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ABSTRACT 
Processing large volumes of scientific data requires an efficient 
and scalable parallel computing framework to obtain meaningful 
information quickly. In this paper, we evaluate a scientific 
application from the environmental sciences for its suitability to 
use the MapReduce framework. We consider cccgistemp – a 
Python reimplementation of the original NASA GISS model for 
estimating global temperature change – which takes land and 
ocean temperature records from different sites, removes duplicate 
records, and adjusts for urbanisation effects before calculating the 
12 month running mean global temperature. The application 
consists of several stages, each displaying differing 
characteristics, and three stages have been ported to use Hadoop 
with the mrjob library. We note performance bottlenecks 
encountered while porting and suggest possible solutions, 
including modification of data access patterns to overcome 
uneven distribution of input data. 
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1. INTRODUCTION 
Advancing the state-of-the-art research in computational science 
requires analysis of large volumes of data collected from 
numerous scientific instruments and experiments conducted 
around the globe. Petabyte data sets are already becoming 
increasingly common in many High End Computing (HEC) 
applications from a diverse range of scientific disciplines [15], 
and this is only expected to grow in the near future. This 
necessitates the need for providing abstraction at multiple levels 
for acquiring, managing and processing of data [11], thus enabling 
the scientific community to focus on science rather than 
disentangling the complexities involved in setting up and 
maintaining the cyber-infrastructure required to facilitate data 
intensive computing. 
The main focus of the work described in this paper is to evaluate 
if MapReduce [4], specifically the Hadoop [1] implementation of 
MapReduce, can provide the necessary high level programming 
abstraction that is required for parallelising data and compute 
intensive tasks of a scientific application. 

2. GLOBAL TEMPERATURE ANALYSIS 
Analyses of surface air temperature and ocean surface temperature 
changes are carried out by several groups, including the Goddard 
institute of space studies (GISS) [8] and the National Climatic 
Data Center [19] based on the data available from a large number 

of land based weather stations and ship data, which forms an 
instrumental source of measurement of global climate change. 
Uncertainties in the collected data from both land and ocean, with 
respect to their quality and uniformity, force analysis of both the 
land based station data and the combined data to estimate the 
global temperature change.  
Estimating long term global temperature change has significant 
advantages over restricting the temperature analysis to regions 
with dense station coverage, providing a much better ability to 
identify phenomenon that influence the global climate change, 
such as increasing atmospheric CO2 [10]. This has been the 
primary goal of GISS analysis, and an area with potential to made 
more efficient through use of MapReduce to improve throughput.  

2.1 Data Sources 
The current GISS analysis obtains the monthly mean station 
temperatures from the Global Historical Climatology Network 
(GHCN), available for download from the NCDC website1. 
GHCN maintains data from about 7000 stations out of which only 
those stations that have a period of overlap with neighbouring 
stations (within 1200 km) of at least 20 years are considered [9]. 
Effectively, only 6300 stations are available for GISS analysis 
after this reduction. No data adjustments are done on the original 
GHCN data for clarity. The GHCN land-based temperature 
records are supplemented by monthly data for the Antarctic region 
from the SCAR Reference Antarctic Data for Environmental 
Research project2. 
The ocean surface temperature measurement is an integration of 
the data from Met Office Hadley Centre analysis of sea surface 
temperatures (HadISST1) for the period 1880-1981, which was 
ship based during that interval, and satellite measurements of sea 
surface temperature for 1982 to the present (Optimum 
Interpolation Sea Surface Temperature version 2 (OISST.v2). The 
satellite measurements are calibrated with the help of ship and 
buoy data [20]. 

2.2 Urbanisation Correction 
Urbanisation, which includes human-made structures and energy 
sources, can significantly impact the accuracy of temperature 
measured by stations located in or near urban areas. This has been 
a major concern in the analysis of global temperature change. The 
homogeneity adjustment procedure [8] changes the long-term 
temperature trend of an urban station to make it agree with the 

                                                                 
1 http://www.ncdc.noaa.gov/oa/ncdc.html 
2 http://www.antarctica.ac.uk/met/READER/ 



mean trend of nearby rural stations. The current analysis uses 
satellite observed nightlights [9] to identify land based weather 
stations in extreme darkness and perform urban adjustments for 
non-climatic factors, such that urban effects on the analysed 
global temperature change are small. 

