
Centralized and Distributed Job
Scheduling System Simulation at

Exascale

Speakers: Ke Wang

Advisor: Ioan Raicu

Coworker: Juan Carlos Hernández Munuera

 09/07/2011

Outline

• Introduction

• Simulated Architecture

• Technical Consideration

• Centralized Simulator

• Distributed Simulator

• Conclusion and Future Work

Introduction

• MTC

• Job Scheduling Systems

• State-of-art Job Scheduling Systems and
Simulators(Centralized/Small scale)

• Exascale

4

Our Work

• Study scalability and feasibility of JOB
SCHEDULING at EXASCALES

• Simulation

– memory and processing limitations

– realistic representation of real systems

• Explore central and decentralized systems

• Carry experiments to draw useful conclusions

Simulated Architecture

Technical Consideration

• Hardware, simulating demands great resources

– Fusion, 48 cores, 64 GB memory

– Thread limitation! 1:1 mapping discarded

• Software

– Simulation model, discrete or continuous-events

– Existing simulation environments

• GridSim, SimJava, JiST

7

JiST

• Java in Simulation Time

• Incredibly light for a simulation environment

– naive ring of million nodes just 1.3 GB

• Easy discrete-event abstraction

• Centralized simulator developed

• Work discontinued

– Own semantics, debugging

– Undetermined execution order of events at the same time

– Weird errors, JiST not support anymore

Centralized Simulator

• Components

• Client

• Server

• Nodes

• Event Queue

• Load information Hash Map

• How the simulator works?

Centralized Simulator Implementation

• 1. Global Variables
Variables Description

int numNode Number of nodes the simulator would have

double linkSpeed The link speed of the network

double procTimePerJob Time the server takes to determine which node to dispatch for one job

double networkLatency Network latency for every communicate message

int numCoresPerNode Number of cores each node has

double jobSize The size of each job

int lowThreshold The threshold to which point the client submits more jobs to the server

long totalNumJobs Number of jobs the client need to do

double logTimeInterval The time interval to write log

Centralized Simulator Implementation

• 2. Job Waiting Queue in the Centralized Server

• Data Structures and the time efficiency

Data Structures Removing from the
head

Adding from the
rear

Vector

ArrayList

LinkedList

Centralized Simulator Implementation

• 3. Event Queue

• (1) Stores events that will happen in future

• (2) Each event has an attribute of occurrence
time

• (3) The first event in the event queue is the
one that has smallest occurrence time

Centralized Simulator Implementation

• 3. Event Queue
• Event type and description

Event Type Description

JobEnd A job is finished by a node. Has other fields:
‘jobKey’, ‘nodeKey and ‘timeStamps’

Submission Client submits some number of jobs to the
centralized server

Log Write a record to the log file at the simulation
time

Centralized Simulator Implementation

•

Centralized Simulator Implementation

•

Centralized Simulator Implementation

• 5. Logs and Plot Generation

• Two logs

• task_execute_log: records information such as the ‘submission
time’, ‘wait time’, ‘executing time’ for every job. Has switch to turn
it on/off.

• summary_log: contains information such as ‘number of all cores’,
‘number of executing cores’, ‘waiting queue length’, ‘through put’.
Implement it with an event instead of separate thread.

• Six ways to write to a log: ‘FileOutputStream’,
‘BufferedOutputStream’, ‘PrintStream’, ‘FileWriter’, ‘BufferedWriter’,
‘PrintWriter’. ‘BufferedWriter’ is the fastest one.

• Use ploticus to generate plots

Results and Discussions

• 1. Values of global variables for experiments

Variables Values

linkSpeed 1000000000 bytes/Sec

procTimePerJob 1 millisecond

networkLatency 100 microseconds

numCoresPerNode 1000

jobSize 1000 bytes

lowThreshold 2000

Results and Discussions

• 2. Correction Validation
• communication overhead is 0, procTimePerJob = 0,

networkLatency = 0, jobSize = 0. totalNumJobs is 10 times of
the total number of cores. Two groups of experiments.

• (1) all the jobs have the same length, 1000 seconds. Simulation
time is: 1000 * 10 = 10000

• (2) the average length of all jobs is 500 seconds. Simulation
time is around 500 * 10 = 5000

• These two results are exactly what we expect.

