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Background 
 Data: files 

 Metadata: data about files  

 Distributed Storage System 
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State-of-art metadata management 
 Relational DB based metadata 

 Heavy 

 Centralized metadata management 

 Communication jam 

 Fragile  

 Not scalable 

 Typical parallel file  

System: GPFS by IBM 
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Proposed work: a new DHT for 
metadata management  
 What is a DHT? 

 Why DHT? 

 Fully distributed: no centralized bottleneck 

 High performance: high aggregated I/O 

 Fault tolerance 

 But existing DHTs are not fast enough. 

 Slow and heavy 

 High latency 
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Related work: DHT 
Architecture Topology Routing Time(hops) 

Chord Ring Log(N) 

CAN Virtual multidimensional 

Cartesian coordinate space on a multi-torus 

O(dnl/d) 

Pastry Hypercube O(logN) 

Tapestry Hypercube O(logBN) 

Cycloid Cube-connected-cycle graph O(d) 

Kademlia Ring Log(N) 

Memcached Ring 2 

C-MPI  Ring Log(N) 

Dynamo Ring 0 
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Practical assumptions of HEC 
 Reliable hardware 

 Fast network interconnects 

 Non-existent node “churn” 

 Batch oriented: steady amount of resource 
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Overview of Design 

 Zero-hop 
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Implementation: Persistency 
 Database or key-value store 

 Relational database: transaction, complex query 

 BerkeleyDB, MySQL 

 Key-value store: small, simple, fast, flexible 

 Kyotocabinet, CouchDB, HBase  

 Log recording and playback 

 Bootstrap system requires to playback all log records for 
loading metadata 
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Implementation: Failure handling 

 Insert 

 If one try failed: send it to closest replica 

 Mark this record as primary copy 

 Recover to original node when reboot system 

 Lookup 

 If one try fail: try next one, until go through all replicas 

 Remove 

  Mark record removed(but not really remove) 

 Recover to original node when reboot system 
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Membership management 
 Static member list 

 reliable hardware 

 non-existent node “churn” 

 If a node quit, it never come back 

 Consistent hashing 

 Remove a node doesn't impact the hash map much 
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Replication update 
 Server-side replication 

 Asynchronized update 

 Sequential update among replicas 

 P->R1; R1->R2; R2->R3 
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Performance evaluation 
 Hardware:  SiCortex SC5832  

 970 nodes 

 4GB RAM/node 

 5,832 cores 

 OS:  Cento OS 5.0 (Linux) 

 Batch execution system: SLURM 
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Throughput 
 Ideal throughput: 

 Ti = tested single node throughput * node number 

 Measured throughput : 

 T a=  Sum of all single node tested throughputs 
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Ideal vs. measured throughput 
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TCP v.s. UDP 
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ZHT v.s. C-MPI 
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Replication overhead 
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Replication overhead 
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Future work 
 Comprehensive fault tolerance 

 Dynamic membership management 

 More protocol support (MBI…) 

 Merge with FusionFS 

 Data aware job scheduling 

 Many optimizations 

 Larger scale evaluation (BlueGene/P, etc) 

 



Conclusion 
ZHT offer a good solution of distributed key-value store, 

they are 

 Light-weighted: cost less than 10MB memory/node  

 Scalable: near-linearly scales up to 5000 cores 

 Very fast: 100,000 operations/ sec 

 Low latency: about 10ms 

 Wide range of use: open source 

 

 

21 



 

Questions? 
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