Toward a Common Model for
Highly Concurrent Applications

Douglas Thain
University of Notre Dame

MTAGS Workshop
17 November 2013

Overview

Experience with Concurrent Applications
— Makeflow, Weaver, Work Queue

Thesis: Convergence of Models
— Declarative Language

— Directed Graphs of Tasks and Data
— Shared Nothing Architecture

Open Problems

— Transaction Granularity
— Where to Parallelize?
— Resource Management

Concluding Thoughts

The Cooperative
Computing Lab

University of Notre Dame

http://www.nd.edu/~ccl

Makeflow

Makeflow is a workflow system for parallel
and distributed computing that uses a
language very similar to Make. Using
Makeflow, you can write simple scripts that
easily execute on hundreds or thousands of
machines.

Makeﬂow

Work Queue

Work Queue is a system and library for
creating and managing scalable master-
worker style programs that scale up to
thousands machines on clusters, clouds, and
grids. Work Queue programs are easy to write
in C, Python or Perl.

Parrot

Parrot is a transparent user-level virtual
filesystem that allows any ordinary program
to be attached to many different remote
storage systems, including HDFS, iRODS,
Chirp, and FTP.

Chirp

Chirp is a personal user-level distributed

filesystem that allows unprivileged users to share

space securely, efficiently, and conveniently.

When combined with Parrot, Chirp allows users

to create custom wide-area distributed
filesystems.

The Cooperative Computing Lab

We collaborate with people who have large
scale computing problems in science,
engineering, and other fields.

We operate computer systems on the
O(10,000) cores: clusters, clouds, grids.

We conduct computer science research in the
context of real people and problems.

We release open source software for large
scale distributed computing.

http://www.nd.edu/~ccl

AGTCCGTACGA

ur

ollaborators

Dataset State (help) Constraint (help) Limit Detail

Showing 110 10 of 93 results. Download all results as TXT or CSV or XML or TAR.
[(Prev 10) [Next 10] [FirstPage] [LastPage |

Unvalidated Metadata Action Valid 1
(Vaiate |

)

Valid 2

(Cneidate

Validate

(Probon)

mcord / peview / vew
[Vaidate)

(Problem]

(Unvaidate]

record

([Probiem |

((Unvaicate

Mode Validate Against Dataset

30 Face Scans [any v 10| imited | [smal] [validate ¥ [Face images

tecard / prewen / view

tecord / preview / view
| 24

tecond view

Valid 4

cocord | prevaw / ey

0

vy

Good News:
Computing is Plentiful

CPU Utilization for the Last Week

Mumber of CPls

Ls1a i n]

L]

A0

F000

2000

1000

gy
e
gy

2% 24
Apr Apr

g3

29
A

404855 (51%)
328960 (41%)
58935 (7%)
792750 (100%) CPU-Hours Total

Superclusters by the Hour

{ e =y Q http://arstechnica.com/business/news/2011/09, p v a c X ° S1'279-per-hour’ 30,000-cor... %

$1,279-per-hour, 30,000-core cluster built on
Amazon EC2 cloud

By Jon Brodkin | Published a day ago

Chef Ganglla

Cycle

Show: All converges over the last hour

View: Node * Show Legend Refresh

Host Name ¥ Instance Cluster Status

9 10-36- 126161 oc2 imterral

9 10-36- 12599 .02 mtormy +S9109038 412 T
o 103612591 0c2 ntermyl 5220484 412 o]
21036129137, 6C2 internyl OSSete 412 i)
2 10-3%-9-95 <. internal +Sa36003¢ 412 TE—
- 10-3%-3-6) ec2. internal -EP0C806 412 e
©-10-35-2-10.ec2. interna! elXbet0 412 —=
o 10-35-14- 209 oc2 ntermal aSi492c4 412 M|
©-10-3%-10-207 0c2 mtemal 37390158 412 i ——————

Yotal Converges

NN AN Vs

Sewren: |

Last Completed Converge

0110730 15:36:43
0110730 15:4:07
20131-07-30 15:24:%
001073 15:31.47
2011-07-30 152813
20131-07-30 15217
2011-07-30 15:20:09
2011-07-30 15:27:1)

Longest Converge

3:31.50)
2:58.29¢
454 968
“ames
4:10.597
338 48}
3 47.043
“85n

Completed Converges

m"@dgw

320 W

o

-

fr X &

,~

m

http://arstechnica.com/business/news/2011/09/30000-core-cluster-built-on-amazon-ec2-cloud.ars 8

The Bad News:
It IS Inconvenient.

