (
kb

/s
)

raw
new

Figure 12: The Net I/O in the dynamic resource
split test

the same point.And phaser accumulator is an advancement
to phaser for reduction. It separates reduction into the parts
of sending data, performing the computations and retrieving
the results enabling overlap of communication and compu-
tation to exploit the CPU resource as much as possible.
Hadoop is an open source MapReduce implementation

which is already introduced in section 2 Sphere is a par-
allel runtime that operates on Sector distributed file sys-
tem. It can execute MapReduce style computation. An-
other parallel runtime Dyradthat supports Directed Acyclic
Graph (DAG) based on execution flows provides more paral-
lel topologies compared to MapReduce programming model.
Above three implementations have a common point that is
resource usage is sequential either within a task or between
two tasks which inevitably causes resource utilization con-
flict or idle problems.

8. CONCLUSION AND FUTURE WORK
In this paper we discussed our experience in designing and

implementing a new version Hadoop which has a dynamic
slot assignment policy globally as well as a finer granular-
ity resource utilization control locally. We also introduced
the resource usage efficiency in raw Hadoop in section 2.
What we want to prove is the resource utilization efficiency
in raw version Hadoop does leave something to be desired.
The overall performance gain is around 20% using our tech-
niques. In this paper we used different phases’ CPU average
utilization percentage to measure the resource usage effi-
ciency of Hadoop system since whatever IO resource or slot
resource can be reflected in terms of CPU. We have also p-
resented the results of a set of applications with voluminous
data sets. The results indicate that new version Hadoop
does perform well whatever in single job test of multi-job
test. We plan to extend our future research in three areas:
(i) Research on dynamic assignment of reduce task based on
the real-time resource detection information which includes
two aspects: when a JobTracker assigns a new submitted re-
duce task into shuffle period and when a TaskTracker assigns
a waiting reduce task into compute period; (ii) Explore the
possible schedule policy based on map task type so that the
IO-intensive map task can complement with CPU-intensive
map task to reduce CPU usage conflict mentioned in sec-
tion 6.1.1 and map slot ratio can be changed separately in
every single node rather than a static configuration by us-
er; (iii) Monitor various resource of cluster, and forecast the

resource, which needed by the map tasks and reduce tasks
of each job. Then we can fully automatic allocate resource
without define how many slots in the cluster. With the
above enhancements, the new version Hadoop will provide
a real-time dynamic resource detection and schedule poli-
cy under the cooperation of JobTracker and TaskTracker to
maximize the resource utilization of a cluster.

9. ACKNOWLEDGEMENTS
We would like to thank Jian Lin, Xicheng Dong and Maosen

Sun for their guideline and feedback on this paper, and
Chao Tian for his contributions to the early scheduler. We
are grateful to all large-scale data processing team mem-
bers for their contributions used in this paper. What’s
more, this paper is partially supported by the National Nat-
ural Science Foundation of China (grant No. 60873243),
the National High-tech R&D Program of China (grant No.
2010AA012502, 2010AA012503), and the Hi-Tech Research
and Development (863) Program of China
(Grant No. 2011AA01A203).

10. REFERENCES
[1] Hadoop. http://hadoop.apache.org/.

[2] R. E. Bryant. Data-intensive supercomputing:the case
for disc. Technical report, School of Computer Science
Carnegie Mellon University Pittsburgh, PA 15213,
May 10, 2007.

[3] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. Mapreduce online.
Technical report, UC Berkeley Yahoo! Research, 2009.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplied data
processing on large clusters. In OSDI’04: Sixth
Symposium on Operating System Design and
Implementation, 2004.

[5] Y. Gu and R. Grossman. Sector and sphere: The
design and implementation of a high performance data
cloud. Theme Issue of the Philosophical Transactions
of the Royal Society A: Crossing Boundaries:
Computational Science, E-Science and Global
E-Infrastructure, 367, 2009.

[6] K. Huang and Z. Xu. Scalable Parallel Computing:
Technology, Architecture, Programming. McGraw-Hill,
Inc., 1998.

[7] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. In European Conference on
Computer Systems (EuroSys), 2007.

[8] J. Shirako, D. Peixotto, V. Sarkar, and W. Scherer.
Phaser accumulators: A new reduction construct for
dynamic parallelism. In IPDPS, 2009.

[9] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N.
Scherer. Phasers: a unified deadlock-free construct for
collective and point-to-point synchronization. In
ICS’08, 2008.

[10] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Job scheduling for
multi-user mapreduce clusters. Technical report,
University of California, Berkeley Facebook Inc
Yahoo! Research, 2009.