2.3 GISTEMP and ccc-gistemp 
The GISS Surface Temperature Analysis (GISTEMP)3 is an open-
source model from the environmental sciences for estimating the 
global temperature change, implemented by the NASA Goddard 
Institute of Space Studies (GISS). GISTEMP is written in 
FORTRAN and processes the current GHCN, USHCN and SCAR 
files in two stages. In the first stage, redundant multiple records 
are combined, and in the second stage the urban adjustments are 
performed so that their long-term trend matches that of the mean 
of neighbouring rural stations. Urban stations without a sufficient 
number of rural stations in their vicinity are removed from further 
analysis.  
ccc-gistemp is a part of the Clear Climate Code (CCC) project4 
from Climate Code Foundation5 to re-implement the original 
GISTEMP algorithm in Python for clarity and maintainability. 
The combination of FORTRAN code and shell scripts in the 
original GISS software, for both core GISS algorithms and 
supporting libraries, makes it hard to perceive the code flow and 
the underlying algorithm. By isolating the core GISS algorithms 
from the supporting functions (algorithms for reading input and 
writing output) and providing a single interface specifying 
parameters and initiating the analysis, ccc-gistemp seeks to 
improve the readability and maintainability of the software. 
In particular, the temperature “Series” anomaly, which is the 
primary data object in most GISS algorithms, has differing 
representations in different parts of the code making it hard for 
new users to comprehend the code. This has been modified in ccc-
gistemp to have a single representation throughout the code.   
Although there have been a significant modifications to the 
structure of the original code, the ccc-gistemp developers have 
ensured that the ported algorithms are identical in function to the 
original by providing tests which compare the output at every 
stage with the expected results. For this reason, we have chosen to 
use the ccc-gistemp code rather than the original GISTEMP codes 
for this study. 

3. PORTING ccc-gistemp 
3.1 MapReduce 
MapReduce is a programming model introduced by Google Inc. to 
support distributed computing on large datasets [4]. The 
application is implemented as a sequence of MapReduce 
operations, each consisting of a Map phase and a Reduce phase. 
In its basic form, the user specifies a ‘map’ function that processes 
a key/value pair to generate a set of intermediate key/value pairs, 
and a ‘reduce’ function that merges all intermediate values 
associated with the same intermediate key. It provides a master-
worker mechanism to improve fault-tolerance that enables tasks 
on failed nodes to be rescheduled, and attempts dynamic load 
balancing and task reassignment based on the performance of the 
nodes. 

                                                                 
3 http://www.giss.nasa.gov/ 
4 http://code.google.com/p/ccc-gistemp/ 
5 http://www.climatecode.org/ 

Data locality – collocation of data and the node that performs 
computation – is a characteristic feature of MapReduce that 
facilitates data-intensive computing. The MapReduce master 
acquires information of the location of the input file from the 
distributed file-system and attempts to assign processing on the 
machine that actually contains the data. If this results in a failure, 
then the master reassigns the processing on a machine that is as 
close as possible to the input data. This has the effect of moving 
code to the data, improving the overall network utilisation by 
avoiding unnecessary data transfers. Experiments [3][22] indicate 
that data locality is a determining factor for MapReduce 
performance particularly in heterogeneous environments, a factor 
which is further influenced by the irregular data access patterns 
often found in scientific applications. 

3.2 Hadoop and mrjob 
Hadoop [1] is the Apache Software Foundation open-source 
implementation of the MapReduce framework in Java. It provides 
tools for processing data using the MapReduce framework and 
implements a distributed file system called Hadoop Distributed 
File System (HDFS). Although the Hadoop framework is 
implemented in Java, it is not required that MapReduce functions 
be written in Java. Hadoop streaming is a utility that allows 
programmers to create and run MapReduce jobs with executables 
(map and/or reduce function) written in any programming 
language that can read standard input and write to standard output. 
It uses UNIX standard streams as an interface between Hadoop 
framework in Java and the user program. 
The fundamental idea of having a distributed file system is to 
divide user data (usually of the order of few gigabytes to a few 
terabytes) into blocks and replicate those blocks across the local 
disks of nodes in the cluster [14] such that it is easier to assign 
MapReduce job locally. HDFS is designed based on this principle. 
Additionally, data-intensive computing using MapReduce is 
dominated by long streaming reads and large sequential writes. As 
a result, the time to read the whole dataset is more important than 
the latency in reading the first record [21]. 
mrjob6 is a Python package that aids in the development and 
execution of Hadoop streaming jobs. Features that are useful 
when porting scientific applications include the ability to write 
multi-step jobs (one map-reduce step feeds into the next), custom 
switches which can be added to the map-reduce jobs, including 
file options, and the ability to quickly switch between running 
locally, on a Hadoop cluster or on Amazon’s Elastic MapReduce. 
mrjob provides a simple abstraction for writing MapReduce jobs 
in Python by defining steps for specifying ‘mapper’ and ‘reducer’ 
functions, input and output file format (protocol) and paths. 
Additionally, it provides APIs for setting necessary parameters in 
the Hadoop MapReduce JobConf configuration file. 
To facilitate transfer of complex data structures, Python provides 
a powerful interface called the Pickle module7. It is primarily used 
for serialising and de-serialising python object structures. Pickling 
results in data objects being converted into byte stream so that 
they can be transferred easily through a data pipe such as a 
network. Un-pickling results in the reverse operation where a byte 
stream is converted back into a data object. mrjob implements the 
more efficient cPickle module (written in C) to provide the 
communication protocol. The key/value pairs are represented as 
two string-escaped pickles separated by a tab. 
                                                                 
