
Evaluating the suitability of MapReduce for surface
temperature analysis codes

Vinay Sudhakaran
EPCC, University of Edinburgh

JCMB, Mayfield Road
Edinburgh, EH16 5AH, U.K.

vinaysudhakaran@gmail.com

Neil Chue Hong
EPCC, University of Edinburgh

JCMB, Mayfield Road
Edinburgh, EH16 5AH, U.K.

+44 131 650 5957

N.ChueHong@epcc.ed.ac.uk

ABSTRACT
Processing large volumes of scientific data requires an efficient
and scalable parallel computing framework to obtain meaningful
information quickly. In this paper, we evaluate a scientific
application from the environmental sciences for its suitability to
use the MapReduce framework. We consider cccgistemp – a
Python reimplementation of the original NASA GISS model for
estimating global temperature change – which takes land and
ocean temperature records from different sites, removes duplicate
records, and adjusts for urbanisation effects before calculating the
12 month running mean global temperature. The application
consists of several stages, each displaying differing
characteristics, and three stages have been ported to use Hadoop
with the mrjob library. We note performance bottlenecks
encountered while porting and suggest possible solutions,
including modification of data access patterns to overcome
uneven distribution of input data.

Keywords
Data-intensive, MapReduce, Hadoop, environmental sciences.

1. INTRODUCTION
Advancing the state-of-the-art research in computational science
requires analysis of large volumes of data collected from
numerous scientific instruments and experiments conducted
around the globe. Petabyte data sets are already becoming
increasingly common in many High End Computing (HEC)
applications from a diverse range of scientific disciplines [15],
and this is only expected to grow in the near future. This
necessitates the need for providing abstraction at multiple levels
for acquiring, managing and processing of data [11], thus enabling
the scientific community to focus on science rather than
disentangling the complexities involved in setting up and
maintaining the cyber-infrastructure required to facilitate data
intensive computing.
The main focus of the work described in this paper is to evaluate
if MapReduce [4], specifically the Hadoop [1] implementation of
MapReduce, can provide the necessary high level programming
abstraction that is required for parallelising data and compute
intensive tasks of a scientific application.

2. GLOBAL TEMPERATURE ANALYSIS
Analyses of surface air temperature and ocean surface temperature
changes are carried out by several groups, including the Goddard
institute of space studies (GISS) [8] and the National Climatic
Data Center [19] based on the data available from a large number

of land based weather stations and ship data, which forms an
instrumental source of measurement of global climate change.
Uncertainties in the collected data from both land and ocean, with
respect to their quality and uniformity, force analysis of both the
land based station data and the combined data to estimate the
global temperature change.
Estimating long term global temperature change has significant
advantages over restricting the temperature analysis to regions
with dense station coverage, providing a much better ability to
identify phenomenon that influence the global climate change,
such as increasing atmospheric CO2 [10]. This has been the
primary goal of GISS analysis, and an area with potential to made
more efficient through use of MapReduce to improve throughput.

2.1 Data Sources
The current GISS analysis obtains the monthly mean station
temperatures from the Global Historical Climatology Network
(GHCN), available for download from the NCDC website1.
GHCN maintains data from about 7000 stations out of which only
those stations that have a period of overlap with neighbouring
stations (within 1200 km) of at least 20 years are considered [9].
Effectively, only 6300 stations are available for GISS analysis
after this reduction. No data adjustments are done on the original
GHCN data for clarity. The GHCN land-based temperature
records are supplemented by monthly data for the Antarctic region
from the SCAR Reference Antarctic Data for Environmental
Research project2.
The ocean surface temperature measurement is an integration of
the data from Met Office Hadley Centre analysis of sea surface
temperatures (HadISST1) for the period 1880-1981, which was
ship based during that interval, and satellite measurements of sea
surface temperature for 1982 to the present (Optimum
Interpolation Sea Surface Temperature version 2 (OISST.v2). The
satellite measurements are calibrated with the help of ship and
buoy data [20].

2.2 Urbanisation Correction
Urbanisation, which includes human-made structures and energy
sources, can significantly impact the accuracy of temperature
measured by stations located in or near urban areas. This has been
a major concern in the analysis of global temperature change. The
homogeneity adjustment procedure [8] changes the long-term
temperature trend of an urban station to make it agree with the

1 http://www.ncdc.noaa.gov/oa/ncdc.html
2 http://www.antarctica.ac.uk/met/READER/

mean trend of nearby rural stations. The current analysis uses
satellite observed nightlights [9] to identify land based weather
stations in extreme darkness and perform urban adjustments for
non-climatic factors, such that urban effects on the analysed
global temperature change are small.

