Centralized and Distributed Job
Scheduling System Simulation at
Exascale

Speakers: Ke Wang
Advisor: loan Raicu

Coworker: Juan Carlos Hernandez Munuera
09/07/2011

Outline

* Introduction

* Simulated Architecture

* Technical Consideration

* Centralized Simulator

* Distributed Simulator

* Conclusion and Future Work

Introduction

e MTC
* Job Scheduling Systems

e State-of-art Job Scheduling Systems and
Simulators(Centralized/Small scale)

e Exascale

Our Work

Study scalability and feasibility of JOB
SCHEDULING at EXASCALES

Simulation
— memory and processing limitations

— realistic representation of real systems
Explore central and decentralized systems
Carry experiments to draw useful conclusions

Simulated Architecture

Technical Consideration

 Hardware, simulating demands great resources
— Fusion, 48 cores, 64 GB memory
— Thread limitation! 1:1 mapping discarded

e Software

— Simulation model, discrete or continuous-events

— Existing simulation environments
e GridSim, SimJava, JiST

JIST

Java in Simulation Time
Incredibly light for a simulation environment
— naive ring of million nodes just 1.3 GB

Easy discrete-event abstraction
Centralized simulator developed

Work discontinued
— Own semantics, debugging
— Undetermined execution order of events at the same time

— Weird errors, JiST not support anymore

Centralized Simulator

* Components

Client

Server

Nodes

Event Queue

Load information Hash Map
How the simulator works?

Centralized Simulator Implementation

1. Global Variables

Number of nodes the simulator would have

Variables

double linkSpeed The link speed of the network

double procTimePerlob Time the server takes to determine which node to dispatch for one job

double networkLatency Network latency for every communicate message

int numCoresPerNode Number of cores each node has

double jobSize The size of each job
int lowThreshold The threshold to which point the client submits more jobs to the server

long totalNumlJobs Number of jobs the client need to do

double logTimelnterval The time interval to write log

Centralized Simulator Implementation

e 2.Job Waiting Queue in the Centralized Server

e Data Structures and the time efficiency

Data Structures Removing from the | Adding from the

head rear
Vector O(n) 0(1)
ArrayList ®(n) 0(1)

LinkedList 0(1) 0(1)

Centralized Simulator Implementation

3. Event Queue

(1) Stores events that will happen in future
(2) Each event has an attribute of occurrence
time

(3) The first event in the event queue is the
one that has smallest occurrence time

Centralized Simulator Implementation

* 3. Event Queue

* Event type and description

JobEnd A job is finished by a node. Has other fields:
‘jobKey’, ‘nodeKey and ‘timeStamps’

Submission Client submits some number of jobs to the
centralized server

Log Write a record to the log file at the simulation
time

Centralized Simulator Implementation

* 3. Event Queue

* Update frequently. All operations need to maintain the
event queue

* Heapsort: takes 0(lgn) time for removing and inserting
and ©(1) time for getting the first element

* |Injava, TreeSet is a set whose elements are ordered
using their natural ordering, or by a comparator provided
at set creation time. Implemented based on Red-Black
tree, guaranteeing 0(lgn) time for removing and inserting
and ©(1) time for getting the first.

Centralized Simulator Implementation

*4. Load Information

(1) load = number of busy cores, the range of
load is [0, numCoresPerNode]

(2) Using Hash Map to store load information

<Key, Value>, Key = load, Value is a hashset
containing the node ids which have the load.

Update the hashmap takes ©(1) time

Centralized Simulator Implementation

5. Logs and Plot Generation
Two logs

task_execute_log: records information such as the ‘submission
time’, ‘wait time’, ‘executing time’ for every job. Has switch to turn
it on/off.

summary_log: contains information such as ‘number of all cores’,
‘number of executing cores’, ‘waiting queue length’, ‘through put’.
Implement it with an event instead of separate thread.

Six ways to write to a log: ‘FileOutputStream’,
‘BufferedOutputStream’, ‘PrintStream’, ‘FileWriter’, ‘BufferedWriter’,
‘PrintWriter’. ‘BufferedWriter’ is the fastest one.

