

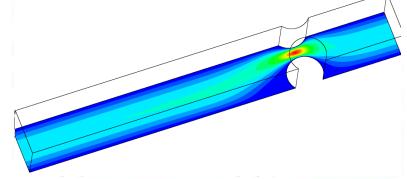
Exploring the Use of Elastic Resource Federations for Enabling Large-scale Scientific Workflows

Javier Diaz-Montes

Rutgers Discovery Informatics Institute (RDI²)

javier.diazmontes@gmail.com

Yu Xie, Ivan Rodero, Jaroslaw Zola, Baskar Ganapathysubramanian, and Manish Parashar

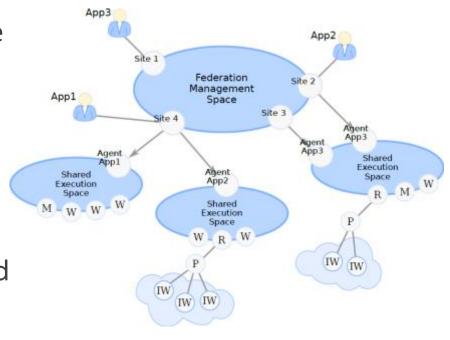

Motivation

- A large class of problems in science and engineering:
 - Fit the MTC paradigm
 - Exceed computational time and throughput that an average user can get from a single data center
 - Have dynamic resource requirements
- Need to explore new federation models that can dynamically shape the infrastructure to meet requirements
- Software defined / User programmable federated infrastructure for the masses

Use Case: Fluid Flow in Microchannel

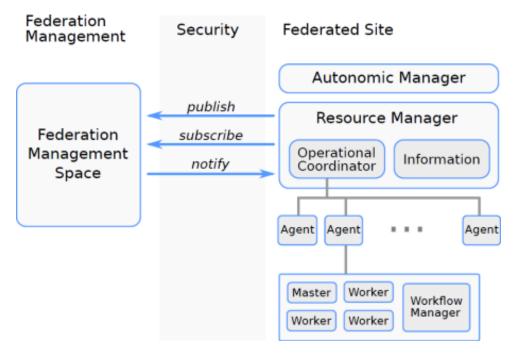
- Controlling fluid streams at microscale is of great importance for biological processing, creating structured materials, etc.
- Placing pillars of different dimensions, and at different offsets, allows "sculpting" the fluid flow in microchannels
- Four parameters affect the flow:
 - Microchannel height
 - Pillar location
 - Pillar diameter
 - Reynolds number

- Each point in the parameter space represents simulation using the Navier-Stokes equation (MPI-based software)
- Highly heterogeneous and computational cost is hard to predict a priori


Federation Overview

- User defined, dynamically created at runtime
- Sites can join and leave at any point
- Sites talk with each others to:
 - Identify themselves
 - Verify identity (x.509, public/private key,...)
 - Advertise their own resources and capabilities
 - Discover available resources
- Users can access the federation from any site

Federation Architecture


- Dynamic Federation built on top of CometCloud framework
- Federation is coordinated using Comet spaces at two levels
- Management space
 - Orchestrate resources in the federation
 - Interchange operational messages
- Shared execution spaces
 - Created on demand by agents
 - Provision local resources and cloudburst to public clouds or external HPC systems

Federation Site

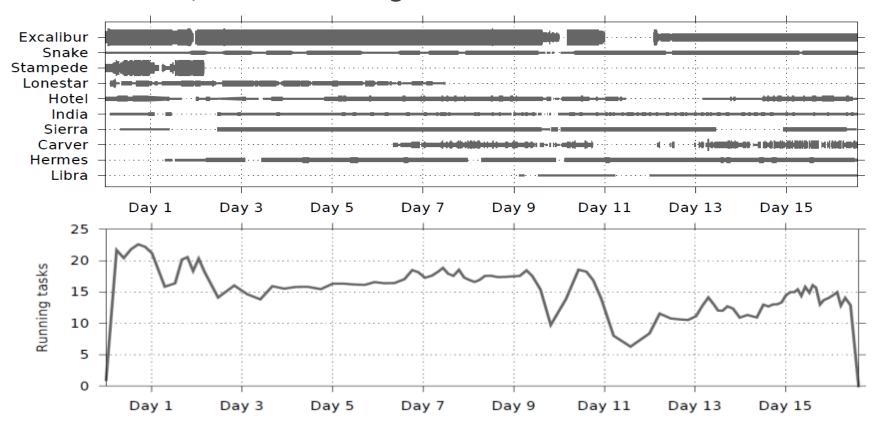
- Gateway to the federation
- Autonomic Manager and Resource Manager
- Transparent coordination between site and execution spaces based on programming model