End User Challenges

* System Properties:
— Wildly varying resource availability.
— Heterogeneous resources.
— Unpredictable preemption.
— Unexpected resource limits.

e User Considerations:

— Jobs can’t run for too long... but, they can’t run too quickly,
either!

— 1/0 operations must be carefully matched to the capacity of
clients, servers, and networks.

— Users often do not even have access to the necessary
information to make good choices!

| have a standard, debugged, trusted
application that runs on my laptop.

A toy problem completes in one hour.
A real problem will take a month (I think.)

Can | get a single result faster?
Can | get more results in the same time?

Last year,
| heard about
this grid thing.
This year,
| heard about
this cloud thing.

What do | do next?

11

Our Philosophy:

Harness all the resources that are available:
desktops, clusters, clouds, and grids.

Make it easy to scale up from one desktop to
national scale infrastructure.

Provide familiar interfaces that make it easy to
connect existing apps together.

Allow portability across operating systemes,
storage systems, middleware...

Make simple things easy, and complex things
possible.

No special privileges required.

An Old Idea: Makefiles

split.py

input.data

Jsplit.py

part3

mysim.exe

part2

part1

Jmysim.exe

|

Jmysim.exe

join.py

out3 out2

outl

Jjoin.py

result

part1 part2 part3: input.data split.py
Isplit.py input.data

out1: part1 mysim.exe
/mysim.exe part1 >out1

out2: part2 mysim.exe
/mysim.exe part2 >out2

out3: part3 mysim.exe
./mysim.exe part3 >out3

result: out1 out2 out3 join.py
Jjoin.py out1 out2 out3 > result

13

Makeflow = Make + Workflow

* Provides portability across batch systems.

[| [ovimee] [| []

* Enable parallelism (but not too much!)
* Fault tolerance at multiple scales.

oo [[22]]
» Data and resource management.

Queue

http://www.nd.edu/~ccl/software/makeflow

14

Makeflow Applications

BioCompute
TUSC | [T I |

sertalis_sodig, buk sy

pute

5 el i ke athrash1 - Home o Queue

et e bk

P | P | R | ey pree e e | n—

My Data Action My Queue

Select Action: Submita BLAST Job [+] Fiter by: AllModules [

| 2uFolder Step 1 - Select Input File
- (21.60 GB) Fiiter by Submitter: atrashl [+]

Select Folder:

Username
v athrash1
+athrashl
v athrashl
athrashl
v athrash1
+athrash1
v athrashl

Status

Select File:

v 16.4 MB

Step 2 - Title, Algorithm, and Privacy

Job Title:

| untitied |
Privacy:

-CLIPPEDs..

SR TR
Carmganson orted.bam ? N S e 4 G »
= N ¢ Favorites ‘@Flle Browser: 'MDSEP' - Biocompute @ Motre Dame ﬁ B 7 . Page » Safety v Tools @
s bicolr | I
~
dlig

e SIPREDS

Biocompute @ Notre Dame - File Browser: 'ND5EP" Logged in as- dd

Home
My Job:

Chnd 1382 output (4 KB) - Page 20f 3 . download in_txt farmat
My Workspace Page: Previous | Mext + BLAST this file
by B 2 Jump to page + Copy to my workspace
My Account « Back to my results
Shared Data