Use ploticus to generate plots

Results and Discussions

e 1. Values of global variables for experiments

linkSpeed 1000000000 bytes/Sec

procTimePerJob 1 millisecond
networkLatency 100 microseconds
numCoresPerNode plo8[e

EIET 0 1000 bytes

lowThreshold 2000

Results and Discussions

2. Correction Validation

communication overhead is O, procTimePerJob =0,
networkLatency = 0, jobSize = 0. totalNumlJobs is 10 times of
the total number of cores. Two groups of experiments.

(1) all the jobs have the same length, 1000 seconds. Simulation
time is: 1000 * 10 = 10000

(2) the average length of all jobs is 500 seconds. Simulation
time is around 500 * 10 = 5000

These two results are exactly what we expect.

No. of Nodes

DW=
BN

128
256
512
1024
2048
4096
8192
16384
32768

65536
131072
262144
524288

1048576

Performance Results

Average Job Length: 5000 seconds

Simulation Time(s)

55711.5063
56623.62122
56447.07415
56569.38075
56682.29121
56686.82232
56724.64275
56673.38761
56788.76278
56928.37883
57196.01807

57773.9418
59156.70364
91915.50152
173831.1205
337677.7676
665353.5454
1320718.623
2631434.502
5252877.111
10495753.63

Real Time(s)
1.302
1.56
2.154
3.171
4.929
8.367
16.001
31.021
57.157
115.36
237.705
500.294
1463.532
398.35
857.332
1882.023
3721.908
8175.676
16148.014
29795.722
67251.93

Simulation Time(s)

5626603.597
5645321.744
5636848.561
5673423.825
5661830.737
5659072.997
5668874.294
5667498.57
5664111.183
5664150.113
5665329.831
5667987.182
5668656.772
5670328.713
5674380.508
5682968.991
5699856.595
5735198.21
/

/
/

Average Job Length: 500000 seconds

Real Time(s)
1.386
1.807
2.314
3.615
5.553
9.169
16.533
30.855
55.868

110.426
223.32
470.484
1344.491
3334.99
6818.076
14089.804
33116.881
111091.141
/

/
/

Plots

performance of 8192 node, average job length is 5000

Performance of 1 n(_)de, average job length is seconds, multiply the throughput by 80000, the wait
5000 seconds, multiply the throughput by 10000 queue length by 1000
M All Executors B All Executors

W Active Executors W Active Executors

1200]
Throughput 12000 Fe+06 Throughput Je+07 |
Wait Queue Length Wait Queue Length
Delivered Tasks Be+06 07 N
1000 1
Te+06 -
800] Be+06 .
0 F 07
g £
2 g
5 ¥ Se+06 -
= 600 7 2 o
[
=] o+
A -] i
o . de+06 07
= =
-
400 .
3e+06 07 N
Z2e+06 N
200 - 07
le+06 07 N
0 0
0 10000 20000 30000 40000 50000 E0000 0

0
0 20000 40000 60000 0000 100000

Simulation Time (sec)

Simulation Time {sec)

Plots

performance of 1048576 node, average
job length is 5000 seconds, multiply the
number of executed cores by 100, the
throughput by 2000000 and the wait
gueue length by 200000

W All Executors

W Active Executors

L.2e+0d Throughput 1.26+10]

Wait Hueue Length

le+09

Be+08

fe+08

NO., of Workers

4e+08

2e+08

0
0 2e+06 de+06 Be+06 BetlB 1le+07 1.Ze+07

Simulation Time (sec)

| Snodes |

16 nodes

N (1)

|

d/m

a4

ﬁﬁ%*i
\
|

ekt o 1 (i)

|

§ o

l

Bomds | SDmdes | 104mdes | MSmds | 4%mdes |

ot o b L)

16384 nodes

| 0768m0des | 65536modes | 131072nodes | 262144nodes | 524288 modes

U

0 e B0y
0 d o

Distributed Simulator

* Improve the throughput and reliability

* Load balancing is trivial for centralized
simulator

* Implement work stealing to achieve load
balancing

Work Stealing

An efficient method to achieve load balancing

Processes have load imbalance at first. Many
benchmarks to generate load imbalance, such as
BPC(Bouncing Producer-Consumer),
UTS(Unbalanced Tree Search)

The idle processes poll the busy ones to get work to
do.

