
ZHT

1

Tonglin Li

Acknowledgements
 I’d like to thank Dr. Ioan Raicu for his support and

advising, and the help from Raman Verma, Xi Duan,
and Hui Jin.

 This work is published in HPDC/SigMetrics 2011 poster
session.

2

Background
 Data: files

 Metadata: data about files

 Distributed Storage System

3

State-of-art metadata management
 Relational DB based metadata

 Heavy

 Centralized metadata management

 Communication jam

 Fragile

 Not scalable

 Typical parallel file

System: GPFS by IBM

4

Proposed work: a new DHT for
metadata management
 What is a DHT?

 Why DHT?

 Fully distributed: no centralized bottleneck

 High performance: high aggregated I/O

 Fault tolerance

 But existing DHTs are not fast enough.

 Slow and heavy

 High latency

5

Related work: DHT
Architecture Topology Routing Time(hops)

Chord Ring Log(N)

CAN Virtual multidimensional

Cartesian coordinate space on a multi-torus

O(dnl/d)

Pastry Hypercube O(logN)

Tapestry Hypercube O(logBN)

Cycloid Cube-connected-cycle graph O(d)

Kademlia Ring Log(N)

Memcached Ring 2

C-MPI Ring Log(N)

Dynamo Ring 0

6

Practical assumptions of HEC
 Reliable hardware

 Fast network interconnects

 Non-existent node “churn”

 Batch oriented: steady amount of resource

7

Overview of Design

 Zero-hop

8

Implementation: Persistency
 Database or key-value store

 Relational database: transaction, complex query

 BerkeleyDB, MySQL

 Key-value store: small, simple, fast, flexible

 Kyotocabinet, CouchDB, HBase

 Log recording and playback

 Bootstrap system requires to playback all log records for
loading metadata

9

Implementation: Failure handling

 Insert

 If one try failed: send it to closest replica

 Mark this record as primary copy

 Recover to original node when reboot system

 Lookup

 If one try fail: try next one, until go through all replicas

 Remove

 Mark record removed(but not really remove)

 Recover to original node when reboot system

10

Membership management
 Static member list

 reliable hardware

 non-existent node “churn”

 If a node quit, it never come back

 Consistent hashing

 Remove a node doesn't impact the hash map much

11

Replication update
 Server-side replication

 Asynchronized update

 Sequential update among replicas

 P->R1; R1->R2; R2->R3

12

Performance evaluation
 Hardware: SiCortex SC5832

 970 nodes

 4GB RAM/node

 5,832 cores

 OS: Cento OS 5.0 (Linux)

 Batch execution system: SLURM

13

Throughput
 Ideal throughput:

 Ti = tested single node throughput * node number

 Measured throughput :

 T a= Sum of all single node tested throughputs

14

Ideal vs. measured throughput

1

10

100

1000

10000

100000

1000000

Th
ro

u
gh

p
u

t
(o

p
e

ra
ti

o
n

s/
se

c)

Scale (cores)

Throughput with TCP

Throughput with UDP

Ideal throughput

15

TCP v.s. UDP

0
1
2
3
4
5
6
7
8
9

10
11
12

0 1024 2048 3072 4096 5120 6144

O
p

e
ra

ti
o

n
 la

te
n

cy
 (

m
s)

Scale (cores)

Insert-TCP

Lookup-TCP

Remove-TCP

Insert-UDP

Lookup-UDP

16

ZHT v.s. C-MPI

0

2

4

6

8

10

12

14

16

18

Ti
m

e
 p

e
r

o
p

e
ra

ti
o

n
 (

m
s)

Scale (cores)

C-MPI Insert (MPI)

ZHT Insert (UDP)

ZHT Insert (TCP)

17

Replication overhead

18

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000

In
se

rt
 l

at
e

n
cy

 (
m

s)

Number of nodes

Replication comparison(insert)

Replication 0

Replication 1

Replication 2

Replication 3

Replication overhead

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

Lo
o

ku
p

 la
te

n
cy

 (
m

s)

Number of nodes

Replication comparison(Lookup)

Replication 0

Replication 1

Replication 2

Replication 3

19

Future work
 Comprehensive fault tolerance

 Dynamic membership management

 More protocol support (MBI…)

 Merge with FusionFS

 Data aware job scheduling

 Many optimizations

 Larger scale evaluation (BlueGene/P, etc)

Conclusion
ZHT offer a good solution of distributed key-value store,

they are

 Light-weighted: cost less than 10MB memory/node

 Scalable: near-linearly scales up to 5000 cores

 Very fast: 100,000 operations/ sec

 Low latency: about 10ms

 Wide range of use: open source

21

Questions?

22