6 http://pypi.python.org/pypi/mrjob/0.2.6 
7 http://docs.python.org/library/pickle.html 



 

 
Figure 1: Flow diagram of the original ccc-gistemp code before modification 

 

3.3 Analysing ccc-gistemp 
The ccc-gistemp code can be considered to have one pre-
processing stage (Step 0) followed by five processing stages 
(Steps 1-5), all coordinated by run.py (see Figure 1). The code 
was analysed to understand its execution pattern, whilst also 
identify areas in the code that could be suitable for porting to 
MapReduce. Profiling the code (see Figure 2) shows that the 
runtime is dominated by Step 3, where the input station records 
are converted into gridded anomaly data-sets represented as a box 
obtained by dividing the global surface (sphere) into 80 boxes of 
equal area. An improvement in performance could be obtained by 
parallelising Step 1 as well.  
Each of these steps takes a data object as its input and produces a 
data object as its output. Ordinarily the data objects are iterators, 
either produced from the previous step or an iterator that feeds 
from an input file.  An instance of “Series”, the monthly 
temperature series for every year starting from the base year (set 

to 1880 by default, but can be changed to any value), uniquely 
identified by a 12-digit id is created for every stations data. 
Multiple series can exist for a single station and hence a 12-digit 
id is chosen to uniquely identify the records, comprising of 11-
digit station id and 1 digit series identifier. This unique id is used 
as the ‘key’ in Step 1 and Step 2 map/reduce functions. Step 3 
however has a different key/value combination. Figure 3 is a 
diagrammatic representation of an instance of “Series” – the 
primary data object used in all the aforementioned steps for 
computation.  

3.3.1 Step 0 
Step 0 reads the input data sources into a dictionary which 
primarily consists of station data, land and sea surface 
temperatures from GHCN and USHCN, Antarctic temperature 
readings from SCAR and the Hohenpeissenberg data. In the first 
part of this step, the Hohenpeissenberg data in the GHCN is 
replaced with the correct values from the actual Hohenpeissenberg 



data. In the second part, the USHCN records are adjusted for the 
difference in monthly means between them and the corresponding 
record in GHCN. Once adjusted, the corresponding record in 
GHCN is removed. Finally, the adjusted records in USHCN, 
remaining records in GHCN and the original SCAR records are 
joined together and sorted to generate the final output of Step 0. 
Whilst Step 0 appears to be be ideal for parallelisation, it may not 
fit well into the MapReduce programming model. A global 
synchronisation across all reducer nodes will be required to 
combine copies of either GHCN or USHCN records (depending 
on the logic). Global synchronisation with a compare-merge 
operation could be very expensive and does not fit into the 
MapReduce programming model. The MapReduce programming 
model is designed to perform operations on input data stream 
mapped as key/value pairs. Having to simultaneously operate on 
two independent input sources does not fit well into this model. A 
workaround for this problem would be to load the contents of 
GHCN file into an external key/value store and have each reduce 
task concurrently access GHCN records from the store. Records 
that are adjusted can be removed from the store. This approach is 
examined in more detail in Section 3.3.3. 
In addition, joining of independent data sources (USHCN, GHCN 
and SCAR) cannot be performed within the mrjob framework. 
mrjob API does not offer support for operations outside the 
MapReduce programming paradigm. Workarounds and code 
hacks significantly deteriorate performance and hence does not 
form part of a good design. Bearing these design nuances in mind, 
step0 was not ported to MapReduce framework.  

 
Figure 2: Profiling original ccc-gistemp code (time to complete 

each step in pipeline in seconds) 

 
Figure 3: An instance of "Series" - The primary data 
structure containing Station id, Year and the monthly 

temperature series for all years 

3.3.2 Step 1 
In this step records from the same station (11 digit station id) are 
combined in a two stage process. In the first stage records are 
combined by offsetting based on the average difference over their 
common period, then averaged. In the second stage, the records 
are further combined by comparing the annual temperature 

anomalies of years in which they do overlap, and finding the ones 
for which the temperatures are on average closer together than the 
standard deviation of the combined records. Finally, depending on 
parameters in the configuration files, a few station records are 
modified by adding a ‘delta’ to every datum for that station and a 
few station records are dropped from further analysis. 
As the existing algorithms are written to process stations records 
in groups, these can be ported to MapReduce framework directly 
without much code changes. The input records are mapped as 
key/value pairs with ‘key’ being the 12 digit station id and ‘value’ 
being the “Series” temperature anomaly for each year. An 
intermediate reduce stage is used to construct the “Series” object 
from the input key/value pairs. This intermediate reduce stage 
yields the 11-digit station Id and the “Series” object, naturally 
resulting in data-grouping as required by the combining steps 
described above. The algorithms for combining records are then 
ported directly to the second stage reduce function.  