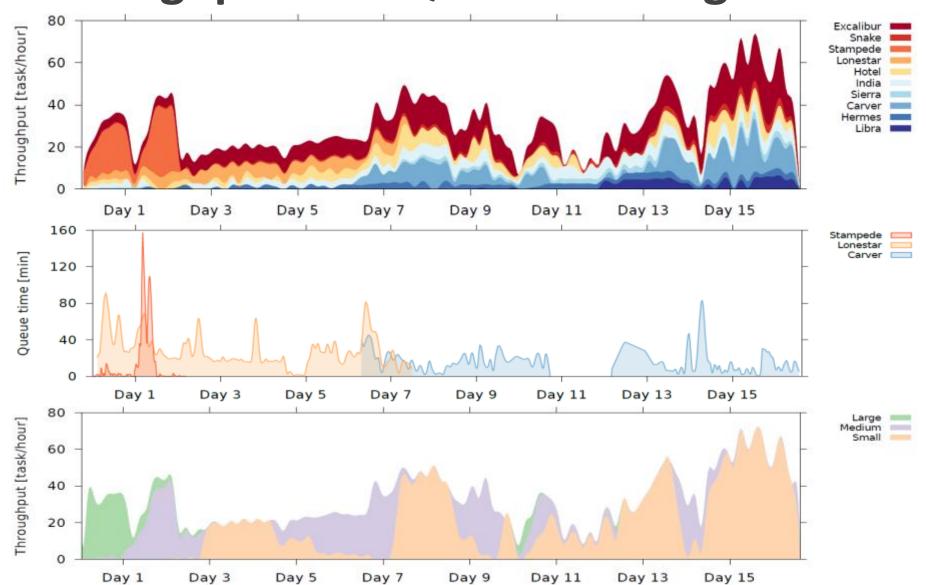
Experimental Setup

- 10 different HPC resources from 3 countries dynamically (and opportunistically) federated using a CometCloud-based infrastructure
- Experiment completely performed within user space (SSH)
- Fault-tolerance mechanisms to handle failed tasks
- Global view of the parameter space requires 12,400 simulations (three categories)

Name	Туре	Cores [†]	Network	Scheduler
Excalibur	IBM BG/P	8,192	BG/P	LoadLeveler
Snake	Linux SMP	64	N/A	N/A
Stampede	iDataPlex	1,024	IB	SLURM
Lonestar	iDataPlex	480	IB	SGE
Hotel	iDataPlex	256	IB	Torque
India	iDataPlex	256	IB	Torque
Sierra	iDataPlex	256	IB	Torque
Carver	iDataPlex	512	IB	Torque
Hermes	Beowulf	256	10 GbE	SGÉ
Libra	Beowulf	128	1 GbE	N/A

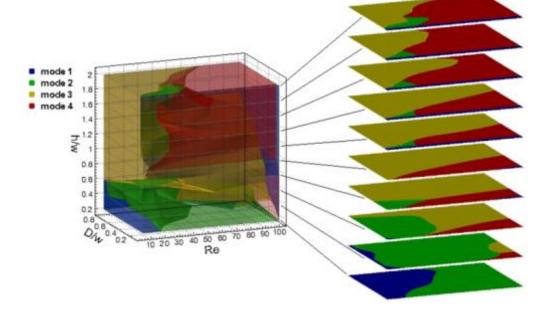
Note: † - peak number of cores available to the experiment.




Summary of the Experiment

- 16 days, 12 hours, 59 minutes and 28 seconds of continuous execution
- 12,845 tasks processed (445 extra), 2,897,390 CPU-hours consumed, 400 GB of data generated

Throughput and Queue Waiting Time


Science Outcomes

- The most comprehensive data on the effect of pillars on microfluid channel flow
- Library of flow transformations
- Arranging pillars is possible to perform basic flow transformation

What is the optimal pillar arrangement to achieve a desired

flow output?

 Useful for medical diagnostics, smart materials engineering, and guiding chemical reactions

Lessons Learned: Federation Properties

- Deployability: Must be easy to deploy by a regular user without special privileges
- Scalability and extended capacity: Scale across geographically distributed resources
- Elasticity: Ability to scale up, down or out on-demand
- Interoperability: Interact with heterogeneous resources
- Self-discovery: Discovery mechanisms to provide a realistic view of the federation

Conclusions

- We focused on a class of MTC problems with dynamic and non-trivial computational requirements
- Demonstrated feasibility and capability of an elastic, dynamically federated infrastructure
- User-oriented / software defined approach empower user with a simple mechanism to quickly federate resources
- Offer programming abstractions that allow users to build their federation

Acknowledgments

Extreme Science and Engineering Discovery Environment

RUTGERS

Thank You!

Javier Diaz-Montes, Ph.D.

Research Associate, Dept. of Electrical & Computer Engr. Rutgers Discovery Informatics Institute (RDI²) Rutgers, The State University of New Jersey

Email: javidiaz@rdi2.rutgers.edu

WWW: https://sites.google.com/site/javierdiazmontes/

CometCloud: http://cometcloud.org

MTAGS @ SC'13 14