
Towards Scalable I/O
Architecture for Exascale Systems

Presented by
Yong Chen
Director, Data-Intensive Scalable Computing Laboratory (DISCL)
Computer Science Department
Texas Tech University

  Reading input and restart files

  Reading and processing large
amount of data

  Writing checkpoint files

  Writing visualization, movie,
history files

Metadata
Server Object

Storage
Server

Object
Storage
Server

Object
Storage
Server

Compute
Node

Compute
Node

Compute
Node

Compute
Node Compute

Node
Compute

Node
Compute

Node
Compute

Node

I/O for Large-scale Scientific Computing

2 MTAGS-2011, Seattle, WA

Scientific Applications Trend

  Applications tend to be data intensive
•  Scientific simulation, data mining, large-scale data processing, etc.

•  A GTC run on 29K cores on the Jaguar machine at OLCF generated over 54
Terabytes of data in a 24 hour period

  Pressure on the I/O system capability substantially increases

PI Project On-Line Data Off-Line Data
Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB
Dean, David Computational Nuclear Structure 4TB 40TB
Baker, David Computational Protein Structure 1TB 2TB
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB
Wolverton, Christopher Kinetics and Thermodynamics of Metal and

Complex Hydride Nanoparticles
5TB 100TB

Washington, Warren Climate Science 10TB 345TB
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB
Tang, William Plasma Microturbulence 2TB 10TB
Sugar, Robert Lattice QCD 1TB 44TB
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB

Data requirements for selected INCITE applications at ALCF

Source: R. Ross et. al., Argonne National Laboratory
3 MTAGS-2011, Seattle, WA

High Performance Computing Systems Trend

  The exascale system is projected to appear around 2018
  Anticipated to have millions of nodes, with thousands

of cores for each node
  Application teams predicted to process hundreds of

terabytes or even petabytes of data in a single run
  Brings significant challenges than ever for the I/O

system to meet applications’ demand
  The I/O system performance is predicted as one of the

most critical challenges

4 MTAGS-2011, Seattle, WA

Potential Exascale Computer Design

  Factor changes for peak performance, system size, etc.
  Most significant change is the total concurrency compared to today’s system

•  Will have billions of processes running on millions of nodes to achieve exaflop

•  Anticipated as the most challenging issue to achieve an exascale

  Limited I/O system capability could considerably lower the sustained
performance of exascale systems

  Research need in developing an I/O architecture for such concurrency level
Potential Exascale Design for 2018 and Its Relationship to Current HPC designs [VTYR08]

2010
 2018
 Factor Change

System Peak 2 Pf/s 1 Ef/s 500

Power 6 MW 20 MW 3
System Memory 0.3 PB 10 PB 33

Node Performance 0.125 Tf/s 10 Tf/s 80
Node Memory BW 25 GB/s 400 GB/s 16
Node Concurrency 12 CPUs 1000 CPUs 83
Interconnect BW 1.5 GB/s 50 GB/s 33

System Size (nodes) 20 K nodes 1 M nodes 50
Total Concurrency 225 K 1 B 4444

Storage 15 PB 300 PB 20
Input/Output Bandwidth 0.2 TB/s 20 TB/s 100

5 MTAGS-2011, Seattle, WA

Current HPC I/O Architecture

  HPC I/O system focuses
•  Exploring parallelism

•  Exploring locality

  Not easily managed/achieved for exascale systems

  Substantial amount of concurrency can cause a critical
contention issue at multiple levels

  Destroy the locality and level of parallelism

  Current I/O architecture one-set-for-all and static

  Does not manage the concurrency intelligently and limits the
scalability and the potential at an extreme scale

6 MTAGS-2011, Seattle, WA

Dynamically Coordinated I/O Architecture

  We propose a dynamically coordinated I/O architecture (or
coordinated I/O in short) for exascale systems

  We argue that coordinating I/O accesses is critical and
fundamental to exascale systems
•  According to access pattern, network topology, and data distribution

  Goals of the coordinated I/O
•  Manage the substantial amount of concurrency

•  Achieve the parallelism and avoid the critical contention issue

•  Maintain the locality and avoid the interference

  An important component for many-task computing paradigm

7 MTAGS-2011, Seattle, WA

Applications

Chip level Node level Card level Plane level I/O Servers Storage

p
0

p
1

P
2

p
3

p
n

pi

…

…

Dynamic Request
Analyzer (DRA)