3.3.3 Step 2 
Step 2 performs a cleaning of input station records by dropping 
records that do not have at least one month in a year with 
minimum number of data values prior to performing urban 
adjustments as mentioned in Section 2.2. The cleanup stage is 
data-intensive whilst the urban adjustment is mostly compute-
intensive.  
The data-cleanup step is ideally suited for the MapReduce 
programming paradigm where the input station records are 
grouped by their 12 digit station id and processed independently 
by the available reducers. However, the step following the 
cleanup operation would require all records processed by the 
individual reduce tasks to be combined, so as to generate ‘rural’ 
and ‘urban’ classification of records. If there is no global 
synchronisation at this point then every reduce task will have their 
own copy of ‘urban’ and ‘rural’ classification for the records that 
were initially assigned to it. This causes issues when performing 
the urban adjustment. 
From Figure 4 it is evident that each urban station will need 
access to complete rural station records in order to identify rural 
stations in its vicinity. This dependency between the records 
contained in each of the reduce tasks is not ideal for the 
MapReduce framework. Additionally, the use of single reduce 
task to achieve synchronisation can have severe impacts on 
performance and scalability. With Step 2 being both data and 
compute intensive, having a global synchronisation (sequential 
execution in the MapReduce programming model) must be 
avoided. One option is to split the set of tasks performed in Step 2 
into two separate stages.  
The first stage takes the input file and generates key/value pairs, 
with the 12-digit station id as the key and value being “Series” 
temperature anomaly for each year. The initial cleanup operation 
is also performed in this stage. The output of the first stage is a 
stream of “Series” instances generated from the cleaned up 
records (urban and rural combined).  
The second stage map tasks generate the ‘rural’ and ‘urban’ 
classification of records for the input key/value pairs. These 
records, generated independently across all map tasks, are stored 
temporarily in an external key/value store. The use of this external 
store is necessitated by the fact that the MapReduce model does 
not provide any natural interface to store shared variables that are 
required for such an implementation. Additionally, it is useful to 
use a key/value store as the ‘urban’ records are directly referred to 
by their ‘key’ in the algorithm for adjusting urban stations. 



 

 
Figure 4: Flowchart for urbanisation corrections 

Several key/value stores (HBase, PostgreSQL, Voldemort and 
Redis)  were evaluated for use in this project however for reasons 
of space we omit the full analysis. Redis was chosen primarily 
because of its Python client and good documentation.  
Changes to the data access pattern in the existing ccc-gistemp 
code were done to accommodate the use of key/value store. The 
original ccc-gistemp code used the “Series” object of urban 
stations as the key and its annotated object as the value to 
represent urban stations internally in a dictionary. This was 
inappropriate to be used with the key/value store. Pickling and un-
picking the “Series” object to be used as ‘key’ in the external store 
is very expensive and inefficient in terms of memory 
consumption. Instead, the code was changed to have the 12-digit 
station id of urban stations as the ‘key’ and their annotated object 
as the ‘value’. All the annotated objects of stations classified as 
‘rural’ were appended to a single list on the key/value store.  
Key/value stores can thus be used to share data across available 
reduce tasks without the need for global synchronisation with a 
single reduce task. However, in situations where the algorithm 
forces global aggregation [24], global synchronisation is 
inevitable with the current implementation of MapReduce.   

3.3.4 Step 3 
In Step 3, the input station records are converted into gridded 
anomaly data-sets represented as a box obtained by dividing the 
global surface (sphere) into 80 boxes of equal. These boxes are 
described by a 4-tuple of its boundaries (fractional degrees of 
latitude for northern and southern boundaries and longitude for 
western and eastern boundaries). Each of these 80 boxes is further 
sub-divided into 100 subboxes described by the same 4-tuple 
latitude/longitude representation. The input station records are 