Thief: The process that initiates the steal
Victim: the process that is targeted by the steal

Work Stealing

Parameters affecting the performance of work
stealing

Can a node steal jobs from all others or just
some neighbors?

ow to define neighbors?
ow to select which neighbor to steal jobs
ow many jobs to steal from a selected node?

Changes from the Centralized Simulator

(1) Remove the centralized server and enhance the functionality of a
node.

(2) A node has a few number of neighbors from which it could steal
or dispatch jobs. consider just homogeneous network, that is the
distances between a node and its neighbors are the same.

(3) Keep the global event queue except more events

(4) Handle jobs straightforwardly, no job entity.

(5) Client just submits to the first node.

(6) load = jobListSize — numldleCores

(7) Do visualization for the load for every node

(8) Termination condition: all jobs submitted by client are finished

Distributed Simulator Implementation

1. Global Variables for work stealing and
visualization

Variables

visualizationlnterval

int numberNeighbors How many number of nodes each node has
long currentEventKey Event key for an event
int numNeigToAsk How many number of neighbors to ask during one attempted
stealing
double The poll interval of a node to ask jobs when it is idle
nolJobsToStealLonginterv
double The time interval of a node to ask another part of its neighbors
noJobsToStealShortinterv when it is idle
int numStealWork How many jobs to steal from a neighbor
The time interval to do visualization

2. Global Event Queue

* Each event now has a global id number
* Types of descriptions of events

Event Type Event Description

JobEnd A job is finished, a cores is free. Start to execute another job or steal jobs

Steal Ask jobs from its neighbors. Ask load, choose heaviest and inserts
‘JobReception’, or wait for some time to ask again.

JobDispatch A node dispatches jobs to a neighbor. Has jobs, inserts JobReception’ from the
neighbor, or ask the neighbor do steal again

JobReception First node receive jobs from client, or a node receive jobs form its neighbor

Log The same as that of centralized simulator, add coefficient variance

Visualization Visualize the load information of all node

3. Visualization

e Efficiently represent load flow in the system

* Simple canvas, each node mapped to a tile
— color represent load

— Best results in HSB color space
 Hue = (1-rate)*0.36
* Brightness=1.0
e Saturation = 1.0-(0.4*(1-rate))

1024 nodes, 8 cores, 64 neighbors, 100000000 jobs

29

1024 nodes, 8 cores, 128 neighbors, 100000000 jobs

00,0 Visualization of Load

30

1024 nodes, 8 cores, 256 neighbors, 100000000 jobs

Results and Discussions

e 1. Correction Validation

* Run small experiments to trace the procedure
of work stealing

* For large experiments, we see that the load
balancing is good: the coefficient variance is
close to zero

2. Optimal Parameters of Work Stealing

 Amount of jobs to steal

* average job length = 0.5 seconds, pollinterval = 0.05 seconds, numCoresPerNode = 8, totalNumJobs =
10000000, numNeighbors = 2

—f—Steal-1 —f— Steal-2
& Steal-lg =i Steal-sqrt
- / =pesathal
480 l ‘ 28
/ =—g=Steal-1 24 > st
400 o /
f =f=Steal-2 o 20
= %
T 32 de=Steatlg——— 3. 16
o o
o% === Stealsqrt 2 12 >
T 240 5 -
T === Steal-half N 8 —
® 160 a >
° 4 M : !
80 — " (o) ‘ T T T T T T T 1
) a 0O 128 256 384 512 640 768 8961024
. S 4 ¥ >
0 T ‘ T T No. of Nodes
0 128 256 384 512 640 768 896 1024
No. of Nodes
Change of throughput with respect to the number Change of coefficient variance with respect to

Of nodes for different steal policy number of nodes for different steal policy

No. of Neighbors a node has

e average job length = 0.5 seconds, pollinterval =
0.05 seconds, numCoresPerNode = 8§,
totalNumJobs = 10000000, steal-half policy