Dynamic Data
Coordinator (DDC)

Dynamically Coordinated I/O Architecture

  Data distribution on storage
  Network topology and I/O

interconnect condition
  I/O access pattern

  Coordinates the I/O accesses
  Manages the concurrency
  Mitigate the contention issue
  Orchestrate both independent I/O

and collective I/O

  Hierarchical coordination
  Hierarchical aggregation

8 MTAGS-2011, Seattle, WA

Dynamic Coordination for Collective I/O

  Straightforward form of I/O and is widely used

  Independently by an individual process or any subset of

processes of a parallel application

  Independent nature ignores other processes without coordination

  This ignorance of other processes could destroy the locality of

requests and hurts overall performance due to contention

  Not only lose the potential benefit of collective I/O optimization,

but also deteriorate the I/O performance if without coordination

9 MTAGS-2011, Seattle, WA

Dynamic Coordination for Independent I/O

… …

LBN 0 n

One disk on
single I/O server

p0 p1 pi p127

Lose locality due to conten/on

10 MTAGS-2011, Seattle, WA

Dynamic Coordination for Independent I/O

…

LBN 0 n

Disks on I/O servers

…

IOS 0

IOS 1

IOS 2

IOS 3

p0

p1

pi

p127

11 MTAGS-2011, Seattle, WA

… …

LBN 0 n

One disk on
single I/O server

p0 p1 pi p127

… …

LBN 0 n

One disk on
single I/O server

p0 p1 pi p127

Coordinate accesses to
reduce contention and
improve data locality

Dynamic Coordination for Independent I/O

12 MTAGS-2011, Seattle, WA

Dynamic Coordination for Collective I/O

  Collective I/O enables a group of processes participate
together in reading or writing data

  Allows the requests to be serviced together

  Creates opportunity to optimize I/O by exploring correlations

  Benefits
•  Filter overlapping and redundant I/O requests from multiple processes

•  Merge small requests to large and contiguous requests

•  Reduce the number of system calls

13 MTAGS-2011, Seattle, WA

File domains

I/O phase

Comm. phase

File servers

Aggregator 0 Aggregator 1

Process 2 Process 1 Process 0 Process 3

0 1 2 3

Interconnect

Unaware of data distribu/on on
storage ‐ decision made based on the

logical file layout

Collective I/O and Two-phase Implementation

14 MTAGS-2011, Seattle, WA

Dynamic Coordination for Collective I/O

File domains
(Logical)

LB# 0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 0 1 2 3 0 1 2 3 S#

Aggregator 0 Aggregator 1 Aggregator 2 Aggregator 3

Interconnect

0 1 2 3

LB0

LB4

LB8

LB1

LB5

LB9

LB2

LB6

10

LB3

LB7

11

Processes Processes Processes Processes Processes

I/O phase

Comm. phase

File servers
(Physical)

15 MTAGS-2011, Seattle, WA

0 1 2 3 0 1 2 3 0 1 2 3 File domains
(Logical)

LB# 0 1 2 3 4 5 6 7 8 9 10 11

S#

Aggregator 0 Aggregator 1 Aggregator 2 Aggregator 3

Interconnect

0 1 2 3

LB0

LB4

LB8

LB1

LB5

LB9

LB2

LB6

10

LB3

LB7

11

Processes Processes Processes Processes Processes

I/O phase

Comm. phase

File servers
(Physical)

Dynamic Coordination for Collective I/O

16 MTAGS-2011, Seattle, WA

File domains
(Logical)

LB# 0 4 8 1 5 9 2 6 10 3 7 11

0 0 0 1 1 1 2 2 2 3 3 3 S#

Aggregator 0 Aggregator 1 Aggregator 2 Aggregator 3

Interconnect

0 1 2 3

LB0

LB4

LB8

LB1

LB5

LB9

LB2

LB6

10

LB3

LB7

11

Processes Processes Processes Processes Processes

I/O phase

Comm. phase

File servers
(Physical)

Dynamic Coordination for Collective I/O

17 MTAGS-2011, Seattle, WA

Interconnect

File domains
(Logical)