Performance Results

 Average Job Length: 5000 seconds Average Job Length: 500000 seconds

No. of Nodes Simulation Time(s) Real Time(s) Simulation Time(s) Real Time(s)

1 55711.5063 1.302 5626603.597 1.386

2 56623.62122 1.56 5645321.744 1.807

4 56447.07415 2.154 5636848.561 2.314

8 56569.38075 3.171 5673423.825 3.615

16 56682.29121 4.929 5661830.737 5.553

32 56686.82232 8.367 5659072.997 9.169

64 56724.64275 16.001 5668874.294 16.533

128 56673.38761 31.021 5667498.57 30.855

256 56788.76278 57.157 5664111.183 55.868

512 56928.37883 115.36 5664150.113 110.426

1024 57196.01807 237.705 5665329.831 223.32
2048 57773.9418 500.294 5667987.182 470.484
4096 59156.70364 1463.532 5668656.772 1344.491

8192 91915.50152 398.35 5670328.713 3334.99

16384 173831.1205 857.332 5674380.508 6818.076

32768 337677.7676 1882.023 5682968.991 14089.804

65536 665353.5454 3721.908 5699856.595 33116.881

131072 1320718.623 8175.676 5735198.21 111091.141

262144 2631434.502 16148.014 / /

524288 5252877.111 29795.722 / /

1048576 10495753.63 67251.93 / /

Plots

Performance of 1 node, average job length is
5000 seconds, multiply the throughput by 10000

performance of 8192 node, average job length is 5000
seconds, multiply the throughput by 80000, the wait

queue length by 1000

Plots
performance of 1048576 node, average
job length is 5000 seconds, multiply the
number of executed cores by 100, the
throughput by 2000000 and the wait

queue length by 200000

Distributed Simulator

• Improve the throughput and reliability

• Load balancing is trivial for centralized
simulator

• Implement work stealing to achieve load
balancing

Work Stealing

• An efficient method to achieve load balancing

• Processes have load imbalance at first. Many
benchmarks to generate load imbalance, such as
BPC(Bouncing Producer-Consumer),
UTS(Unbalanced Tree Search)

• The idle processes poll the busy ones to get work to
do.

• Thief: The process that initiates the steal

• Victim: the process that is targeted by the steal

Work Stealing

• Parameters affecting the performance of work
stealing

• Can a node steal jobs from all others or just
some neighbors?

• How to define neighbors?

• How to select which neighbor to steal jobs

• How many jobs to steal from a selected node?

Changes from the Centralized Simulator

• (1) Remove the centralized server and enhance the functionality of a
node.

• (2) A node has a few number of neighbors from which it could steal
or dispatch jobs. consider just homogeneous network, that is the
distances between a node and its neighbors are the same.

• (3) Keep the global event queue except more events

• (4) Handle jobs straightforwardly, no job entity.

• (5) Client just submits to the first node.

• (6) load = jobListSize – numIdleCores

• (7) Do visualization for the load for every node

• (8) Termination condition: all jobs submitted by client are finished

Distributed Simulator Implementation

1. Global Variables for work stealing and
visualization

Variables Descriptions

int numberNeighbors How many number of nodes each node has

long currentEventKey Event key for an event

int numNeigToAsk How many number of neighbors to ask during one attempted
stealing

double
noJobsToStealLongInterv

The poll interval of a node to ask jobs when it is idle

double
noJobsToStealShortInterv

The time interval of a node to ask another part of its neighbors
when it is idle

int numStealWork How many jobs to steal from a neighbor

double
visualizationInterval

The time interval to do visualization

2. Global Event Queue

• Each event now has a global id number

• Types of descriptions of events
Event Type Event Description

JobEnd A job is finished, a cores is free. Start to execute another job or steal jobs

Steal Ask jobs from its neighbors. Ask load, choose heaviest and inserts
‘JobReception’, or wait for some time to ask again.

JobDispatch A node dispatches jobs to a neighbor. Has jobs, inserts ‘JobReception’ from the
neighbor, or ask the neighbor do steal again

JobReception First node receive jobs from client, or a node receive jobs form its neighbor

Log The same as that of centralized simulator, add coefficient variance

Visualization Visualize the load information of all node

3. Visualization

• Efficiently represent load flow in the system

• Simple canvas, each node mapped to a tile

– color represent load

– Best results in HSB color space

• Hue = (1-rate)*0.36

• Brightness = 1.0

• Saturation = 1.0-(0.4*(1-rate))

28

29

1024 nodes, 8 cores, 64 neighbors, 100000000 jobs

30

1024 nodes, 8 cores, 128 neighbors, 100000000 jobs

31

1024 nodes, 8 cores, 256 neighbors, 100000000 jobs

Results and Discussions

• 1. Correction Validation

• Run small experiments to trace the procedure
of work stealing

• For large experiments, we see that the load
balancing is good: the coefficient variance is
close to zero