assigned to the box/subbox in which they belong. The station 
records that belong to a grid cell are called contributors. The 
number of contributing records varies significantly from one 
region to the other. A subbox series (similar to station record 
“Series”) consisting of monthly temperature anomaly is created 
for all records and returned.  
An initial approach for porting to MapReduce would be to map 
the input station records as key/value pairs, as done previously in 
Steps 1 and 2. However, this type of mapping has severe 
drawbacks.  The original code is written to parse the input station 
records and assign then to the correct box and then subbox. If the 
input records are split across available reducers, each of them 
would process their own subset of the original records and assign 
them to grids created within each reducer. At the end of this step 
every reducer will have its own copy of the gridded anomaly data-
set. There are two issues with this approach. Firstly, each of the 
subbox “Series” objects are created with only the partial data 
available within each reduce function and secondly, there is no 
way of combining these independent subbox “Series” objects for 
the same station as the objects are already fully constructed within 
each reducer. Writing methods to mutate the read-only objects of 
“Series” would be a serious design flaw.  
The more suitable approach would be to split the regions (boxes) 
across available reducers and have each reduce function 
independently read the input station records and assign records 
that belong to its region (box). However, this can be viewed more 
as a parallelisation strategy for compute-intensive step rather than 
data-intensive computing using MapReduce. The ‘key’ is selected 
from one of the 4-tuples (latitude/longitude representation) and 
the ‘value’ is a tuple consisting of the region (box) and the 
subboxes within that region. Each of available reducers will 
compute the contributors for the region that was assigned to them, 
identified by the 4-tuples representation and yield the gridded 
anomaly dataset.  
It should be noted that using this approach, no input was directly 
specified to the MapReduce job. Instead, the regions were read 
from within the map function and converted into key/value pairs 
consisting of one of the 4-tuples (latitude/longitude 
representation) as the ‘key’ and a tuple of region (box) and 
subboxes within that region as ‘value’. All regions associated with 
a ‘key’ will be processed by the same reducer yielding the gridded 
anomaly data-sets.  
Additionally, it is observed that grouping by longitude will result 
in many more unique ‘keys’ than by latitude, which has just 8 
unique numbers. As we already know that MapReduce assigns all 
‘values’ associated with the same ‘key’ to a single reduce task, 
using latitude as the key will result in a maximum of 8 reduce 
tasks, severely impacting the scalability of the implementation. 
Hence we choose the ‘key’ to be one of either eastern or western 
longitude. The results of benchmarking with both the 
combinations of keys are presented in Section 4.  

3.3.5 Step 4 
Step 4 converts the recent sea-surface temperature records into the 
sea-surface temperature anomaly boxed dataset. The initial steps 
are I/O intensive but the overall execution time is extremely small 
compared to the other stages (see Figure 2). The Hadoop 
implementation of MapReduce incurs considerable start-up costs 
that are usually amortised when processing large amounts of data 
in parallel across available nodes. However, if the dataset is small, 
these initial start-up costs dominate even when executed on large 
number of nodes. As this step is neither data-intensive nor 
compute-intensive, it was not ported to MapReduce. 



3.3.6 Step 5 
The output files from Step 3 (land data) and Step 4 (ocean data) 
forms the input to Step 5. Step 5 then assigns weights to the 
records – a process known as masking – and then combines the 
land and ocean series in each of the subboxes and combines the 
subboxes into boxes. The box data for each of the 80 boxes is 
processed to produce temperature averages over 14 latitudinal 
zones including northern hemisphere, southern hemisphere and 
global. 
By altering the sequence of operations slightly, and taking care to 
ensure storage of intermediate results, several stages in Step 5 can 
be grouped together for the MapReduce framework leaving the 
I/O stages to be performed at the end. Splitting the input land and 
ocean records across the available reduce tasks has drawbacks as 
already mentioned in Step 3 analysis (see 3.3.4) for the 
MapReduce programming model. Instead, the regions (boxes) 
could be split across available reducers with each reduce function 
independently read the land and ocean records and assign records 
that belong to its region (box). Additionally, with this approach 
each reducer will have the Subbox metadata that is required for 
processing all gridded anomaly dataset.  

It must be noted that the input dataset will always be a tuple of 
land and ocean records consisting of 8000 lines each irrespective 
of the number of stations considered initially in the Step 0 input. 
Hence, Step 5 output is not scalable in terms of the input dataset. 
The only gain in performance obtained is by parallelising the 
operations across available reduce tasks. This parallelisation can 
however be achieved in a manner similar to that of Step 3. Since 
the primary goal of this work was to investigate the different 
approaches to using MapReduce on scientific application codes, 
rather than a complete parallelisation and optimisation of ccc-
gistemp, Step 5 was not ported but left in its original state. 

3.4 MapReduce-ccc-gistemp 
The complete modified code is available from: 
http://code.google.com/p/mapreduce-cccgistemp/downloads/list 
Figure 5 shows the revised flow through the different steps of the 
application.  
 
