
ZHT

1

Tonglin Li

Acknowledgements
 I’d like to thank Dr. Ioan Raicu for his support and

advising, and the help from Raman Verma, Xi Duan,
and Hui Jin.

 This work is published in HPDC/SigMetrics 2011 poster
session.

2

Background
 Data: files

 Metadata: data about files

 Distributed Storage System

3

State-of-art metadata management
 Relational DB based metadata

 Heavy

 Centralized metadata management

 Communication jam

 Fragile

 Not scalable

 Typical parallel file

System: GPFS by IBM

4

Proposed work: a new DHT for
metadata management
 What is a DHT?

 Why DHT?

 Fully distributed: no centralized bottleneck

 High performance: high aggregated I/O

 Fault tolerance

 But existing DHTs are not fast enough.

 Slow and heavy

 High latency

5

Related work: DHT
Architecture Topology Routing Time(hops)

Chord Ring Log(N)

CAN Virtual multidimensional

Cartesian coordinate space on a multi-torus

O(dnl/d)

Pastry Hypercube O(logN)

Tapestry Hypercube O(logBN)

Cycloid Cube-connected-cycle graph O(d)

Kademlia Ring Log(N)

Memcached Ring 2

C-MPI Ring Log(N)

Dynamo Ring 0

6

Practical assumptions of HEC
 Reliable hardware

 Fast network interconnects

 Non-existent node “churn”

 Batch oriented: steady amount of resource

7

Overview of Design

 Zero-hop

8

Implementation: Persistency
 Database or key-value store

 Relational database: transaction, complex query

 BerkeleyDB, MySQL

 Key-value store: small, simple, fast, flexible

 Kyotocabinet, CouchDB, HBase

 Log recording and playback

 Bootstrap system requires to playback all log records for
loading metadata

9

Implementation: Failure handling

 Insert

 If one try failed: send it to closest replica

 Mark this record as primary copy

 Recover to original node when reboot system

 Lookup

 If one try fail: try next one, until go through all replicas

 Remove

 Mark record removed(but not really remove)

 Recover to original node when reboot system

10

Membership management
 Static member list

 reliable hardware

 non-existent node “churn”

 If a node quit, it never come back

 Consistent hashing

 Remove a node doesn't impact the hash map much

11

Replication update
 Server-side replication

 Asynchronized update

 Sequential update among replicas

 P->R1; R1->R2; R2->R3

12

Performance evaluation
 Hardware: SiCortex SC5832

 970 nodes

 4GB RAM/node

 5,832 cores

 OS: Cento OS 5.0 (Linux)

 Batch execution system: SLURM

13

Throughput
 Ideal throughput:

 Ti = tested single node throughput * node number

 Measured throughput :

 T a= Sum of all single node tested throughputs

14

Ideal vs. measured throughput

1

10

100

1000

10000

100000

1000000

Th
ro

u
gh

p
u

t
(o

p
e

ra
ti

o
n

s/
se

c)

Scale (cores)

Throughput with TCP

Throughput with UDP

Ideal throughput

15

TCP v.s. UDP

0
1
2
3
4
5
6
7
8
9

10
11
12

0 1024 2048 3072 4096 5120 6144

O
p

e
ra

ti
o

n
 la

te
n

cy
 (

m
s)

Scale (cores)

Insert-TCP

Lookup-TCP

Remove-TCP

Insert-UDP

Lookup-UDP

16

ZHT v.s. C-MPI

0

2

4

6

8

10

12

14

16

18

Ti
m

e
 p

e
r

o
p

e
ra

ti
o

n
 (

m
s)

Scale (cores)

C-MPI Insert (MPI)

ZHT Insert (UDP)

ZHT Insert (TCP)

17

Replication overhead

18

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000

In
se

rt
 l

at
e

n
cy

 (
m

s)

Number of nodes

Replication comparison(insert)

Replication 0

Replication 1

Replication 2

Replication 3

Replication overhead

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

Lo
o

ku
p

 la
te

n
cy

 (
m

s)

Number of nodes

Replication comparison(Lookup)

Replication 0

Replication 1

Replication 2

Replication 3

19

Future work
 Comprehensive fault tolerance

 Dynamic membership management

 More protocol support (MBI…)

 Merge with FusionFS

 Data aware job scheduling

 Many optimizations

 Larger scale evaluation (BlueGene/P, etc)

Conclusion
ZHT offer a good solution of distributed key-value store,

they are

 Light-weighted: cost less than 10MB memory/node

 Scalable: near-linearly scales up to 5000 cores

 Very fast: 100,000 operations/ sec

 Low latency: about 10ms

 Wide range of use: open source

21

Questions?

22