2. Optimal Parameters of Work Stealing

• Amount of jobs to steal
• average job length = 0.5 seconds, pollInterval = 0.05 seconds, numCoresPerNode = 8, totalNumJobs =

10000000, numNeighbors = 2

 Change of throughput with respect to the number Change of coefficient variance with respect to

 Of nodes for different steal policy number of nodes for different steal policy

No. of Neighbors a node has

• average job length = 0.5 seconds, pollInterval =
0.05 seconds, numCoresPerNode = 8,
totalNumJobs = 10000000, steal-half policy

Change of throughput with respect to
number of nodes for different number
of neighbors

Change of coefficient variance with
respect to number of nodes for
different number of neighbors

No. of Neighbors a node has

• A quarter neighbors is too much in reality

Change of throughput with
respect to number of nodes for
different number of neighbors

Change of coefficient variance
with respect to number of nodes
for different number of neighbors

Poll Interval

• A node steals jobs from its neighbors, but all of which have no jobs. The
node waits for some time and then tries to steal jobs again.

• Intuitively, the longer the average job length is, the larger the interval
should be.

• numCoresPerNode = 8, totalNumJobs = 100000000, numNeighbors = a
quarter of number of all nodes and steal-half policy.

• Results of changing the poll interval

 Poll Interval = 0.01 Poll Interval = 0.1 Poll Interval = 1 Poll Interval = 10 Poll Interval = 100

numNode Throu coVar Time(s) Throu coVar Time(s) Throu coVar Time(s) Throu coVar Time(s) Throu coVar Time(s)

1 0.0016 0.0 25.597 0.0016 0.0 21.439 0.0016 0.0 22.555 0.0016 0.0 21.857 0.0016 0.0 22.871

2 0.0032 2.158E-5 28.986 0.0032 1.754E-4 26.598 0.0032 3.526E-5 26.384 0.0032 8.604E-5 27.320 0.0032 4.932E-5 26.769

4 0.0064 1.412E-4 33.677 0.0064 9.711E-5 30.466 0.0064 3.842E-5 28.245 0.0064 6.960E-5 28.298 0.0064 9.040E-5 29.264

8 0.0128 1.391E-4 101.190 0.0128 2.397E-4 37.065 0.0128 1.729E-4 32.075 0.0128 1.573E-4 30.996 0.0128 1.167E-4 32.097

16 0.0256 2.625E-4 83.181 0.0256 2.321E-4 38.224 0.0256 1.956E-4 32.472 0.0256 2.000E-4 31.961 0.0256 3.013E-4 34.292

32 0.0512 2.910E-4 158.198 0.0512 3.230E-4 46.680 0.0512 3.636E-4 36.514 0.0512 2.925E-4 35.394 0.0512 4.164E-4 35.075

64 0.1024 4.359E-4 400.326 0.1024 4.105E-4 78.006 0.1024 4.518E-4 47.806 0.1024 4.435E-4 43.423 0.1024 4.942E-4 42.486

128 0.2048 6.968E-4 1059.367 0.2048 6.340E-4 157.946 0.2048 6.993E-4 62.401 0.2048 6.292E-4 50.774 0.2048 5.969E-4 49.617

256 0.4095 8.412E-4 4084.424 0.4095 9.090E-4 390.697 0.4096 9.440E-4 89.999 0.4096 8.843E-4 60.548 0.4096 9.072E-4 54.728

512 0.8192 1.273E-3 13612.788 0.8191 1.275E-3 1721.174 0.8191 1.260E-3 183.849 0.8190 1.299E-3 75.227 0.8192 1.294E-3 61.949

1024 1.6380 1.829E-3 67102.279 1.6382 1.821E-3 5643.013 1.6381 1.926E-3 666.370 1.6381 1.836E-3 127.173 1.6383 1.794E-3 79.552

Number of Cores a node has

• A node could have thousands of cores in the future

• are average job length = 5000 seconds, totalNumJobs = 100000000, numNeighbors =
a quarter of number of all nodes, poll interval = 100 seconds and steal-half policy.