 
 

 
Figure 5: Flow diagram of the original ccc-gistemp code before modification 

 



4. RESULTS AND ANALYSIS 
4.1 Benchmarking 
Benchmarking of the modified ccc-gistemp code was performed 
on EDIM18, a cluster of commodity machines jointly funded by 
the Edinburgh Parallel Computing Center (EPCC) and the 
University of Edinburgh School of Informatics, primarily intended 
for Data-intensive research. The cluster is build from relatively 
inexpensive hardware with a dual core Intel ATOM processor on 
each node, which is comparatively slower to the current day high 
end processors. However, this machine has several fast disks 
connected directly to each of the 120 available nodes (distributed 
equally across three racks), ideally suited for data-intensive 
computing and research owing to its low latency and high I/O 
bandwidth. The Hadoop cluster setup on EDIM1 machine is based 
on the Cloudera distribution (CDH3) of Hadoop9. Table 1 
provides details of the hardware and its configuration on the 
EDIM1 machine. Performance evaluations have been done on a 
dedicated subset of this machine configured as a 16 node cluster 
(one master node, one job tracker and fourteen slave nodes i.e. 28 
cores), averaging over consecutive executions (observed variation 
between consecutive runs was always less than +/-1%). 

Category Configuration 
Number of Nodes 120 (3 racks of 40 nodes each) 

Processors/Node 
Dual-Core Intel 1.6 GHz ATOM10 
processor  

Disk Storage/Node 
1 x 256 MB Solid State Drive (SSD) 
+ 3 x 2TB HDD 

Network 10 Gigabit Ethernet  

OS 

Rocks (Clustered Linux Distribution 
based on CENTOS)11 
Linux Kernel Version 2.6.37 

JVM 1.6.0_16 

Hadoop 

0.20.2 
Cloudera Distribution version 3 
(CDH3) 

Table 1: Hardware configuration of EDIM1 machine 
Benchmarking of Step 1 (see Figure 6) for different samplings of 
the datasets show that the overall execution time decreases with 
the increase in the number of processing units. It also shows that 
the time required to perform I/O operations remains near constant 
for a given dataset and dominates as the number of cores increase.  
Figure 7 shows the results from both an initial port of MapReduce 
of Step 2 and an optimised version. It was observed that the 
overall run time of MapReduce task was dominated by a single 
reduce task. By reviewing the input dataset it was identified that 
grouping values (station records) using the first two characters of 
the key (12-digit station id) created a severe imbalance in the 
number of records processed by each reduce task (recall that 
MapReduce assigns all values associated with the same key to a 
single reduce task). Further investigations revealed that the 
number of records associated with the station id beginning with 
‘42’ (USA), particularly ‘42572#######’, were very large 
compared to other station ids causing this imbalance. The original 
ported code was then modified to account for this unequal 
                                                                 
8 http://www.epcc.ed.ac.uk/projects/research/dataintensive 
9 http://www.cloudera.com/hadoop/ 
10 http://en.wikipedia.org/wiki/Intel_Atom 
11 http://www.rocksclusters.org/rocks-documentation/4.2/ 

distribution of values showing a much better scaling, though also 
hitting a limit constrained by the dataset size as in Step 1. 

 
Figure 6: Plot of speedup for Step 1 for input dataset 100%, 

75%, 50% and 25% respectively. 

 
Figure 7: Plot of speedup for Step 2 for original and optimised 

code with dataset=100% and optimised code with 
dataset=50%. 

It can be observed that a significant gain in performance can be 
obtained by avoiding the intermediate storage and retrieval. An 
important point to note from this study is the fact the I/O 
operations are performance inhibitors to a scalable system like 
MapReduce and must be minimised as much as possible. Figure 8 
shows the effect of combining Steps 1 and 2. 

 
Figure 8: Performance improvement obtained by combining 

steps 1 and 2. 
The speedup for Step 3 (see Figure 9) shows more interesting 
behaviour, increasing with the number of cores up to 20 cores, 
and then diminishing again. The timings for 50% and 100% of the 
dataset indicate that as with Steps 1 and 2, the MapReduce 
implementation of Step 3 is scalable with the input data size, up to 
a point where startup costs dominate. It can be observed from the 
plots that the choice of ‘key’ has an impact on performance. As 
already mentioned, any of the two coordinates (fractional degrees 
of longitude for eastern or western boundaries) can be used as the 
‘key’. Changing the ‘key’ results in regions being grouped 



differently to be processed by the reduce task, which in turn alters 
the amount of computation performed by each of the reduce tasks.  

Figure 9: Plot of speedup for Step 3 for keys W. Longitude 
and E. Longitude at 100% and 50% dataset respectively. 