=== Neighbor-2 == Neighbor-Ig
=4==Neighbor-2 Neighbor-sqrt =i\ eighbor-quarter
16640 =mw=Neighborig P —&=Neighbor-half

e — . 45 =
14560 Neighbor-sqrt /
_Sn 4 4 g
o 12480 T Neighbor-quarter Fd
P ; -

5 g
_% 10400 ~ =&—Neighbor-half f’ c
® 8320 &
o ,r"" =
_E 6240 ;;,.;»"‘ -
V4)
4160 | - S
2080 ’ , == —u E
o (o —2 = S
0 128 256 384 512 640 768 8961024
o BEN—» > =
No. of Nodes 0O 128 256 384 512 640 768 896 1024
No. of Nodes
Change of throughput with respect to Change of coefficient variance with
number of nodes for different number respect to number of nodes for

of neighbors different number of neighbors

No. of Neighbors a node has

* A gquarter neighbors is too much in reality

480000
420000
360000

+ 300000

(-3

-—

% 240000
2

£ 180000

120000
60000

0

——4=—teighbor-sqrt
—sofll=Neighbor-10*sqrt—
_—&—Neighbor-quarter

No. of Nodes

Change of throughput with
respect to number of nodes for
different number of neighbors

WodE B
w o N D

Coefficient Variance
o - - =]
L= (O T R

o

/ =&=Neighbor-sqrt
/ ==Neighbor-10 * sqrt
l Neighbor-quarter
B —
]

7 @ 7 b <, N
0, 4 < G, 0 69 <
TR e %, ‘(9 D0 ey

No. of Nodes

Change of coefficient variance
with respect to number of nodes
for different number of neighbors

Poll Interval

* A node steals jobs from its neighbors, but all of which have no jobs. The
node waits for some time and then tries to steal jobs again.

* Intuitively, the longer the average job length is, the larger the interval
should be.

* numCoresPerNode = 8, totalNumJobs = 100000000, numNeighbors = a
quarter of number of all nodes and steal-half policy.

* Results of changing the poll interval
| ollinterval=0.00 [Pollinterval=0.0. | Poliinterval=1 | Pollinterval =10 [PollInterval =100

m Throu coVar Time(s) Throu coVar Time(s) Throu coVar Time(s) Throu coVar Time(s) Throu coVar Time(s)
0.0016 0.0 25.597 0.0016 0.0 21439 0.0016 0.0 22555 0.0016 0.0 21857 0.0016 0.0 22871
00032 215865 28.986 0.0032 175464 26598 00032 352665 26384 00032 8604E5 27320 00032 493265 26769
0.0064 141264 33.677 0.0064 9.711E-5 30466 00064 384265 28245 00064 6.960E5 28298 00064 9.040E5 29.264
P o028 139164 101190 00128 2.397E-4 37.065 00128 172984 32075 00128 15734 30996 00128 116764 32097
0.0256 262564 83.181 0.0256 2.321E-4 38224 00256 195664 32472 00256 20004 31961 0025 301364 34292
00512 291064 158198 00512 3.230E-4 46.680 00512 3.636E4 36514 00512 2925E-4 35394 00512 4164E4 35075
[62 JCEUVEEEFECY 400326 01024 4.105E-4 78006 01024 4518E-4 47.806 01024 4435E-4 43423 01024 494264 42.486

02048 696864 1059.367 02048 6340E-4 157.946 02048 6993E-4 62401 02048 629264 50774 02048 5.969E-4 49617
POVEI 04055 saE4 40ssd2s 04095 9.090E4 390697 0409 9.440E4 89999 04096 B843E4 60548 0409 907264 54728
PSP osi2 127383 13612788 08191 127563 1721474 08191 1260E3 183849 08190 1299E3 75.27 08192 1294E3 61949
PNV 16350 1s:0e3 67202279 16382 L8213 5643013 16381 L926E3 666370 16381 L836E3 127173 16383 17%4E3 79552

Number of Cores a node has

A node could have thousands of cores in the future

e are average job length = 5000 seconds, totalNumJobs = 100000000, numNeighbors =
a quarter of number of all nodes, poll interval = 100 seconds and steal-half policy.