2.3 GISTEMP and ccc-gistemp
The GISS Surface Temperature Analysis (GISTEMP)3 is an open-
source model from the environmental sciences for estimating the
global temperature change, implemented by the NASA Goddard
Institute of Space Studies (GISS). GISTEMP is written in
FORTRAN and processes the current GHCN, USHCN and SCAR
files in two stages. In the first stage, redundant multiple records
are combined, and in the second stage the urban adjustments are
performed so that their long-term trend matches that of the mean
of neighbouring rural stations. Urban stations without a sufficient
number of rural stations in their vicinity are removed from further
analysis.
ccc-gistemp is a part of the Clear Climate Code (CCC) project4
from Climate Code Foundation5 to re-implement the original
GISTEMP algorithm in Python for clarity and maintainability.
The combination of FORTRAN code and shell scripts in the
original GISS software, for both core GISS algorithms and
supporting libraries, makes it hard to perceive the code flow and
the underlying algorithm. By isolating the core GISS algorithms
from the supporting functions (algorithms for reading input and
writing output) and providing a single interface specifying
parameters and initiating the analysis, ccc-gistemp seeks to
improve the readability and maintainability of the software.
In particular, the temperature “Series” anomaly, which is the
primary data object in most GISS algorithms, has differing
representations in different parts of the code making it hard for
new users to comprehend the code. This has been modified in ccc-
gistemp to have a single representation throughout the code.
Although there have been a significant modifications to the
structure of the original code, the ccc-gistemp developers have
ensured that the ported algorithms are identical in function to the
original by providing tests which compare the output at every
stage with the expected results. For this reason, we have chosen to
use the ccc-gistemp code rather than the original GISTEMP codes
for this study.

3. PORTING ccc-gistemp
3.1 MapReduce
MapReduce is a programming model introduced by Google Inc. to
support distributed computing on large datasets [4]. The
application is implemented as a sequence of MapReduce
operations, each consisting of a Map phase and a Reduce phase.
In its basic form, the user specifies a ‘map’ function that processes
a key/value pair to generate a set of intermediate key/value pairs,
and a ‘reduce’ function that merges all intermediate values
associated with the same intermediate key. It provides a master-
worker mechanism to improve fault-tolerance that enables tasks
on failed nodes to be rescheduled, and attempts dynamic load
balancing and task reassignment based on the performance of the
nodes.

3 http://www.giss.nasa.gov/
4 http://code.google.com/p/ccc-gistemp/
5 http://www.climatecode.org/

Data locality – collocation of data and the node that performs
computation – is a characteristic feature of MapReduce that
facilitates data-intensive computing. The MapReduce master
acquires information of the location of the input file from the
distributed file-system and attempts to assign processing on the
machine that actually contains the data. If this results in a failure,
then the master reassigns the processing on a machine that is as
close as possible to the input data. This has the effect of moving
code to the data, improving the overall network utilisation by
avoiding unnecessary data transfers. Experiments [3][22] indicate
that data locality is a determining factor for MapReduce
performance particularly in heterogeneous environments, a factor
which is further influenced by the irregular data access patterns
often found in scientific applications.

3.2 Hadoop and mrjob
Hadoop [1] is the Apache Software Foundation open-source
implementation of the MapReduce framework in Java. It provides
tools for processing data using the MapReduce framework and
implements a distributed file system called Hadoop Distributed
File System (HDFS). Although the Hadoop framework is
implemented in Java, it is not required that MapReduce functions
be written in Java. Hadoop streaming is a utility that allows
programmers to create and run MapReduce jobs with executables
(map and/or reduce function) written in any programming
language that can read standard input and write to standard output.
It uses UNIX standard streams as an interface between Hadoop
framework in Java and the user program.
The fundamental idea of having a distributed file system is to
divide user data (usually of the order of few gigabytes to a few
terabytes) into blocks and replicate those blocks across the local
disks of nodes in the cluster [14] such that it is easier to assign
MapReduce job locally. HDFS is designed based on this principle.
Additionally, data-intensive computing using MapReduce is
dominated by long streaming reads and large sequential writes. As
a result, the time to read the whole dataset is more important than
the latency in reading the first record [21].
mrjob6 is a Python package that aids in the development and
execution of Hadoop streaming jobs. Features that are useful
when porting scientific applications include the ability to write
multi-step jobs (one map-reduce step feeds into the next), custom
switches which can be added to the map-reduce jobs, including
file options, and the ability to quickly switch between running
locally, on a Hadoop cluster or on Amazon’s Elastic MapReduce.
mrjob provides a simple abstraction for writing MapReduce jobs
in Python by defining steps for specifying ‘mapper’ and ‘reducer’
functions, input and output file format (protocol) and paths.
Additionally, it provides APIs for setting necessary parameters in
the Hadoop MapReduce JobConf configuration file.
To facilitate transfer of complex data structures, Python provides
a powerful interface called the Pickle module7. It is primarily used
for serialising and de-serialising python object structures. Pickling
results in data objects being converted into byte stream so that
they can be transferred easily through a data pipe such as a
network. Un-pickling results in the reverse operation where a byte
stream is converted back into a data object. mrjob implements the
more efficient cPickle module (written in C) to provide the
communication protocol. The key/value pairs are represented as
two string-escaped pickles separated by a tab.