 
Figure 10: Runtime distribution of reduce tasks in Step 3 of 

mapreduce-cccgistemp 
There are three reasons attributable to the diminishing speedup 
when using over 20 cores:  
1. The number of unique keys in Step 3 is limited by the 
longitudes dividing the sphere. Thus, scaling beyond the 
maximum number of reduce tasks that can be created causes a 
significant decline in performance due to the presence of idle 
processing units. The start up costs associated with the 
MapReduce programming model can only be amortised when all 
the processing nodes are busy performing nearly the same amount 
of work all the time.  
2. Uneven distribution of workload due to processing of uneven 
number of contributing stations by each reduce task and the 
Hadoop scheduler assuming that the amount of work done by each 
reduce task is roughly the same. Figure 10 indicates the runtime 
distribution of reduce tasks in Step 3, dominated by a single 
reduce task (task 14 in this example). The plot also indicates 
unequal workload distribution across all available reduce tasks. 
3. The current implementation of the Hadoop load balancing 
strategy does not distribute workload based on the granularity of 
‘values’ associated with a ‘key’, creating imbalance in the task 
execution times.  
The dynamic load balancing strategy of MapReduce distributes 
tasks (map or reduce) to nodes as and when they finish processing 
the task at hand. This strategy ensures that the regions, grouped by 
the ‘key’ are processed continuously and concurrently with no 
idle time. However, assumptions made by the scheduler [23] 
sometimes causes unequal work load distribution which is 
particularly prominent in this example as the amount of 
computation required within a region depends on the number of 
contributing stations within that region. Currently, there is no way 
for the scheduler to obtain this piece of information while 

scheduling reduce tasks. Hence, the last set of tasks may finish at 
unequal times depending on the workload, causing an overall 
reduction is performance due to this ‘slow’ task. Thus it can be 
concluded that MapReduce is ideally suited for jobs that are large, 
but can be divided into smaller units of nearly equal size. A single 
large task can slow the overall performance.  
There have been studies [7][13] of the impact of variable task 
runtimes in MapReduce applications. Fine partitioning of the 
reduce tasks such that there are more partitions than the number of 
available reducers (currently, the number of partitions is equal to 
the number of reducers) can distribute chunks of complex reduce 
tasks evenly among the available reducers, significantly 
minimizing the impact of variable task runtimes. However this 
project has shown that but redesigning a complex compute 
intensive algorithm for the MapReduce framework, including the 
choice of keys, requires domain expertise.  

 
Figure 11: Profiling ported ccc-gistemp code (seconds) 

Figure 11 shows the profiling of the ported mapreduce-
cccgistemp, where the MapReduce Steps 1, 2 and 3 are 
parallelised across 16 cores. The CPU bound Steps 1 and 3 have 
found significant improvement in performance by distributing the 
compute-intensive tasks across 16 cores when compared to the 
original ccc-gistemp profiling chart in Figure 2. The improvement 
in performance of Step 2 is not as significant as that of Steps 1 
and 3, for reasons already explained in the benchmarking analysis. 
The final series output of the application can be seen in Figure 12.  

 
Figure 12: Graph comparing the global temperature anomaly 
of original ccc-gistemp code (black) and ported mapreduce-

cccgistemp (red) 



5. CONCLUSIONS AND FURTHER WORK 
5.1 Impacts on Scalability 
Scalable algorithms are highly desirable in both compute-
intensive and data-intensive applications. Scalability along two 
particular dimensions is ideally applicable for data-intensive 
computing [14]. First in terms of data:  given twice the amount of 
data, the same algorithm should take at most twice as long to run. 
Second, in terms of computing resource: given a cluster twice the 
size, the same algorithm should take no more than half as long to 
run. From the work we have done, the Step 1 and Step 3 analyses 
show that the MapReduce programming model is efficient and 
scalable across processing units and data sizes for CPU-intensive 
scientific tasks. Increasing the data and/or computation negates 
the impact of overheads induced by MapReduce programming 
model, thereby improving the overall speedup.  
Hadoop MapReduce uses block scheduling scheme for assigning 
input data to the available nodes for processing, dynamically at 
runtime. This runtime scheduling strategy enables MapReduce to 
offer elasticity and remain fault tolerant by dynamically adjusting 
resources (adding nodes for scalability and removing failed nodes 
for fault tolerance) during job execution. However, it introduces 
runtime overheads that may slow down the execution of 
MapReduce job, and may not be suitable for scientific 
applications where there is an uneven distribution of data and 
processing. Skewed data in compute intensive processing can 
have significant impact on the overall performance. Improved 
load balancing strategies can mitigate the impacts of skew, thus 
enabling MapReduce to provide an ideal programming abstraction 
for processing data and compute intensive scientific applications.   

