MATE-EC2: A Middleware for Processing Data with Amazon Web Services

Tekin Bicer David Chiu* and Gagan Agrawal

Department of Compute Science and Engineering Ohio State University

* School of Engineering and Computer Science (Presenter) Washington State University, Vancouver

The 4th Workshop on Many-Task Computing on Grids and Supercomputers: MTAGS'11

The Problem

- Today's applications are increasingly data and compute intensive
- Many-Task Computing paradigms becoming pervasive: WF, MR
- E.g., Map-Reducible applications are solving common problems
 - Data mining
 - Graph processing
 - etc.

- Infrastructure-as-a-Service
 - Anyone, anywhere can allocate "unlimited" virtualized compute/storage resources
- Amazon Web Services:
 - Most popular laaS provider
 - Elastic Compute Cloud (EC2)
 - Simple Storage Service (S3)

SIMPLY EXPLAINED - PART 17: CLOUD COMPLITING

- On-Demand Instances (Virtual Machines)
 Types: Extra Large, Large, Small, etc.
- For example, Extra Large Instance:
 - Cost: \$0.68 per allocated-hour
 - 15GB memory; 1.7TB disk (ephemeral)
 - <u>8 Compute Units</u>
 - High I/O performance

- Accessible anywhere. High reliability and availability
- Objects are arbitrary data blobs
- Objects stored as (key, value) in Buckets
 - 5TB of data per object
 - Unlimited objects per bucket

Amazon Web Services: S3 (Cont.)

- Simple FTP-like interface using web service protocol
 - Put, Get (Partial Get), and Delete
 - SOAP and REST
- High throughput (~40MB/sec)
 Scales well to multiple clients
- Low costs

Amazon Web Services: S3 (Cont.)

- 449 billion objects in S3 as of July 2011
 - Doubling each year

T Bicer, D Chiu, G Agrawal. Mate-EC2: A Middleware for Processing Data with AWS (MTAGS 2011, Seattle WA)

Motivation and Focus

- Virtualization is characteristic of any cloud environment: Clouds are black boxes
- Storage and elastic compute services exhibit performance variabilities we should leverage

Goals

- As users are increasingly moving to cloud-based solutions for computing....
- We have a need for services and tools that can...
 - Get the most out of cloud resources for dataintensive processing
 - Provide a simple programming interface

Outline

- Background
- System Overview
- Experiments
- Conclusion

MATE-EC2 System Design

• Cloud middleware that is able to

 Use a set of possibly heterogeneous EC2 instances to scalably and efficiently process data stored in S3

 MATE is a *generalized reduction* PDC structure like Map-Reduce

MATE and Map-Reduce

MATE Map-Reduce // outer sequential loop // outer sequential loop while () { while () { // reduction loop // reduction loop for each (element e) for each (element e) (i, val) := process(e); (i, val) := process(e); rObj(i) := reduce(rObj(i), val); (i, val) pairs over i sort reduce to compute each rObj(i) global reduction to combine rObjs } input data global reduction() map() shuffle reduce() result input data result local reduction() ÷ ÷ (k1.v) -<u>o</u>bj (k1,v') (k1,v') ombined (k1,v) -(k1,v)(k2,v') rÔbj 1 (k1,v) ►((k2,v) ⁻ proc(e) ---⊳ (k3,v' 'k3,v' (k3,v') (k2,v) (k3,v) (k1,v') <u>obj</u> ğ (k2,v)

T Bicer, D Chiu, G Agrawal. Mate-EC2: A Middleware for Processing Data with AWS (MTAGS 2011, Seattle WA)

MATE-EC2 Design

MATE-EC2 Design: Data Organization

Objects: Physical representation of the data in S3

MATE-EC2 Design: Data Retrieval

Dynamic Load Balancing

Dynamic Load Balancing

T Bicer, D Chiu, G Agrawal. Mate-EC2: A Middleware for Processing Data with AWS (MTAGS 2011, Seattle WA)

(1) Compute node requests a job from Master

(2) Chunk retrieved in units

(3) Pass to Compute Layer, and process

(4) Request another job from Master

T Bicer, D Chiu, G Agrawal. Mate-EC2: A Middleware for Processing Data with AWS (MTAGS 2011, Seattle WA)

Experiments

Goals

Finding the most suitable setting for AWS

- Performance of MATE-EC2 on heterogeneous and homogeneous compute environments
- Performance comparison of MATE-EC2 and Map-Reduce

Experiments (Cont.)

- Setup:
 - 4 Large EC2 *slave* instances
 - 1 Large instance for *master* instance
 - For each application, the dataset is split into16 data objects on S3
- Large Instance:
 - 4 compute units (each comparable to 1.0-1.2GHz)
 - 7.5GB (memory)
 - 850GB (disk, ephemeral)
 - High I/O

Experiments (Cont.)

Арр	I/O	Comp	RObj Size	Dataset
KMeans Clustering	Low/Med	Med/High	Small	8.2GB 10.7 billion points
PCA	Low	High	Large	8.2GB
PageRank	High	Low/Med	Very Large	1GB 9.6M nodes, 131M edges

Effect of Chunk Sizes (KMeans)

1 Data Retrieval Thread

- 128KB vs. >8M
- 2.07x to 2.49x speedup

Data Retrieval (KMeans)

One Thread vs. others:
1.37x - 1.90x

8M vs. others speedup:
1.13x - 1.30x

Job Assignment (KMeans)

- Speedup:
 - 1.01x for 8M
 - 1.1x to 1.14x for others

MATE-EC2 vs. Elastic MapReduce

Speedups vs. EMR-combine 3.54x to 4.58x

Speedups vs. EMR-combine 4.08x to 7.54x

MATE-EC2 on Heterogeneous Instances

(a) KMeans - 128MB Chunk Size, 16 Data Retrieval Threads

(b) PCA - 128MB Chunk Size, 16 Data Retrieval Threads

- Overheads
 - KMeans: 1%
 - PCA: 1.1%, 7.4%, 11.7%

- AWS environment is explored for data-intensive computing
 - 64M and 128M data chunks w/ 16 data retrieval threads seems to be optimal for our middleware
- Our data retrieval and processing optimizations significantly improve the performance of our middleware
- MATE-EC2 outperforms MR both in scalability and performance

Thank You

Questions & Discussion

- Acknowledgments:
 - We want to thank the MTAGS'11 organizers and the reviewers for their constructive comments
 - This work was sponsored by:

