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Some Trends 
• The Data Deluge is clear trend from Commercial 

(Amazon, transactions) , Community (Facebook, Search) 
and Scientific applications 

• Exascale initiatives will continue drive to high end with a 
simulation orientation 

• Clouds offer from different points of view 

– NIST: On-demand service (elastic); Broad network access; 
Resource pooling; Flexible resource allocation; Measured 
service 

– Economies of scale 

– Powerful new software models 
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Some Data sizes 
• ~40 109 Web pages at ~300 kilobytes each = 10 Petabytes 

• Youtube 48 hours video uploaded per minute;  

– in 2 months in 2010, uploaded  more than total NBC ABC CBS 

– ~2.5 petabytes per year uploaded? 

• LHC 15 petabytes per year 

• Radiology 69 petabytes per year 

• Square Kilometer Array Telescope will be 100 terabits/second 

• Earth Observation becoming ~4 petabytes per year 

• Earthquake Science – few terabytes total today 

• PolarGrid – 100’s terabytes/year 

• Exascale simulation data dumps – terabytes/second 

• Not very quantitative 

 

 

3 

https://portal.futuregrid.org/


https://portal.futuregrid.org  

Genomics in Personal Health 
• Suppose you measured everybody’s genome every 2 years 

• 30 petabits of new gene data per day  

– factor of 100 more for raw reads with coverage 

• Data surely distributed 

• 1.5*10^8 to 1.5*10^10 continuously running present day 
cores to perform a simple Blast analysis on this data 

– Amount depends on clever hashing and maybe Blast not good 
enough as field gets more sophisticated 

• Analysis requirements not well articulated in many fields – 
See http://www.delsall.org for life sciences 

– LHC data analysis well understood – is it typical? 

– LHC Pleasing parallel (PP) – some in Life Sciences like Blast  also 
PP 
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Why need cost effective  
Computing! 
(Note Public Clouds not allowed 
for human genomes) 

https://portal.futuregrid.org/


https://portal.futuregrid.org  

Clouds and Grids/HPC 
• Synchronization/communication Performance 

Grids > Clouds > HPC Systems 

• Clouds appear to execute effectively Grid workloads but 
are not easily used for closely coupled HPC applications 

• Service Oriented Architectures and workflow appear to 
work similarly in both grids and clouds 

• Assume for immediate future, science supported by a 
mixture of 

– Clouds – data analysis (and pleasingly parallel) 

– Grids/High Throughput Systems (moving to clouds  as 
convenient) 

– Supercomputers (“MPI Engines”) going to exascale 
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Clouds and Jobs 
• Clouds are a major industry thrust with a growing fraction of IT 

expenditure that IDC estimates will grow to $44.2 billion direct 
investment in 2013 while 15% of IT investment in 2011 will be 
related to cloud systems with a 30% growth in public sector. 

• Gartner also rates cloud computing high on list of critical 
emerging technologies with for example “Cloud Computing” and 
“Cloud Web Platforms” rated as transformational (their highest 
rating for impact) in the next 2-5 years. 

• Correspondingly there is and will continue to be major 
opportunities for new jobs in cloud computing with a recent 
European study estimating there will be 2.4 million new cloud 
computing jobs in Europe alone by 2015.  

• Cloud computing spans research and economy and so attractive 
component of curriculum for students that mix “going on to PhD” 
or “graduating and working in industry” (as at Indiana University 
where most CS Masters students go to industry) 
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2 Aspects of Cloud Computing:  
Infrastructure and Runtimes 

• Cloud infrastructure: outsourcing of servers, computing, data, file 
space, utility computing, etc.. 

• Cloud runtimes or Platform: tools to do data-parallel (and other) 
computations. Valid on Clouds and traditional clusters 

– Apache Hadoop, Google MapReduce, Microsoft Dryad, Bigtable, 
Chubby and others  

– MapReduce designed for information retrieval but is excellent for 
a wide range of science data analysis applications 

– Can also do much traditional parallel computing for data-mining 
if extended to support iterative operations 

– Data Parallel File system as in HDFS and Bigtable 
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Guiding Principles 
• Clouds may not be suitable for everything but they are suitable for 

majority of data intensive applications 
– Solving partial differential equations on 100,000 cores probably needs 

classic MPI engines 

• Cost effectiveness, elasticity and quality programming model will 
drive use of clouds in many areas such as genomics 

• Need to solve issues of 
– Security-privacy-trust for sensitive data 

– How to store data – “data parallel file systems” (HDFS), Object Stores, or 
classic HPC approach with shared file systems with Lustre etc. 

• Programming model which is likely to be MapReduce based  
– Look at high level languages 

– Compare with databases (SciDB?) 

– Must support iteration to do “real parallel computing” 

– Need Cloud-HPC Cluster Interoperability 
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MapReduce “File/Data Repository” Parallelism 

Instruments 
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Map      = (data parallel) computation reading and writing 

data 

Reduce = Collective/Consolidation phase e.g. forming 

multiple global sums as in histogram 

Portals 

/Users 

MPI or Iterative MapReduce 
Map        Reduce      Map       Reduce     Map    
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Twister v0.9 
March 15, 2011 

New Interfaces for Iterative MapReduce Programming 

http://www.iterativemapreduce.org/ 
 

SALSA Group 
 

Bingjing Zhang, Yang Ruan, Tak-Lon Wu, Judy Qiu, Adam 

Hughes, Geoffrey Fox, Applying Twister to Scientific 

Applications, Proceedings of IEEE CloudCom 2010 

Conference, Indianapolis, November 30-December 3, 2010 
 
Twister4Azure released May 2011 

http://salsahpc.indiana.edu/twister4azure/ 

MapReduceRoles4Azure available for some time at 

http://salsahpc.indiana.edu/mapreduceroles4azure/  

Microsoft Daytona project July 2011 is Azure version 
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K-Means Clustering 

• Iteratively refining operation 

• Typical MapReduce runtimes incur extremely high overheads 

– New maps/reducers/vertices in every iteration  

– File system based communication 

• Long running tasks and faster communication in Twister enables it to 

perform close to MPI 

 

 

Time for 20 iterations 

map map 

reduce 
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and assign points 
to cluster centers 

Compute new cluster 
centers 

Compute new cluster 
centers 

User program 
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Twister 

• Streaming based communication 
• Intermediate results are directly 

transferred from the map tasks to the 
reduce tasks – eliminates local files 

• Cacheable map/reduce tasks 
• Static data remains in memory 

• Combine phase to combine reductions 
• User Program is the composer of 

MapReduce computations 
• Extends the MapReduce model to 

iterative computations 
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SWG Sequence Alignment Performance 

Smith-Waterman-GOTOH to calculate all-pairs dissimilarity 
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Performance of Pagerank using  

ClueWeb Data (Time for 20 iterations)  

using 32 nodes (256 CPU cores) of Crevasse 
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Map Collective Model (Judy Qiu) 
• Combine MPI and MapReduce ideas 

• Implement collectives optimally on Infiniband, 
Azure, Amazon …… 
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MapReduceRoles4Azure Architecture 

Azure Queues for scheduling, Tables to store meta-data and monitoring data, Blobs for 
input/output/intermediate data storage.  
 

https://portal.futuregrid.org/


https://portal.futuregrid.org  

MapReduceRoles4Azure 
• Use distributed, highly scalable and highly available  cloud 

services as the building blocks. 
– Azure Queues for task scheduling. 

– Azure Blob storage for input, output and intermediate data storage. 

– Azure Tables for meta-data storage and monitoring 

• Utilize eventually-consistent , high-latency  cloud services 
effectively to deliver performance comparable to traditional 
MapReduce runtimes. 

• Minimal management and maintenance overhead 

• Supports dynamically scaling up and down of the compute 
resources. 

• MapReduce fault tolerance 

• http://salsahpc.indiana.edu/mapreduceroles4azure/ 
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High Level Flow Twister4Azure 

 Merge Step 

 In-Memory Caching of static data 

 Cache aware hybrid scheduling using Queues as well 
as using a bulletin board (special table)  
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  Map Combine 

  

  

  Map Combine 
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Job Start 
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Cache aware scheduling 

• New Job (1st iteration) 
– Through queues 

• New iteration 
– Publish entry to Job Bulletin 

Board 
– Workers pick tasks based on 

in-memory data cache and 
execution history (MapTask 
Meta-Data cache)  

– Any tasks that do not get 
scheduled through the 
bulletin board will be added 
to the queue. 
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Performance with/without 
 data caching  