6 http://pypi.python.org/pypi/mrjob/0.2.6
7 http://docs.python.org/library/pickle.html

Figure 1: Flow diagram of the original ccc-gistemp code before modification

3.3 Analysing ccc-gistemp
The ccc-gistemp code can be considered to have one pre-
processing stage (Step 0) followed by five processing stages
(Steps 1-5), all coordinated by run.py (see Figure 1). The code
was analysed to understand its execution pattern, whilst also
identify areas in the code that could be suitable for porting to
MapReduce. Profiling the code (see Figure 2) shows that the
runtime is dominated by Step 3, where the input station records
are converted into gridded anomaly data-sets represented as a box
obtained by dividing the global surface (sphere) into 80 boxes of
equal area. An improvement in performance could be obtained by
parallelising Step 1 as well.
Each of these steps takes a data object as its input and produces a
data object as its output. Ordinarily the data objects are iterators,
either produced from the previous step or an iterator that feeds
from an input file. An instance of “Series”, the monthly
temperature series for every year starting from the base year (set

to 1880 by default, but can be changed to any value), uniquely
identified by a 12-digit id is created for every stations data.
Multiple series can exist for a single station and hence a 12-digit
id is chosen to uniquely identify the records, comprising of 11-
digit station id and 1 digit series identifier. This unique id is used
as the ‘key’ in Step 1 and Step 2 map/reduce functions. Step 3
however has a different key/value combination. Figure 3 is a
diagrammatic representation of an instance of “Series” – the
primary data object used in all the aforementioned steps for
computation.

3.3.1 Step 0
Step 0 reads the input data sources into a dictionary which
primarily consists of station data, land and sea surface
temperatures from GHCN and USHCN, Antarctic temperature
readings from SCAR and the Hohenpeissenberg data. In the first
part of this step, the Hohenpeissenberg data in the GHCN is
replaced with the correct values from the actual Hohenpeissenberg

data. In the second part, the USHCN records are adjusted for the
difference in monthly means between them and the corresponding
record in GHCN. Once adjusted, the corresponding record in
GHCN is removed. Finally, the adjusted records in USHCN,
remaining records in GHCN and the original SCAR records are
joined together and sorted to generate the final output of Step 0.
Whilst Step 0 appears to be be ideal for parallelisation, it may not
fit well into the MapReduce programming model. A global
synchronisation across all reducer nodes will be required to
combine copies of either GHCN or USHCN records (depending
on the logic). Global synchronisation with a compare-merge
operation could be very expensive and does not fit into the
MapReduce programming model. The MapReduce programming
model is designed to perform operations on input data stream
mapped as key/value pairs. Having to simultaneously operate on
two independent input sources does not fit well into this model. A
workaround for this problem would be to load the contents of
GHCN file into an external key/value store and have each reduce
task concurrently access GHCN records from the store. Records
that are adjusted can be removed from the store. This approach is
examined in more detail in Section 3.3.3.
In addition, joining of independent data sources (USHCN, GHCN
and SCAR) cannot be performed within the mrjob framework.
mrjob API does not offer support for operations outside the
MapReduce programming paradigm. Workarounds and code
hacks significantly deteriorate performance and hence does not
form part of a good design. Bearing these design nuances in mind,
step0 was not ported to MapReduce framework.

Figure 2: Profiling original ccc-gistemp code (time to complete

each step in pipeline in seconds)

Figure 3: An instance of "Series" - The primary data
structure containing Station id, Year and the monthly

temperature series for all years

3.3.2 Step 1
In this step records from the same station (11 digit station id) are
combined in a two stage process. In the first stage records are
combined by offsetting based on the average difference over their
common period, then averaged. In the second stage, the records
are further combined by comparing the annual temperature

anomalies of years in which they do overlap, and finding the ones
for which the temperatures are on average closer together than the
standard deviation of the combined records. Finally, depending on
parameters in the configuration files, a few station records are
modified by adding a ‘delta’ to every datum for that station and a
few station records are dropped from further analysis.
As the existing algorithms are written to process stations records
in groups, these can be ported to MapReduce framework directly
without much code changes. The input records are mapped as
key/value pairs with ‘key’ being the 12 digit station id and ‘value’
being the “Series” temperature anomaly for each year. An
intermediate reduce stage is used to construct the “Series” object
from the input key/value pairs. This intermediate reduce stage
yields the 11-digit station Id and the “Series” object, naturally
resulting in data-grouping as required by the combining steps
described above. The algorithms for combining records are then
ported directly to the second stage reduce function.

3.3.3 Step 2
Step 2 performs a cleaning of input station records by dropping
records that do not have at least one month in a year with
minimum number of data values prior to performing urban
adjustments as mentioned in Section 2.2. The cleanup stage is
data-intensive whilst the urban adjustment is mostly compute-
intensive.
The data-cleanup step is ideally suited for the MapReduce
programming paradigm where the input station records are
grouped by their 12 digit station id and processed independently
by the available reducers. However, the step following the
cleanup operation would require all records processed by the
individual reduce tasks to be combined, so as to generate ‘rural’
and ‘urban’ classification of records. If there is no global
synchronisation at this point then every reduce task will have their
own copy of ‘urban’ and ‘rural’ classification for the records that
were initially assigned to it. This causes issues when performing
the urban adjustment.
From Figure 4 it is evident that each urban station will need
access to complete rural station records in order to identify rural
stations in its vicinity. This dependency between the records
contained in each of the reduce tasks is not ideal for the
MapReduce framework. Additionally, the use of single reduce
task to achieve synchronisation can have severe impacts on
performance and scalability. With Step 2 being both data and
compute intensive, having a global synchronisation (sequential
execution in the MapReduce programming model) must be
avoided. One option is to split the set of tasks performed in Step 2
into two separate stages.
The first stage takes the input file and generates key/value pairs,
with the 12-digit station id as the key and value being “Series”
temperature anomaly for each year. The initial cleanup operation
is also performed in this stage. The output of the first stage is a
stream of “Series” instances generated from the cleaned up
records (urban and rural combined).
The second stage map tasks generate the ‘rural’ and ‘urban’
classification of records for the input key/value pairs. These
records, generated independently across all map tasks, are stored
temporarily in an external key/value store. The use of this external
store is necessitated by the fact that the MapReduce model does
not provide any natural interface to store shared variables that are
required for such an implementation. Additionally, it is useful to
use a key/value store as the ‘urban’ records are directly referred to
by their ‘key’ in the algorithm for adjusting urban stations.