• Results of changing the number of cores of a node
 numCoresPerNode = 8 numCoresPerNode = 100 numCoresPerNode = 500 numCoresPerNode = 1000

numNode Throu CoVari RealTime(S) Throu CoVari RealTime(S) Throu CoVari RealTime(S) Throu CoVari RealTime(S)

1 0.0016 0.0 22.871 0.0200 0.0 32.297 0.1000 0.0 41.378 0.2000 0.0 48.739

2 0.0032 4.932E-5 26.769 0.0400 6.266E-5 33.758 0.2000 2.048E-5 51.532 0.4000 4.830E-5 55.485

4 0.0064 9.040E-5 29.264 0.0800 1.451E-4 41.583 0.4000 8.872E-5 54.924 0.7999 6.235E-5 59.988

8 0.0128 1.167E-4 32.097 0.1600 1.295E-4 46.108 0.7999 1.199E-4 62.654 1.6000 1.498E-4 66.682

16 0.0256 3.013E-4 34.292 0.3200 2.926E-4 52.426 1.5999 2.490E-4 66.478 3.1999 1.939E-4 80.340

32 0.0512 4.164E-4 35.075 0.6400 3.252E-4 56.147 3.1991 3.194E-4 88.232 6.3979 3.942E-4 108.869

64 0.1024 4.942E-4 42.486 1.2798 4.816E-4 63.084 6.3967 4.394E-4 99.762 12.788 4.797E-4 125.868

128 0.2048 5.969E-4 49.617 2.5593 6.896E-4 75.425 12.7889 6.560E-4 154.008 25.555 6.873E-4 156.541

256 0.4096 9.072E-4 54.728 5.1176 8.907E-4 95.916 25.5491 1.019E-3 168.375 51.0060 1.203E-3 256.397

512 0.8192 1.294E-3 61.949 10.231 1.257E-3 137.949 50.9885 1.662E-3 243.435 101.6017 2.214E-3 369.082

1024 1.6383 1.794E-3 79.552 20.446 1.917E-3 196.736 101.5792 2.696E-3 480.852 201.5790 4.285E-3 906.012

Performance Reulsts

• average job length of 5000 seconds and use the
optimal combination of parameters, that is steal-
half policy, number of neighbors is a quarter of
number of all nodes, poll interval is 100 seconds.

• Group one: 10 billion jobs and each node has 8
cores and we double the number of nodes every
time

• Group two: each node has 1000 cores and we
double the number of nodes every time and set the
number of jobs 10 times of the number of all cores.

Results of Group One
No. of Nodes Throughput Coefficient Variance Real Time(s)

1 0.001600003 0 2315.186

2 0.003200005 5.58E-06 2755.472

4 0.006399961 5.07E-06 2908.035

8 0.012799972 1.36E-05 3207.9

16 0.0255998 2.78E-05 3358.33

32 0.051199758 3.80E-05 3707.142

64 0.10239979 4.66E-05 4932.786

128 0.204800523 6.64E-05 5637.825

256 0.409599812 8.55E-05 6214.509

512 0.819197885 1.24E-04 6671.319

1024 1.638387861 1.85E-04 8606.809

2048 3.276828023 2.62E-04 11754.683

4096 6.553535084 3.66E-04 13668.893

8192 13.10698003 5.21E-04 18606.877

16384 26.2135383 7.35E-04 25383.456

32768 52.42464599 1.05E-03 39392.475

65536 104.8427879 1.48E-03 98527.071

131072 209.6592753 2.08E-03 538956.397

262144

524288

1048576

Results of Group Two
No. of Nodes Throughput Coefficient Variance Real Time(s)

1 0.178624945 0 0.992
2 0.353243131 0.001 1.404
4 0.70786606 0.009572617 1.128
8 1.410581173 0.005118594 1.297

16 2.81002987 0.006007183 1.785
32 5.62917367 0.006420572 2.672
64 11.20161569 0.025181497 4.701

128 22.36084491 0.023579927 9.339
256 44.54836015 0.029038926 22.324
512 88.7077843 0.036974344 68.622

1024 177.0042483 0.039759638 188.872
2048 353.452133 0.040117491 747.514
4096 705.0215427 0.042431897 6864.872
8192 1410.800987 0.04194238 28637.461

16384 2819.51508 0.042909697 126936.902
32768 / / /
65536 / / /

131072 / / /

Comparison Between two simulators

• The scalability of the centralized one is not as good
as the distributed one. The centralized server is a
bottleneck. The upper bound of throughput is
around 1000. The program runs very fast, it takes
about 20 hours to run exascale experiments.

• The distributed simulator scales very well, the
increase of throughput is linear with that of number
of nodes. As there are so many events in the system,
it takes longer to run experiments at the same scale
as the centralized one

Conclusion and Future work

• Both the simulators could run experiments at
exascale, though it takes longer for the distributed
simulator.

• The distributed simulator beats the centralized one
in terms of scalability and reliability

• Future work involves memory issues and playing
with parameters, such as poll interval, to reduce the
real time for distributed simulator. Maybe a fully
distributed simulator is our next goal.