Speedup gained using data cache 

Scaling speedup Increasing number of iterations 

Number of Executing Map Task Histogram 

Strong Scaling with 128M Data Points 
Weak Scaling 

Task Execution Time Histogram 
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Kmeans Speedup from 32 cores 
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Look at one problem in detail 
• Visualizing Metagenomics where sequences are ~1000 

dimensions 

• Map sequences to 3D so you can visualize 

• Minimize Stress 

 

• Improve with deterministic annealing (gives lower stress 
with less variation between random starts) 

• Need to iterate Expectation Maximization  

• N2 dissimilarities (Smith Waterman, Needleman-Wunsch, 
Blast) i j 

• Communicate N positions X between steps 
25 
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Its an O(N2) Problem  
• 100,000 sequences takes a few days on 768 cores 

32 nodes Windows Cluster Tempest 

• Could just run 680K on 6.82 larger machine but lets 
try to be “cleverer” and use hierarchical methods 

• Start with 100K sample run fully  

• Divide into “megaregions” using 3D projection 

• Interpolate full sample into megaregions and 
analyze latter separately 

• See http://salsahpc.org/millionseq/16SrRNA_index.html 
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OctTree for 100K 
sample of Fungi 

We will use OctTree 
for logarithmic 
interpolation 

Use Barnes Hut 
OctTree originally 
developed to make 
O(N2) astrophysics 
O(NlogN) 
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440K Interpolated 
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12 Megaregions defined from initial sample 
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One Megaregion divided into 
many clusters 
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A more compact Megaregion 
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Multi-Dimensional-Scaling 
• Many iterations 

• Memory & Data intensive 

• 3 Map Reduce jobs per iteration 

• Xk = invV * B(X(k-1)) * X(k-1) 

• 2 matrix vector multiplications termed BC and X 

 

 

BC: Calculate BX  

Map Reduce Merge 

X: Calculate invV 
(BX) Map Reduce Merge 

Calculate Stress 

Map Reduce Merge 

New Iteration 
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Performance with/without 
 data caching  

Speedup gained using data cache 

Scaling speedup Increasing number of iterations 

Azure Instance Type Study 

Increasing Number of Iterations 

Number of Executing Map Task Histogram 

Weak Scaling Data Size Scaling 

Task Execution Time Histogram 
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Twister4Azure Conclusions 
• Twister4Azure enables users to easily and efficiently 

perform large scale iterative data analysis and scientific 
computations on Azure cloud.  

– Supports classic and iterative MapReduce 

– Non pleasingly parallel use of Azure 

• Utilizes a hybrid scheduling mechanism to provide the 
caching of static data across iterations.  

• Should integrate with workflow systems 

• Plenty of testing and improvements needed! 

• Open source: Please use 
http://salsahpc.indiana.edu/twister4azure 
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What was/can be done where? 
• Dissimilarity Computation (largest time) 

– Done using Twister on HPC 

– Have running on Azure and Dryad 

– Used Tempest with MPI as well (MPI.NET failed(!), Twister didn’t) 

• Full MDS  
– Done using MPI on Tempest 

– Have running well using Twister on HPC clusters and Azure 

• Pairwise Clustering 
– Done using MPI on Tempest 

– Probably need to change algorithm to get good efficiency on cloud 

• Interpolation (smallest time) 
– Done using Twister on HPC 

– Running on Azure 
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Expectation Maximization and 
Iterative MapReduce 

• Clustering and Multidimensional Scaling are both EM 
(expectation maximization) using deterministic 
annealing for improved performance 

• EM tends to be good for clouds and Iterative 
MapReduce 

– Quite complicated computations (so compute largish 
compared to communicate) 

– Communication is Reduction operations (global sums in our 
case) 

– See also Latent Dirichlet Allocation and related Information 
Retrieval algorithms similar structure 
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1) A(k) = - 0.5 i=1
N j=1

N (i, j) <Mi(k)> <Mj(k)> / <C(k)>2 

2) B(k) =  i=1
N (i, ) <Mi(k)> / <C(k)>  

3) (k) = (B(k) + A(k))    

4) <Mi(k)> = p(k) exp( -i(k)/T )/ 
k’=1

K p(k’) exp(-i(k’)/T) 