Figure 4: Flowchart for urbanisation corrections

Several key/value stores (HBase, PostgreSQL, Voldemort and
Redis) were evaluated for use in this project however for reasons
of space we omit the full analysis. Redis was chosen primarily
because of its Python client and good documentation.
Changes to the data access pattern in the existing ccc-gistemp
code were done to accommodate the use of key/value store. The
original ccc-gistemp code used the “Series” object of urban
stations as the key and its annotated object as the value to
represent urban stations internally in a dictionary. This was
inappropriate to be used with the key/value store. Pickling and un-
picking the “Series” object to be used as ‘key’ in the external store
is very expensive and inefficient in terms of memory
consumption. Instead, the code was changed to have the 12-digit
station id of urban stations as the ‘key’ and their annotated object
as the ‘value’. All the annotated objects of stations classified as
‘rural’ were appended to a single list on the key/value store.
Key/value stores can thus be used to share data across available
reduce tasks without the need for global synchronisation with a
single reduce task. However, in situations where the algorithm
forces global aggregation [24], global synchronisation is
inevitable with the current implementation of MapReduce.

3.3.4 Step 3
In Step 3, the input station records are converted into gridded
anomaly data-sets represented as a box obtained by dividing the
global surface (sphere) into 80 boxes of equal. These boxes are
described by a 4-tuple of its boundaries (fractional degrees of
latitude for northern and southern boundaries and longitude for
western and eastern boundaries). Each of these 80 boxes is further
sub-divided into 100 subboxes described by the same 4-tuple
latitude/longitude representation. The input station records are

assigned to the box/subbox in which they belong. The station
records that belong to a grid cell are called contributors. The
number of contributing records varies significantly from one
region to the other. A subbox series (similar to station record
“Series”) consisting of monthly temperature anomaly is created
for all records and returned.
An initial approach for porting to MapReduce would be to map
the input station records as key/value pairs, as done previously in
Steps 1 and 2. However, this type of mapping has severe
drawbacks. The original code is written to parse the input station
records and assign then to the correct box and then subbox. If the
input records are split across available reducers, each of them
would process their own subset of the original records and assign
them to grids created within each reducer. At the end of this step
every reducer will have its own copy of the gridded anomaly data-
set. There are two issues with this approach. Firstly, each of the
subbox “Series” objects are created with only the partial data
available within each reduce function and secondly, there is no
way of combining these independent subbox “Series” objects for
the same station as the objects are already fully constructed within
each reducer. Writing methods to mutate the read-only objects of
“Series” would be a serious design flaw.
The more suitable approach would be to split the regions (boxes)
across available reducers and have each reduce function
independently read the input station records and assign records
that belong to its region (box). However, this can be viewed more
as a parallelisation strategy for compute-intensive step rather than
data-intensive computing using MapReduce. The ‘key’ is selected
from one of the 4-tuples (latitude/longitude representation) and
the ‘value’ is a tuple consisting of the region (box) and the
subboxes within that region. Each of available reducers will
compute the contributors for the region that was assigned to them,
identified by the 4-tuples representation and yield the gridded
anomaly dataset.
It should be noted that using this approach, no input was directly
specified to the MapReduce job. Instead, the regions were read
from within the map function and converted into key/value pairs
consisting of one of the 4-tuples (latitude/longitude
representation) as the ‘key’ and a tuple of region (box) and
subboxes within that region as ‘value’. All regions associated with
a ‘key’ will be processed by the same reducer yielding the gridded
anomaly data-sets.
Additionally, it is observed that grouping by longitude will result
in many more unique ‘keys’ than by latitude, which has just 8
unique numbers. As we already know that MapReduce assigns all
‘values’ associated with the same ‘key’ to a single reduce task,
using latitude as the key will result in a maximum of 8 reduce
tasks, severely impacting the scalability of the implementation.
Hence we choose the ‘key’ to be one of either eastern or western
longitude. The results of benchmarking with both the
combinations of keys are presented in Section 4.

3.3.5 Step 4
Step 4 converts the recent sea-surface temperature records into the
sea-surface temperature anomaly boxed dataset. The initial steps
are I/O intensive but the overall execution time is extremely small
compared to the other stages (see Figure 2). The Hadoop
implementation of MapReduce incurs considerable start-up costs
that are usually amortised when processing large amounts of data
in parallel across available nodes. However, if the dataset is small,
these initial start-up costs dominate even when executed on large
number of nodes. As this step is neither data-intensive nor
compute-intensive, it was not ported to MapReduce.