BLAST Score = 121 bits (303}, Expect = 2e-28
Identities = 76/13% (54%), Positives = 96/13% (63%), Geps = 7/13% (3%)
Submit a Blast Job Frame = =3
Make a FASTA DB
Query: 152 FLAGFYSKDLILEMLMLSNLNMMIFFLEYFSTGLTMFYTIR-LLMYLMINDYN---LLTI 207 i
Syster FLAGFYSRDLILE+L+LSNIN++IFF+ +F ¥YI +LY IN+N L I
Active Jobs. Sbjct: 594 FLAGFYSKDLILEILILSNLNIIIFFILFF--——--- YRINYILYYSFINIENN*L=EI 752

Condor Status

Query: 208 YNL¥D---ENYTMLKSMFILLMMSVITGSMLSWFIFSYPYMIYLEMMLEKLMVLYVSEMGL 264
NL £ ¥+ Eirt o+ 8 - FSYPY+IYLP+NLELMVLYVSFMGL

Sbkict: 753 NNL*FV**KLYYIKKNIYFINNKSNYREKNI-XKMIYFSYPYIIYLPINLELMVLYVSFMGL 929

System Statistics
About Us.

Report a Problem
Log out Query: 265 LMGYLISNMKIYSLNKFMK 283

- L+GYLISN+KIYSLNKF+K
Admin Sbjct: 930 LIGYLISNIKIYSLNRFIK 986
Manage Jobs

output.]

Manage Databases

M U >7180000023881
anage tisers Length = 687

Manage Bugs

Google Analytics Score = 48.1 bits (113}, Expect = 2e-08

Identities = 37/175 (21%), Positives = 32/175 (52%)

TOOTaT
Unvalidate

ord / premew / view

Frame = -3

|~

record / preview / view / view tecord / preview / view ecord / preview / view tecord / prevew / view record / preview / view
al

) 22

'

1econd / preview / view / view cord / preview / vow ecord / preview / view tocord / prevew / view 19c0rd / preview / view ,
< >

Problem
complete (B
Unvalidate

Example: Biocompute Portal

BioCompute
TUWSCY | T |

=D =

My Data Action My Queue S S
View Others' Public Fies: | athrashl [<] Select Action: Submita BLAST Job [=] Filcer by: AllModules [=] A H A
Upload File / Create New Folder Step 1 - Select Input File
Jour Fies - athrashl - (2169 68) Fiter by Submitter: athrashi [S H RI M P
T Status
Private Files: ftest Complete
E] ftest Complete ES I
[7] 1.assembled.unigenes.f.. v16.4 MB ltest Complete
[0 Lref kst
- . .) [test4 Complete
[] 1.TCAdean 1fasta Step 2 - Title, Algorithm, and Privacy kesta cszmE
ey = MAKER
" s \ test2 Complete
[_aeqypti,EST-CLIPPED-s.. JebTie: [untitied ‘ Isorghum-test Complete
g aaegybg_li-ng\f:CuRplsls'A-; Privacy: Make this job public. [=] [testing - input fl.. Complete
B Algorithm: |debuq test Complete eee
alkia ltest Complete
g al 1.f3 Jtest Complete
ATRAZ fastq.sorted.bam test - query(fie Complete
i Step 3 - Choose BLAST Databases = .
E ix;lﬂ.sorgtum Eco‘br... P ltests Complete

Done

=
-

Progress

Generate Makefile Bar

| Transaction
e Lo g

[r—— o o o=y ey [—

[S——

[ETTETSR—Y | p———

ol i bk s g 48t | sl i ek g 405t

i b B pteame ot ek Aot

Update Condor
Status Pool

Tasks

Generating Workflows with Weaver

db = SQLDataSet('db', 'biometrics', 'irises');

irises = Query(db,color=='Blue’)

iris to bit = SimpleFunction('convert iris to template‘)
compare bits = SimpleFunction('compare iris templates')

bits = Map(iris_to_bit, irises)
AllPairs (compare bits, bits, bits, output='scores.txt')

Map All-Pairs

Query

Weaver + Makeflow + Batch System

* A good starting point:
— Simple representation is easy to pick up.
— Value provided by DAG analysis tools.
— Easy to move apps between batch systems.