5) C(k) = i=1
N <Mi(k)> 

6) p(k) = C(k) / N  

• Loop to converge variables; decrease T from ; 
split centers by halving p(k)  

DA-PWC EM Steps (E is red, M Black) 
k runs over clusters; i,j,  points 
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Steps 1 global sum 
(reduction) 
Step 1, 2, 5 local sum if 
<Mi(k)> broadcast 
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May Need New Algorithms 
• DA-PWC (Deterministically Annealed Pairwise Clustering) splits 

clusters automatically as temperature lowers and reveals clusters 
of size O(√T) 

• Two approaches to splitting 
1. Look at correlation matrix and see when becomes singular which is a 

separate parallel step 

2. Formulate problem with multiple centers for each cluster and perturb 
ever so often spitting centers into 2 groups; unstable clusters separate 

• Current MPI code uses first method which will run on Twister as 
matrix singularity analysis is the usual “power eigenvalue 
method” (as is page rank)  
– However not very good compute/communicate ratio 

• Experiment with second method which “just” EM with better 
compute/communicate ratio  (simpler code as well) 
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What can we learn? 

• There are many pleasingly parallel data analysis 
algorithms which are super for clouds 

– Remember SWG computation longer than other parts 
of analysis 

• There are interesting data mining algorithms 
needing iterative parallel run times 

• There are linear algebra algorithms with flaky 
compute/communication ratios 

• Expectation Maximization good for Iterative 
MapReduce 
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Research Issues for (Iterative) MapReduce  
• Quantify and Extend that Data analysis for Science seems to work well on 

Iterative MapReduce and clouds so far.  
– Iterative MapReduce (Map Collective) spans all architectures as unifying idea 

• Performance and Fault Tolerance Trade-offs;  
– Writing to disk each iteration (as in Hadoop) naturally lowers performance but 

increases fault-tolerance 
– Integration of GPU’s 

• Security and Privacy technology and policy essential for use in many 
biomedical applications 

• Storage: multi-user data parallel file systems have scheduling and 
management  
– NOSQL and SciDB on virtualized and HPC systems 

• Data parallel Data analysis languages: Sawzall and Pig Latin more successful 
than HPF? 

• Scheduling: How does research here fit into scheduling built into clouds and 
Iterative MapReduce (Hadoop) 
– important load balancing issues  for MapReduce for heterogeneous workloads 
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Components of a Scientific Computing Platform 

Authentication and Authorization: Provide single sign in to All system architectures 

Workflow: Support workflows that link job components between Grids and Clouds. 

Provenance: Continues to be critical to record all processing and data sources 

Data Transport: Transport data between job components on Grids and Commercial Clouds 

respecting custom storage patterns like Lustre v HDFS 

Program Library: Store Images and other Program material 

Blob: Basic storage concept similar to Azure Blob or Amazon S3 

DPFS Data Parallel File System: Support of file systems like Google (MapReduce), HDFS (Hadoop) 

or Cosmos (dryad) with compute-data affinity optimized for data processing 

Table: Support of Table Data structures modeled on  Apache Hbase/CouchDB or Amazon 

SimpleDB/Azure Table. There is “Big” and “Little” tables – generally NOSQL 

SQL: Relational Database 

Queues: Publish Subscribe based queuing system 

Worker Role: This concept is implicitly used in both Amazon and TeraGrid but was (first) 

introduced as a high level construct by Azure. Naturally support Elastic Utility Computing 

MapReduce: Support MapReduce Programming model including Hadoop on Linux, Dryad on 

Windows HPCS and Twister on Windows and Linux. Need Iteration for Datamining 

Software as a Service: This concept is shared between Clouds and Grids 

Web Role: This is used in Azure to describe user interface and can be supported by portals in 

Grid or HPC systems 
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Architecture of Data Repositories? 
• Traditionally governments set up repositories for 

data associated with particular missions 

– For example EOSDIS, GenBank, NSIDC, IPAC for Earth 
Observation , Gene, Polar Science and Infrared 
astronomy 

– LHC/OSG computing grids for particle physics 

• This is complicated by volume of data deluge, 
distributed instruments as in gene sequencers 
(maybe centralize?) and need for complicated 
intense computing 
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Clouds as Support for Data Repositories? 