5.2 Time and Ease of Porting 
In distributed memory architectures, parallelising sequential code 
with MPI would require a significant amount of time to alter the 
existing code structure to use the MPI library. In this work, it was 
observed during the porting exercise that it is not essential to 
comprehend the entire algorithm to be able to port to MapReduce, 
with the framework handling the details of parallelisation, 
distribution of computation, load balancing, task management and 
fault tolerance. However, it is essential to understand the data-
access patterns within the algorithm to be able to modify the 
algorithm to operate on key/value pairs, and lessen the need for 
global synchronisation across all reduce tasks. 
Additionally, it was observed that algorithms designed to operate 
on groups of data are easier to port to MapReduce. These datasets 
can easily be mapped as key/value pairs with values associated 
with the same key processed by algorithms ported to the reduce 
function. In some situations the existing logic may not be directly 
portable to MapReduce but with small changes in the data access 
pattern, data-intensive algorithms can be ported. An example of 
such scenario is discussed in Section 3.3.4.   
Algorithms that introduce a dependency between tasks while 
processing are harder to port to MapReduce. Since the 
MapReduce framework does not provide any direct interface to 
share data between dependent tasks, alternate techniques such as 
synchronisation with a single reduce task and use of external 
key/value store for shared data can be incorporated to overcome 
this limitation.  
Thus it can be concluded from this porting exercise that the time 
and effort required to port the code when compared to the 
scalability obtained is quite low, when compared to other 
parallelisation techniques like MPI. Nevertheless, an 
understanding of the basics of parallel programming techniques 

can greatly help when determining changes required to the data 
access patterns. 

5.3 Further work 
The main area of focus in this project was to evaluate the 
applicability of MapReduce to particular data and compute 
intensive tasks of the ccc-gistemp code.  
At present, whilst results show scaling after porting to 
MapReduce, a further study which utilises larger datasets would 
better test the scalability. At present, the issue is that this project 
used the actual dataset and domain knowledge is required to 
create a larger synthetic dataset. 
Porting of ccc-gistemp to other scalable systems intended for 
data-intensive computing such as Dryad [12], All-Pairs [17] and 
Pregel [16] would provide a comparative study of the various 
programming abstractions that are suitable. Likewise 
implementations of MapReduce which use existing high-
performance shared filesystems are now available (e.g. 
MARIANE [6]) which might improve the performance of the 
ported ccc-gistemp, particularly Step 2. 
A key-value store based MapReduce framework has been 
implemented [18] which might overcome some of the limitations 
imposed by the current implementation of MapReduce. This new 
implementation is particularly aimed at improving the 
performance of HPC applications intended to use the MapReduce 
framework. Further work could determine if this new 
implementation addresses the limitation is associated with the 
sharing of data between map and reduce tasks during execution of 
MapReduce jobs for the ccc-gistemp code.  

6. RELATED WORK 
MapReduce is extensively used within Google for processing 
large volumes of raw data such as crawled documents and web 
request logs [4]. With its widespread adoption via an open source 
implementation called Hadoop [14], primarily for data-intensive 
computing, there have been many evaluations of this 
programming model using large volumes of web and textual data. 
However, there have been few evaluations with scientific data. 
Zhu et al. [24] evaluated the feasibility of porting two applications 
(Water Spatial and Radix Sort) from the Stanford SPLASH-28 
suite to the Hadoop implementation of MapReduce. Performance 
bottlenecks with porting were identified and suggestions provided 
for enhancing the MapReduce framework to suite these 
applications, in particular to reduce the overhead introduced from 
shared data synchronisation. 
The main attributes of the implementation strategy that were 
considered in porting these applications were the data access 
patterns and computational steps. It was identified that most 
scientific applications require shared data and hence 
synchronisation was a major source of overhead. Additionally, the 
probability of scientific applications using matrices and multi- 
dimensional arrays for their processing was much higher than 
simple data-structures. 
Global synchronisation across all reduce tasks in a MapReduce 
job was achieved with a single reduce task. Suggestions to 
provide better support for distributing array and matrices within 
the HDFS to reduce communication overheads were made. Also, 
the advantages of directly dumping the output of first stage to the 
second in a multi-stage job, without the need for intermediate 
HDFS store were highlighted to reduce I/O overheads. 



Ekanayake et al. [5] evaluated the Hadoop implementation of 
MapReduce with High Energy Physics data analysis. The analyses 
were conducted on a collection of data files produced by high-
energy physics experiments, which is both data and compute 
intensive. As an outcome of this porting, it was observed that 
scientific data analysis that has some form of SPMD (Single-
Program Multiple Data) algorithm is more likely to benefit from 
MapReduce when compared to others. However, the use of 
iterative algorithms required by many scientific applications were 
seen as a limitation to the existing MapReduce implementations. 
It was suggested that support for directly accessing data in binary 
format could benefit many scientific applications which would 
otherwise need some form of data transformation, reducing 
performance. 
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