* But, the shared filesystem remains a problem.
— Relaxed consistency confuses the coordinator.
— Too easy for Makeflow to overload the FS.
* And the batch system was designed for large jobs.

— Nobody likes seeing 1M entries in gstat.
— 30-second rule applies to most batch systems

Work Queue System

1000s of workers
dispatched to
clusters, clouds, anc
grids

Work Queue Program
C / Python / Perl

Work Queue Library put in.txt

exec P.exe <in.txt >out.txt
get out.txt

worker

http://www.nd.edu/~ccl/software/workqueue

Makeflow + Work Queue

sge_submit_workers

Hundreds of
Workers in a
Personal Cloud

Local Files and
Programs

ssh

condor_submit_workers

Managing Your Workforce

work_queue_pool —T condor

WQ
Pool

Submits new workers.
Restarts failed workers.
Removes unneeded workers.

wQ
Pool

work_queue_pool —T torque

Master

Hierarchical Work Queue

sge_submit_workers

Makefile
Private Sharer.

C75
Cluster SGE
cluster

Makeflow

<aMmpus Public
Condor Clenud
%00l rovide~

Local Files and
Programs

condor_submit_workers ssh

Work Queue Library

#include “work_queue.h”
while(not done) {

while (more work ready) {
task = work_queue_task_create();
// add some details to the task
work_queue_submit(queue, task);

}

task = work_queue_wait(queue);
// process the completed task

}

http://www.nd.edu/~ccl/software/workqueue

23

Adaptive Weighted Ensemble

Proteins fold into a number of distinctive states, each of
which affects its function in the organism.

How common is each state?
How does the protein transition between states?

How common are those transitions? ”

AWE Using Work Queue

E Simplified Algorithm:
— Submit N short simulations in various states.
— Wait for them to finish.
— When done, record all state transitions.
— |If too many are in one state, redistribute them.
— Stop if enough data has been collected.
— Continue back at step 2.

25

AWE on Clusters, Clouds, and Grids

= Tptal
WD Condor
= - MWD HPC
* Stanford (CME |
Armazon EC2
M5 Azure

70

1
= « Total
WD Condor
— - ND HPC
* Stanford (CME |
Arn azon EC2
M5 Azure

70

= Total
WD Condor
— - ND HPC
* Stanford ICME
Amazon EC2

=] m, | - MS Az
;,...._J‘-"‘-wx | | 1 ==

0 10 20 30 40 50 60 70
Time (hours)

New Pathway Found!

Credit: Joint work in progress with Badi Abdul-Wahid, Dinesh Rajan, Haoyun Feng, Jesus

Izaguirre, and Eric Darve.
27

Software as a Social Lever

User and app accustomed to a particular system
with standalone executables.

Introduce Makeflow as an aid for expression,
debugging, performance monitoring.

When ready, use Makeflow + Work Queue to gain
more direct control of I/O operations on the
existing cluster.

When ready, deploy Work Queue to multiple
systems across the wide area.

When ready, write new apps to target the Work
Queue API directly.

Overview

Experience with Concurrent Applications
— Makeflow, Weaver, Work Queue

Thesis: Convergence of Models
— Declarative Language

— Directed Graphs of Tasks and Data
— Shared Nothing Architecture

Open Problems

— Transaction Granularity
— Where to Parallelize?
— Resource Management

Concluding Thoughts

Scalable Computing Model

Makeflow

Weaver

for x in list f(g(x))

Shared-Nothing Cluster Work Queue

b L B-0-il
F G
D B2-0-i

Scalable Computing Model

Dependency Graph
Declarative Language

for x in list f(g(x))

Shared-Nothing Cluster Independent Tasks

B I B-0-il
F G
D B2-0-i

Convergence of Worlds

e Scientific Computing
— Weaver, Makeflow, Work Queue, Cluster
— Pegasus, DAGMan, Condor, Cluster
— Swift-K, (?), Karajan, Cluster
* High Performance Computing
— SMPSS->JDF->DAGue->NUMA Architecture
— Swift-T, (?), Turbine, MPI Application
e Databases and Clouds
— Pig, Map-Reduce, Hadoop, HDFS
— JSON, Map-Reduce, MongoDB, Storage Cluster
— LINQ, Dryad, Map-Reduce, Storage Cluster

Thoughts on the Layers

Declarative languages.