• The data deluge needs cost effective computing 

– Clouds are by definition cheapest 

• Shared resources essential (to be cost effective 
and large) 

– Can’t have every scientists downloading petabytes to 
personal cluster 

• Need to reconcile distributed (initial source of ) 
data with shared  computing 

– Can move data to (disciple specific) clouds 

– How do you deal with multi-disciplinary studies 
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Traditional File System? 

• Typically a shared file system (Lustre, NFS …) used to support high 
performance computing 

• Big advantages in flexible computing on shared data but doesn’t 
“bring computing to data” 

• Object stores similar to this? 
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Data Parallel File System? 

• No archival storage and computing brought to data 

C Data 
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FutureGrid key Concepts I 
• FutureGrid is an international testbed modeled on Grid5000 

• Supporting international Computer Science and Computational 
Science research in cloud, grid and parallel computing (HPC) 

– Industry and Academia 

– Note much of current use Education, Computer Science Systems 
and Biology/Bioinformatics 

• The FutureGrid testbed provides to its users: 

– A flexible development and testing platform for middleware 
and application users looking at interoperability, functionality, 
performance or evaluation 

– Each use of FutureGrid is an experiment that is reproducible 

– A rich education and teaching platform for advanced 
cyberinfrastructure (computer science) classes 
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FutureGrid key Concepts II 
• Rather than loading images onto VM’s, FutureGrid supports 

Cloud, Grid and Parallel computing environments by 

dynamically provisioning software as needed onto “bare-metal” 

using Moab/xCAT  

– Image library for MPI, OpenMP, Hadoop, Dryad, gLite, Unicore, Globus, 

Xen, ScaleMP (distributed Shared Memory), Nimbus, Eucalyptus, 

OpenNebula, KVM, Windows ….. 

• Growth comes from users depositing novel images in library 

• FutureGrid has ~4000 (will grow to ~5000) distributed cores 

with a dedicated network and a Spirent XGEM network fault 

and delay generator 

 
Image1 Image2 ImageN … 

Load Choose Run 
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Cores 

11TF IU 1024 IBM 

4TF IU 192 12 TB Disk  
192 GB mem,  
GPU on 8 nodes 

6TF IU 672 Cray XT5M 

8TF TACC 768 Dell 

7TF SDSC 672 IBM 

2TF Florida 256 IBM 

7TF Chicago 672 IBM 

FutureGrid:  
a Grid/Cloud/HPC Testbed 

Private 
Public 

FG Network 

NID: Network 
Impairment Device 
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FutureGrid Partners 
•  Indiana University (Architecture, core software, Support) 

• Purdue University (HTC Hardware) 

• San Diego Supercomputer Center at University of California San Diego 
(INCA, Monitoring) 

• University of Chicago/Argonne National Labs (Nimbus) 

• University of Florida (ViNE, Education and Outreach) 

• University of Southern California Information Sciences (Pegasus to manage 
experiments)  

• University of Tennessee Knoxville (Benchmarking) 

• University of Texas at Austin/Texas Advanced Computing Center (Portal) 

• University of Virginia (OGF, Advisory Board and allocation) 

• Center for Information Services and GWT-TUD from Technische Universtität 
Dresden. (VAMPIR) 

• Red institutions have FutureGrid hardware 
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5 Use Types for FutureGrid 
• ~122 approved projects over last 10 months 
• Training Education and Outreach (11%) 

– Semester and short events; promising for non research intensive 
universities 

• Interoperability test-beds (3%) 
– Grids and Clouds; Standards; Open Grid Forum OGF really needs 

• Domain Science applications (34%) 
– Life sciences highlighted (17%) 

• Computer science (41%) 
– Largest current category 

• Computer Systems Evaluation (29%) 
– TeraGrid (TIS, TAS, XSEDE), OSG, EGI, Campuses 

• Clouds are meant to need less support than other models; 
FutureGrid needs more user support ……. 
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Software Components 
• Portals including “Support” “use FutureGrid” 

“Outreach” 

• Monitoring – INCA, Power (GreenIT) 

• Experiment Manager: specify/workflow 

• Image Generation and Repository 

• Intercloud Networking ViNE 

• Virtual Clusters built with virtual networks 

• Performance library  

• Rain or Runtime Adaptable InsertioN Service for 
images 

• Security Authentication, Authorization, 

 

 

“Research” 
 
Above and below 
 
Nimbus OpenStack 
Eucalyptus 
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