3.3.6 Step 5
The output files from Step 3 (land data) and Step 4 (ocean data)
forms the input to Step 5. Step 5 then assigns weights to the
records – a process known as masking – and then combines the
land and ocean series in each of the subboxes and combines the
subboxes into boxes. The box data for each of the 80 boxes is
processed to produce temperature averages over 14 latitudinal
zones including northern hemisphere, southern hemisphere and
global.
By altering the sequence of operations slightly, and taking care to
ensure storage of intermediate results, several stages in Step 5 can
be grouped together for the MapReduce framework leaving the
I/O stages to be performed at the end. Splitting the input land and
ocean records across the available reduce tasks has drawbacks as
already mentioned in Step 3 analysis (see 3.3.4) for the
MapReduce programming model. Instead, the regions (boxes)
could be split across available reducers with each reduce function
independently read the land and ocean records and assign records
that belong to its region (box). Additionally, with this approach
each reducer will have the Subbox metadata that is required for
processing all gridded anomaly dataset.

It must be noted that the input dataset will always be a tuple of
land and ocean records consisting of 8000 lines each irrespective
of the number of stations considered initially in the Step 0 input.
Hence, Step 5 output is not scalable in terms of the input dataset.
The only gain in performance obtained is by parallelising the
operations across available reduce tasks. This parallelisation can
however be achieved in a manner similar to that of Step 3. Since
the primary goal of this work was to investigate the different
approaches to using MapReduce on scientific application codes,
rather than a complete parallelisation and optimisation of ccc-
gistemp, Step 5 was not ported but left in its original state.

3.4 MapReduce-ccc-gistemp
The complete modified code is available from:
http://code.google.com/p/mapreduce-cccgistemp/downloads/list
Figure 5 shows the revised flow through the different steps of the
application.

Figure 5: Flow diagram of the original ccc-gistemp code before modification

4. RESULTS AND ANALYSIS
4.1 Benchmarking
Benchmarking of the modified ccc-gistemp code was performed
on EDIM18, a cluster of commodity machines jointly funded by
the Edinburgh Parallel Computing Center (EPCC) and the
University of Edinburgh School of Informatics, primarily intended
for Data-intensive research. The cluster is build from relatively
inexpensive hardware with a dual core Intel ATOM processor on
each node, which is comparatively slower to the current day high
end processors. However, this machine has several fast disks
connected directly to each of the 120 available nodes (distributed
equally across three racks), ideally suited for data-intensive
computing and research owing to its low latency and high I/O
bandwidth. The Hadoop cluster setup on EDIM1 machine is based
on the Cloudera distribution (CDH3) of Hadoop9. Table 1
provides details of the hardware and its configuration on the
EDIM1 machine. Performance evaluations have been done on a
dedicated subset of this machine configured as a 16 node cluster
(one master node, one job tracker and fourteen slave nodes i.e. 28
cores), averaging over consecutive executions (observed variation
between consecutive runs was always less than +/-1%).

Category Configuration
Number of Nodes 120 (3 racks of 40 nodes each)

Processors/Node
Dual-Core Intel 1.6 GHz ATOM10
processor

Disk Storage/Node
1 x 256 MB Solid State Drive (SSD)
+ 3 x 2TB HDD

Network 10 Gigabit Ethernet

OS

Rocks (Clustered Linux Distribution
based on CENTOS)11
Linux Kernel Version 2.6.37

JVM 1.6.0_16

Hadoop

0.20.2
Cloudera Distribution version 3
(CDH3)

Table 1: Hardware configuration of EDIM1 machine
Benchmarking of Step 1 (see Figure 6) for different samplings of
the datasets show that the overall execution time decreases with
the increase in the number of processing units. It also shows that
the time required to perform I/O operations remains near constant
for a given dataset and dominates as the number of cores increase.
Figure 7 shows the results from both an initial port of MapReduce
of Step 2 and an optimised version. It was observed that the
overall run time of MapReduce task was dominated by a single
reduce task. By reviewing the input dataset it was identified that
grouping values (station records) using the first two characters of
the key (12-digit station id) created a severe imbalance in the
number of records processed by each reduce task (recall that
MapReduce assigns all values associated with the same key to a
single reduce task). Further investigations revealed that the
number of records associated with the station id beginning with
‘42’ (USA), particularly ‘42572#######’, were very large
compared to other station ids causing this imbalance. The original
ported code was then modified to account for this unequal

8 http://www.epcc.ed.ac.uk/projects/research/dataintensive
9 http://www.cloudera.com/hadoop/
10 http://en.wikipedia.org/wiki/Intel_Atom
11 http://www.rocksclusters.org/rocks-documentation/4.2/

distribution of values showing a much better scaling, though also
hitting a limit constrained by the dataset size as in Step 1.

Figure 6: Plot of speedup for Step 1 for input dataset 100%,

75%, 50% and 25% respectively.

Figure 7: Plot of speedup for Step 2 for original and optimised

code with dataset=100% and optimised code with
dataset=50%.

It can be observed that a significant gain in performance can be
obtained by avoiding the intermediate storage and retrieval. An
important point to note from this study is the fact the I/O
operations are performance inhibitors to a scalable system like
MapReduce and must be minimised as much as possible. Figure 8
shows the effect of combining Steps 1 and 2.