— Pros: Compact, expressive, easy to use.

— Cons: Intractable to analyze in the general case.
Directed graphs.

— Pros: Finite structures with discrete components are easily
analyzed.

— Cons: Cannot represent dynamic applications.

Independent tasks and data.

— Pros: Simple submit/wait APls, data dependencies can be
exploited by layers above below.

— Cons: In most general case, scheduling is intractable.

Shared-nothing clusters.

— Pros: Can support many disparate systems. Performance is
readily apparent.

— Cons: requires knowledge of dependencies.

Common Model of Compilers

Scanner detects single tokens.

— Finite state machine is fast and compact.
Parser detects syntactic elements.

— Grammar + push down automata. LL(k), LR(k)
Abstract syntax tree for semantic analysis.
— Type analysis and high level optimization.
Intermediate Representation

— Register allocation and low level optimization.

Assembly Language
— Generated by tree-matching algorithm.

Overview

Experience with Concurrent Applications
— Makeflow, Weaver, Work Queue
Thesis: Convergence of Models

— Declarative Language
— Directed Graphs of Tasks and Data
— Shared Nothing Architecture

Open Problems

— Transaction Granularity
— Where to Parallelize?

— Resource Management

Concluding Thoughts

Observation:

Generating parallelism is easy but
making it predictable is hard!

Challenge: Transaction Granularity

Commit every action to disk. (Condor)

+ Makes recovery from any point possible.

- Significant overhead on small tasks.

Commit only completed tasks to disk. (Falkon)

- Cannot recover tasks in progress after a failure.
+ Fast for very small tasks.

Extreme: Commit only completed DAG.
Problem: Choice changes with workload!

Challenge: Where to Parallelize?

Challenge: Resource Management

The Ideal Picture

What actually happens:

3M files
of 1K each

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=TSgVVrfg2fU3aM&tbnid=bbdpVtxxta9sPM:&ved=0CAUQjRw&url=http://hdw.eweb4.com/out/789146.html&ei=0T6BUZzfM-f62gW-noGQAw&bvm=bv.45921128,d.b2I&psig=AFQjCNFH4mZ-ap0lwcmXZVHKV_qTNxbZ4g&ust=1367511072608940

Some reasonable questions:

Will this workload at all on machine X?

How many workloads can | run simultaneously
without running out of storage space?

Did this workload actually behave as expected
when run on a new machine?

How is run X different from run Y?

If my workload wasn’t able to run on this
machine, where can | run it?

End users have no idea what resources
their applications actually need.

and...

Computer systems are terrible at
describing their capabilities and limits.

and...

They don’t know when to say NO.

dV/dt : Accelerating the Rate of Progress
Towards Extreme Scale Collaborative Science

Miron Livny (UW), Ewa Deelman (USC/ISI), Douglas Thain (ND),
Frank Wuerthwein (UCSD), Bill Allcock (ANL)

... make it easier for scientists to conduct large-
scale computational tasks that use the power
of computing resources they do not own to
process data they did not collect with
applications they did not develop ...

Categories of Applications

Concurrent Workloads

/\

Static Workloads Dynamic Workloads

/\

Regular Graphs Irregular Graphs

oo
06

while(more work to do)

{

foreach work unit {
t = create_task();
submit_task(t);

}

@
P

t = wait_for_task();
process_result(t);

B0
0
00
00

}

Data Collection and Modeling

Records From

Task Record Many Tasks Task Profile
workflow
. < RAM: 50M
monitor > | Disk: 1G > RAM: 50M P
, \ CPU: 4C Disk: 1G :l; .
- task CPU: 4C _
A
D E
F
Workflow Schedule Workflow Profile Workflow Structure