* Results of changing the number of cores of a node
1 numcCoresperNode=8 [numCoresPerNode=100 | numCoresPerNode=500 | numCoresPerNode=1000

m Throu CoVari RealTime(S) Throu CoVari RealTime(S) Throu CoVari RealTime(S) Throu CoVari RealTime(S)
0.0016 0.0 22.871 0.0200 0.0 32.297 0.1000 0.0 41378 0.2000 0.0 48.739
0.0032 493265 26769 0.0400 6.266E5 33.758 0.2000 2.048E5 51532 0.4000 4.830E-5 55.485
DA 0.0064 9.040E-5 29.264 0.0800 1451E-4 41583 0.4000 8.872E-5 54.924 0.7999 6.235E-5 59.988
N o012 1.167E-4 32.097 0.1600 1.2956-4 46.108 0.7999 1.199E-4 62.654 1.6000 1498E-4 66.682
0.0256 301364 34292 0.3200 2.926E-4 52.426 1.5999 2490E-4 66478 3.1999 1.939E-4 80.340
0.0512 4.164E-4 35.075 0.6400 32524 56.147 3.1991 3.194E-4 88232 6.3979 3.942E4 108.869
0.1024 4.942E-4 42.486 1.2798 4816E-4 63.084 6.3967 4394E-4 99.762 12.788 4797E-4 125.868

0.2048 5.969E4 49617 2.5593 6.896E-4 75.425 12.7889 6.560E-4 154.008 25.555 6.873E-4 156541

0.4096 9.072E-4 54728 5.1176 8.907E-4 95916 25.5491 1019E-3 168375 51.0060 120363 256.397

0.8192 1.294E3 61.949 10.231 1.257E-3 137.949 50.9885 1.662E-3 243.435 101.6017 2.214E3 369.082
- 1.6383 179463 79.552 20.446 191763 196.736 101.5792 2.696E-3 480.852 201.5790 42853 906.012

Performance Reulsts

* average job length of 5000 seconds and use the
optimal combination of parameters, that is steal-
half policy, number of neighbors is a quarter of
number of all nodes, poll interval is 100 seconds.

* Group one: 10 billion jobs and each node has 8
cores and we double the number of nodes every
time

* Group two: each node has 1000 cores and we

double the number of nodes every time and set the
number of jobs 10 times of the number of all cores.

Results of Group One

0.001600003 0 2315.186
0.003200005 5.58E-06 2755.472
4 0.006399961 5.07E-06 2908.035
8 0.012799972 1.36E-05 3207.9
0.0255998 2.78E-05 3358.33
0.051199758 3.80E-05 3707.142
0.10239979 4.66E-05 4932.786
0.204800523 6.64E-05 5637.825
256 0.409599812 8.55E-05 6214.509
0.819197885 1.24E-04 6671.319
1.638387861 1.85E-04 8606.809
3.276828023 2.62E-04 11754.683
6.553535084 3.66E-04 13668.893
13.10698003 5.21E-04 18606.877
26.2135383 7.35E-04 25383.456
52.42464599 1.05E-03 39392.475
104.8427879 1.48E-03 98527.071
209.6592753 2.08E-03 538956.397

Results of Group Two

0.178624945
0.353243131
0.70786606
1.410581173
2.81002987
5.62917367
11.20161569
22.36084491
44.54836015
88.7077843
177.0042483
353.452133
705.0215427
1410.800987
2819.51508
/

/

/

0
0.001
0.009572617
0.005118594
0.006007183
0.006420572
0.025181497
0.023579927
0.029038926
0.036974344
0.039759638
0.040117491
0.042431897
0.04194238
0.042909697
/

/

/

0.992
1.404
1.128
1.297
1.785
2.672
4.701
9.339
22.324
68.622
188.872
747.514
6864.872
28637.461
126936.902
/
/
/

Comparison Between two simulators

* The scalability of the centralized one is not as good
as the distributed one. The centralized server is a
bottleneck. The upper bound of throughput is
around 1000. The program runs very fast, it takes
about 20 hours to run exascale experiments.

* The distributed simulator scales very well, the
increase of throughput is linear with that of number
of nodes. As there are so many events in the system,
it takes longer to run experiments at the same scale
as the centralized one

Conclusion and Future work

* Both the simulators could run experiments at
exascale, though it takes longer for the distributed

simulator.

 The distributed simulator beats the centralized one
in terms of scalability and reliability

* Future work involves memory issues and playing
with parameters, such as poll interval, to reduce the
real time for distributed simulator. Maybe a fully
distributed simulator is our next goal.