S#

Aggregator 0 Aggregator 1 Aggregator 2 Aggregator 3

I/O phase

Comm. phase

File servers
(Physical)

Process 2 Process 1 Process 0 Process 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3

LB0

LB4

LB8

LB1

LB5

LB9

LB2

LB6

10

LB3

LB7

11

Communication and I/O Pattern

18 MTAGS-2011, Seattle, WA

Interconnect

File domains
(Logical)

S#

Aggregator 0 Aggregator 1 Aggregator 2 Aggregator 3

I/O phase

Comm. phase

File servers
(Physical)

Process 2 Process 1 Process 0 Process 3

0 1 2 3

LB0

LB4

LB8

LB1

LB5

LB9

LB2

LB6

10

LB3

LB7

11

0 0 0 1 1 1 2 2 2 3 3 3

0 4 8 1 5 9 2 6 10 3 7 11

Collec/ve I/O accesses in a be?er matched
way: increased locality and reduced

conten/on

Communication and I/O Pattern

19 MTAGS-2011, Seattle, WA

Implementation Strategies

  Data distribution on storage servers can be obtained via
parallel file systems API
•  Happens at the first time an I/O occurs, can then be cached in runtime system

•  Such a caching is safe as the data layout of a specific file is determined when it
is created and will be static except deleted or explicitly changed.

  The network topology is static and can be revealed to the
DRA component

  I/O interconnection usage information can be periodically
sampled and provided

  Application’s I/O requests are analyzed for access patterns as
well, which is used to direct the coordination

20 MTAGS-2011, Seattle, WA

Preliminary Results of Dynamic Coordination
for Independent I/O

  User-level checkpointing with same total image size
  Performance was nearly doubled with the dynamic coordination in a large

scale case with simultaneous I/O
  Bandwidth decreased when the number of processes increased
  Coordinated I/O achieved stable performance and more scalable

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

(")"%!!!*+" $,")"$!!!"*+" &%")"#!!*+" ,'")"%#!*+" $%(")"$%#*+"

!
"
#
$
%
&$
'(
)*
+
!
,-
.)

-./012" 3451067"8../9651:.5"

21 MTAGS-2011, Seattle, WA

Preliminary Results of Dynamic Coordination
for Collective I/O

Left: IOR Random Reads Testing
Up to 74% speedup
On average, 40% speedup

Right: IOR Random Writes Testing
Up to 38% speedup
On average, 23% speedup

!"!!#$

%"!!#$

&!"!!#$

&%"!!#$

'!"!!#$

'%"!!#$

(!"!!#$

(%"!!#$

)!"!!#$

)%"!!#$

%!"!!#$

!
"
#
$
%
&$
'(
)*
+
,
-.
/
0
+
0
#
')

*+,-./$01+-2$ *+,-./304512 6,51071+81-$01+-2$ 6,51071+81-304512

Bandwidth Improvement of Dynamic Coordination

22 MTAGS-2011, Seattle, WA

Ongoing Work

  Modeling the dynamic coordination and analyze the potential
of coordinated I/O in theory

  Hierarchical coordination and aggregation

Node

Card Card

Plane Plane

I/O

Server

I/O

Server

Storage Storage Storage
Storage

Node

Queues of arrived requests

Queue of arrived

requests for

I/O servers

Storage Storage

Chip Chip

  Carrying out
evaluations at a scale
of O(10K-100K)
processes

23 MTAGS-2011, Seattle, WA

Conclusion

  Exascale systems near the horizon, critical to design and develop a
scalable I/O architecture for such ultra large scale systems

  Challenges in terms of substantial amount of concurrency and
contention, and reduced locality and increased latency

  The proposed coordinated I/O intends to address these issues
•  Provides an access-aware, topology-aware, and layout-aware I/O architecture

•  Manages the growing amount of I/O concurrency

•  Reduces I/O contention and regains diminished locality

  Long-term goal: provides a scalable I/O architecture to meet the
needs of exascale systems and the growing demand of data-
intensive science

24 MTAGS-2011, Seattle, WA

Any Questions?

Thank You.
For more information please visit

http://discl.cs.ttu.edu/

25 MTAGS-2011, Seattle, WA