Portable Resource Management

\ .HTCond%r —-g
- # High Throughput Computing

e

while(more work to do) { Ao
foreach work unit { task 1 details:
t = create_task(); Cpu, ram, disk
submit_task(t); .
} task 2 details:
t = wait_for_task(); CpU, ram, dISk
process_result(t); task 3 details:

cpu, ram, disk

}

http://research.cs.wisc.edu/htcondor/index.html
http://www3.nd.edu/~ccl/workflows/bwa/

Completing the Cycle

Measurement

Allocate Resources
and Enforcement

CPU: 10s
RAM: 16GB

DISK: 100GB

Exception Handling
T Is it an outlier?

Historical Repository Observed Resources

CPU: 5s

RAM: 15GB

RAM DISK: 90GB

Complete Workload Characterization

128 GB 16 GB 12 hours
32 cores 4 cores 500 Gb/s I/O
128 GB 16 GB 1 hour
32 cores 4 cores 5Tb/s 1/O

X 100

X 1000 We can approach the question:
Can it run on this particular machine?
What machines could it run on?

At what levels of the model can
resource management be done?

Overview

Experience with Concurrent Applications
— Makeflow, Weaver, Work Queue

Thesis: Convergence of Models
— Declarative Language

— Directed Graphs of Tasks and Data
— Shared Nothing Architecture

Open Problems
— Transaction Granularity

— Where to Parallelize?
— Resource Management

Concluding Thoughts

Scalable Computing Model

Makeflow

Weaver

for x in list f(g(x))

Work Queue
Workers Work Queue Master

b L B-0-il
F G
D B2-0-i

An exciting time to work
in distributed systems!

Talks by CCL Students This Weekend

e Casey Robinson,
Automated Packaging of Bioinformatics
Workflows for Portability and Durability
Using Makeflow,
WORKS Workshop, 4pm on Sunday.

* Patrick Donnelly,
Design of an Active Storage Cluster File
System for DAG Workflows,
DISCS Workshop on Monday.

Acknowledgements

dV/dT Project Pls CCL Staff
E Bill Allcock (ALCF) B Ben Tovar
I
EV‘.’a Deélman (USC) CCL Graduate Students:
E Miron Livny (UW) Michael Albrecht
B Frank Weurthwein (UCSD)

Patrick Donnelly
Dinesh Rajan
Casey Robinson
Peter Sempolinski
Nick Hazekamp

Haiyan Meng

Peter lvie 55

http://images.google.com/imgres?imgurl=http://www.cse.ohio-state.edu/mlss09/nsf_logo.jpg&imgrefurl=http://www.cse.ohio-state.edu/mlss09/&usg=__zxcUX_lch5XLVcIZHfU-LnOxe0E=&h=692&w=692&sz=173&hl=en&start=1&sig2=3X2k5jwHk0f0y8d74GDuuQ&tbnid=PoXQ4GjK2sVdaM:&tbnh=139&tbnw=139&prev=/images?q=nsf+logo&gbv=2&hl=en&ei=PnuBSonmEdTymQfc3O2rCw

The Cooperative
Computing Lab

University of Notre Dame

http://www.nd.edu/~ccl

Makeflow

Makeflow is a workflow system for parallel
and distributed computing that uses a
language very similar to Make. Using
Makeflow, you can write simple scripts that
easily execute on hundreds or thousands of
machines.

Makeﬂow

Work Queue

Work Queue is a system and library for
creating and managing scalable master-
worker style programs that scale up to
thousands machines on clusters, clouds, and
grids. Work Queue programs are easy to write
in C, Python or Perl.

Parrot

Parrot is a transparent user-level virtual
filesystem that allows any ordinary program
to be attached to many different remote
storage systems, including HDFS, iRODS,
Chirp, and FTP.

Chirp

Chirp is a personal user-level distributed

filesystem that allows unprivileged users to share

space securely, efficiently, and conveniently.

When combined with Parrot, Chirp allows users

to create custom wide-area distributed
filesystems.