Figure 8: Performance improvement obtained by combining

steps 1 and 2.
The speedup for Step 3 (see Figure 9) shows more interesting
behaviour, increasing with the number of cores up to 20 cores,
and then diminishing again. The timings for 50% and 100% of the
dataset indicate that as with Steps 1 and 2, the MapReduce
implementation of Step 3 is scalable with the input data size, up to
a point where startup costs dominate. It can be observed from the
plots that the choice of ‘key’ has an impact on performance. As
already mentioned, any of the two coordinates (fractional degrees
of longitude for eastern or western boundaries) can be used as the
‘key’. Changing the ‘key’ results in regions being grouped

differently to be processed by the reduce task, which in turn alters
the amount of computation performed by each of the reduce tasks.

Figure 9: Plot of speedup for Step 3 for keys W. Longitude
and E. Longitude at 100% and 50% dataset respectively.

Figure 10: Runtime distribution of reduce tasks in Step 3 of

mapreduce-cccgistemp
There are three reasons attributable to the diminishing speedup
when using over 20 cores:
1. The number of unique keys in Step 3 is limited by the
longitudes dividing the sphere. Thus, scaling beyond the
maximum number of reduce tasks that can be created causes a
significant decline in performance due to the presence of idle
processing units. The start up costs associated with the
MapReduce programming model can only be amortised when all
the processing nodes are busy performing nearly the same amount
of work all the time.
2. Uneven distribution of workload due to processing of uneven
number of contributing stations by each reduce task and the
Hadoop scheduler assuming that the amount of work done by each
reduce task is roughly the same. Figure 10 indicates the runtime
distribution of reduce tasks in Step 3, dominated by a single
reduce task (task 14 in this example). The plot also indicates
unequal workload distribution across all available reduce tasks.
3. The current implementation of the Hadoop load balancing
strategy does not distribute workload based on the granularity of
‘values’ associated with a ‘key’, creating imbalance in the task
execution times.
The dynamic load balancing strategy of MapReduce distributes
tasks (map or reduce) to nodes as and when they finish processing
the task at hand. This strategy ensures that the regions, grouped by
the ‘key’ are processed continuously and concurrently with no
idle time. However, assumptions made by the scheduler [23]
sometimes causes unequal work load distribution which is
particularly prominent in this example as the amount of
computation required within a region depends on the number of
contributing stations within that region. Currently, there is no way
for the scheduler to obtain this piece of information while

scheduling reduce tasks. Hence, the last set of tasks may finish at
unequal times depending on the workload, causing an overall
reduction is performance due to this ‘slow’ task. Thus it can be
concluded that MapReduce is ideally suited for jobs that are large,
but can be divided into smaller units of nearly equal size. A single
large task can slow the overall performance.
There have been studies [7][13] of the impact of variable task
runtimes in MapReduce applications. Fine partitioning of the
reduce tasks such that there are more partitions than the number of
available reducers (currently, the number of partitions is equal to
the number of reducers) can distribute chunks of complex reduce
tasks evenly among the available reducers, significantly
minimizing the impact of variable task runtimes. However this
project has shown that but redesigning a complex compute
intensive algorithm for the MapReduce framework, including the
choice of keys, requires domain expertise.

Figure 11: Profiling ported ccc-gistemp code (seconds)

Figure 11 shows the profiling of the ported mapreduce-
cccgistemp, where the MapReduce Steps 1, 2 and 3 are
parallelised across 16 cores. The CPU bound Steps 1 and 3 have
found significant improvement in performance by distributing the
compute-intensive tasks across 16 cores when compared to the
original ccc-gistemp profiling chart in Figure 2. The improvement
in performance of Step 2 is not as significant as that of Steps 1
and 3, for reasons already explained in the benchmarking analysis.
The final series output of the application can be seen in Figure 12.

Figure 12: Graph comparing the global temperature anomaly
of original ccc-gistemp code (black) and ported mapreduce-

cccgistemp (red)

5. CONCLUSIONS AND FURTHER WORK
5.1 Impacts on Scalability
Scalable algorithms are highly desirable in both compute-
intensive and data-intensive applications. Scalability along two
particular dimensions is ideally applicable for data-intensive
computing [14]. First in terms of data: given twice the amount of
data, the same algorithm should take at most twice as long to run.
Second, in terms of computing resource: given a cluster twice the
size, the same algorithm should take no more than half as long to
run. From the work we have done, the Step 1 and Step 3 analyses
show that the MapReduce programming model is efficient and
scalable across processing units and data sizes for CPU-intensive
scientific tasks. Increasing the data and/or computation negates
the impact of overheads induced by MapReduce programming
model, thereby improving the overall speedup.
Hadoop MapReduce uses block scheduling scheme for assigning
input data to the available nodes for processing, dynamically at
runtime. This runtime scheduling strategy enables MapReduce to
offer elasticity and remain fault tolerant by dynamically adjusting
resources (adding nodes for scalability and removing failed nodes
for fault tolerance) during job execution. However, it introduces
runtime overheads that may slow down the execution of
MapReduce job, and may not be suitable for scientific
applications where there is an uneven distribution of data and
processing. Skewed data in compute intensive processing can
have significant impact on the overall performance. Improved
load balancing strategies can mitigate the impacts of skew, thus
enabling MapReduce to provide an ideal programming abstraction
for processing data and compute intensive scientific applications.

5.2 Time and Ease of Porting
In distributed memory architectures, parallelising sequential code
with MPI would require a significant amount of time to alter the
existing code structure to use the MPI library. In this work, it was
observed during the porting exercise that it is not essential to
comprehend the entire algorithm to be able to port to MapReduce,
with the framework handling the details of parallelisation,
distribution of computation, load balancing, task management and
fault tolerance. However, it is essential to understand the data-
access patterns within the algorithm to be able to modify the
algorithm to operate on key/value pairs, and lessen the need for
global synchronisation across all reduce tasks.
Additionally, it was observed that algorithms designed to operate
on groups of data are easier to port to MapReduce. These datasets
can easily be mapped as key/value pairs with values associated
with the same key processed by algorithms ported to the reduce
function. In some situations the existing logic may not be directly
portable to MapReduce but with small changes in the data access
pattern, data-intensive algorithms can be ported. An example of
such scenario is discussed in Section 3.3.4.
Algorithms that introduce a dependency between tasks while
processing are harder to port to MapReduce. Since the
MapReduce framework does not provide any direct interface to
share data between dependent tasks, alternate techniques such as
synchronisation with a single reduce task and use of external
key/value store for shared data can be incorporated to overcome
this limitation.
Thus it can be concluded from this porting exercise that the time
and effort required to port the code when compared to the
scalability obtained is quite low, when compared to other
parallelisation techniques like MPI. Nevertheless, an
understanding of the basics of parallel programming techniques

can greatly help when determining changes required to the data
access patterns.

5.3 Further work
The main area of focus in this project was to evaluate the
applicability of MapReduce to particular data and compute
intensive tasks of the ccc-gistemp code.
At present, whilst results show scaling after porting to
MapReduce, a further study which utilises larger datasets would
better test the scalability. At present, the issue is that this project
used the actual dataset and domain knowledge is required to
create a larger synthetic dataset.
Porting of ccc-gistemp to other scalable systems intended for
data-intensive computing such as Dryad [12], All-Pairs [17] and
Pregel [16] would provide a comparative study of the various
programming abstractions that are suitable. Likewise
implementations of MapReduce which use existing high-
performance shared filesystems are now available (e.g.
MARIANE [6]) which might improve the performance of the
ported ccc-gistemp, particularly Step 2.
A key-value store based MapReduce framework has been
implemented [18] which might overcome some of the limitations
imposed by the current implementation of MapReduce. This new
implementation is particularly aimed at improving the
performance of HPC applications intended to use the MapReduce
framework. Further work could determine if this new
implementation addresses the limitation is associated with the
sharing of data between map and reduce tasks during execution of
MapReduce jobs for the ccc-gistemp code.

6. RELATED WORK
MapReduce is extensively used within Google for processing
large volumes of raw data such as crawled documents and web
request logs [4]. With its widespread adoption via an open source
implementation called Hadoop [14], primarily for data-intensive
computing, there have been many evaluations of this
programming model using large volumes of web and textual data.
However, there have been few evaluations with scientific data.
Zhu et al. [24] evaluated the feasibility of porting two applications
(Water Spatial and Radix Sort) from the Stanford SPLASH-28
suite to the Hadoop implementation of MapReduce. Performance
bottlenecks with porting were identified and suggestions provided
for enhancing the MapReduce framework to suite these
applications, in particular to reduce the overhead introduced from
shared data synchronisation.
The main attributes of the implementation strategy that were
considered in porting these applications were the data access
patterns and computational steps. It was identified that most
scientific applications require shared data and hence
synchronisation was a major source of overhead. Additionally, the
probability of scientific applications using matrices and multi-
dimensional arrays for their processing was much higher than
simple data-structures.
Global synchronisation across all reduce tasks in a MapReduce
job was achieved with a single reduce task. Suggestions to
provide better support for distributing array and matrices within
the HDFS to reduce communication overheads were made. Also,
the advantages of directly dumping the output of first stage to the
second in a multi-stage job, without the need for intermediate
HDFS store were highlighted to reduce I/O overheads.

Ekanayake et al. [5] evaluated the Hadoop implementation of
MapReduce with High Energy Physics data analysis. The analyses
were conducted on a collection of data files produced by high-
energy physics experiments, which is both data and compute
intensive. As an outcome of this porting, it was observed that
scientific data analysis that has some form of SPMD (Single-
Program Multiple Data) algorithm is more likely to benefit from
MapReduce when compared to others. However, the use of
iterative algorithms required by many scientific applications were
seen as a limitation to the existing MapReduce implementations.
It was suggested that support for directly accessing data in binary
format could benefit many scientific applications which would
otherwise need some form of data transformation, reducing
performance.

7. ACKNOWLEDGMENTS
Our thanks to EPCC and the School of Physics MSc in High
Performance Computing programme which supported this work.
We also thank Paolo Besana, Adam Carter and Gareth Francis for
their assistance with the use of the EDIM1 machine; Derek Wang,
Adam Barker and Alex Voss for their assistance with the use of
the St. Andrews STACC cloud used for initial development; and
the mrjob and ccc-gistemp communities for their advice and
support throughout the project.

8. REFERENCES
[1] Apache Hadoop framework. 2008. http://hadoop.apache.org/

(accessed June 27, 2011).
[2] Barroso, Luiz André, and Urs Hölzle. The Datacenteras a

Computer: An Introduction to the Design of Warehouse-
Scale Machines. Morgan and Claypool Publishers, 2009.

[3] Butt, Ali R., Prashant Pandey, Karan Gupta, and Gunaying
Wang. “A Simulation Approach to Evaluating Design
Decisions in MapReduce Steps.” IEEE International
Symposium on Modeling Analysis Simulation of Computer
and Telecommunication Systems. 2009: IEEE, 2009. 1-11.

[4] Dean, Jeffrey, and Sanjay Ghemawat. “Mapreduce:
Simplified Data Processing on Large Clusters.” OSDI'04.
2004. 137-150.

[5] Ekanayake, Jaliya, Shrideep Pallickara, and Geoffrey Fox.
“MapReduce for Data Intensive Scientific Analyses.” IEEE
Fourth International Conference on eScience. IEEE, 2008.
277- 284.

[6] Fadika, Zacharia, Elif Dede, Madhusudhan Govindaraju and
Lavanya Ramakrishnan. “MARIANE: MApReduce
Implementation Adapted for HPC Environments.” 12th
IEEE/ACM International Conference on Grid Computing.
2011.

[7] Gufler, Benjamin, Nikolaus Augsten, Angelika Reiser, and
Alfons Kemper. “Handling Data Skew in MapReduce.”
CLOSER 2011 - International Conference on Cloud
Computing and Services Science. 2011.

[8] Hansen, J., R. Ruedy, J. Glascoe, and M. Sato. “GISS
analysis of surface temperature change.” J. Geophys.
Res.,104, 1999: 30,997-31,022.

[9] Hansen, J., R. Ruedy, M. Sato, and K. Lo. “Global Surface
Temperature Change.” J. Geophys. Res, 48, 2010: 1-29.

[10] Hansen, James, and Sergej Lebedeff. “Global Trends of
Measured Surface Air Temperature.” J. Geophys. Res., 92,
1987: 13,345-13,372.

[11] Hey, Tony, Stewart Tansley, and Kristin Tolle. The Fourth
Paradigm: Data-Intensive Scientific Discovery. Redmond,
Washington: Microsoft Research, 2009.

[12] Isard, Michael, Mihai Budiu, Yuan Yu, Andrew Birrell, and
Dennis Fetterly. “Dryad: distributed data-parallel
programsfrom sequential building blocks.” ACM SIGOPS
Operating Systems Review. 2007. Volume: 41, Issue: 3,
Pages: 59.

[13] Kwon, YongChul, Magdalena Balazinska, and Bill Howe.
“A Study of Skew in MapReduce Applications.” Open Cirrus
Summit 2011. Russia, 2011.

[14] Lin, Jimmy, and Chris Dyer. “Data Intensive Text Processing
with MapReduce.”

[15] Mackey, Grant, Saba Sehrish, John Bent, Julio Lopez,
Salman Habib, and Jun Wang. “Introducing map-reduce to
high end computing.” 3rd Petascale Data Storage Workshop.
IEEE, 2008. 1-6.

[16] Malewicz, Grzegorz, et al. “Pregel : A System for Large-
Scale Graph Processing.” 28th ACM Symposium on
Principles of Distributed Computing (PODC 2009). Calgary,
Alberta, Canada: ACM, 2009. Volume: 9, Pages: 6-6.

[17] Moretti, Christopher, Hoang Bui, Karen Hollingsworth,
Brandon Rich, Patrick Flynn, and Douglas Thain. “All-Pairs:
An Abstraction for Data-Intensive Computing on Campus
Grids.” IEEE Transactions on Parallel and Distributed
Systems. IEEE, 2010. Volume: 21, Issue: 1, Pages: 33-46.

[18] Ogawa, Hirotaka, Hidemoto Nakada, Ryousei Takano, and
Tomohiro Kudoh. “An Implementation of Key-value Store
based MapReduce Framework.” 2010 IEEE Second
International Conference on Cloud Computing Technology
and Science. IEEE, 2010. 754- 761.

[19] Peterson, T.C., T.R. Karl, P.F. Jamason, R. Knight, and D.R.
Easterling. “First difference method: Maximizing station
density for the calculation of long-term global temperature
change.” J. Geophys. Res.,103, 1998: 25,967-25,974.

[20] Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes,
and W. Wang. “An improved in situ and satellite SST
analysis for climate.” J. Clim., 15, 2002: 1609-1625.

[21] White, Tom. Hadoop: The Definitive Guide, Second Edition.
O'Reilly, 2010.

[22] Xie, Jiong, Shu Yin, Xiaojun Ruan, Zhiyang Ding, and Yun
Tian. “Improving MapReduce performance through data
placement in heterogeneous Hadoop clusters.” 2010 IEEE
International Symposium on Parallel Distributed Processing
Workshops. IEEE, 2010. 1-9.

[23] Zaharia, Matei, Andy Konwinski, Anthony D. Joseph, Randy
Katz, and Ion Stoica. “Improving MapReduce Performance
in Heterogeneous Environments.” 8th USENIX Symposium
on Operating Systems Design and Implementation, OSDI
2008. San Diego, 2008. 29-42.

[24] Zhu, Shengkai, Zhiwei Xiao, Haibo Chen, Rong Chen,
Weihua Zhang, and Binyu Zang. “Evaluating SPLASH-2
Applications Using MapReduce.” APPT09. 2009. 452-464.

