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  Reading input and restart files 

  Reading and processing large 
amount of data 

  Writing checkpoint files 

  Writing visualization, movie, 
history files 
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Scientific Applications Trend 

  Applications tend to be data intensive 
•  Scientific simulation, data mining, large-scale data processing, etc. 

•  A  GTC run on 29K cores on the Jaguar machine at OLCF generated over 54 
Terabytes of data in a 24 hour period 

  Pressure on the I/O system capability substantially increases 

PI Project On-Line Data Off-Line Data 
Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB 
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB 
Dean, David Computational Nuclear Structure 4TB 40TB 
Baker, David Computational Protein Structure 1TB 2TB 
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB 
Wolverton, Christopher Kinetics and Thermodynamics of Metal and 

Complex Hydride Nanoparticles 
5TB 100TB 

Washington, Warren Climate Science 10TB 345TB 
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB 
Tang, William Plasma Microturbulence 2TB 10TB 
Sugar, Robert Lattice QCD 1TB 44TB 
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB 
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB 

Data requirements for selected INCITE applications at ALCF 

Source: R. Ross et. al., Argonne National Laboratory 
3 MTAGS-2011, Seattle, WA 



High Performance Computing Systems Trend 

  The exascale system is projected to appear around 2018 
  Anticipated to have millions of nodes, with thousands 

of cores for each node 
  Application teams predicted to process hundreds of 

terabytes or even petabytes of data in a single run 
  Brings significant challenges than ever for the I/O 

system to meet applications’ demand 
  The I/O system performance is predicted as one of the 

most critical challenges 

4 MTAGS-2011, Seattle, WA 



Potential Exascale Computer Design 

  Factor changes for peak performance, system size, etc. 
  Most significant change is the total concurrency compared to today’s system 

•  Will have billions of processes running on millions of nodes to achieve exaflop 

•  Anticipated as the most challenging issue to achieve an exascale 

  Limited I/O system capability could considerably lower the sustained 
performance of exascale systems 

  Research need in developing an I/O architecture for such concurrency level 
Potential Exascale Design for 2018 and  Its Relationship to Current HPC designs [VTYR08] 

2010
 2018
 Factor Change

System Peak 2 Pf/s 1 Ef/s 500 

Power 6 MW 20 MW 3 
System Memory 0.3 PB 10 PB 33 

Node Performance 0.125 Tf/s 10 Tf/s 80 
Node Memory BW 25 GB/s 400 GB/s 16 
Node Concurrency 12 CPUs 1000 CPUs 83 
Interconnect BW 1.5 GB/s 50 GB/s 33 

System Size (nodes) 20 K nodes 1 M nodes 50 
Total Concurrency 225 K 1 B 4444 

Storage 15 PB 300 PB 20 
Input/Output Bandwidth 0.2 TB/s 20 TB/s 100 
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Current HPC I/O Architecture 

  HPC I/O system focuses 
•  Exploring parallelism 

•  Exploring locality 

  Not easily managed/achieved for exascale systems 

  Substantial amount of concurrency can cause a critical 
contention issue at multiple levels 

  Destroy the locality and level of parallelism 

  Current I/O architecture one-set-for-all and static 

  Does not manage the concurrency intelligently and limits the 
scalability and the potential at an extreme scale 
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Dynamically Coordinated I/O Architecture 

  We propose a dynamically coordinated I/O architecture (or 
coordinated I/O in short) for exascale systems 

  We argue that coordinating I/O accesses is critical and 
fundamental to exascale systems 
•  According to access pattern, network topology, and data distribution 

  Goals of the coordinated I/O 
•  Manage the substantial amount of concurrency 

•  Achieve the  parallelism and avoid the critical contention issue 

•  Maintain the locality and avoid the interference  

  An important component for many-task computing paradigm 
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Applications 
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Dynamically Coordinated I/O Architecture 

  Data distribution on storage 
  Network topology and I/O 

interconnect condition 
  I/O access pattern 

  Coordinates the I/O accesses  
  Manages the concurrency 
  Mitigate the contention issue  
  Orchestrate both independent I/O 

and collective I/O 

  Hierarchical coordination 
  Hierarchical aggregation 
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Dynamic Coordination for Collective I/O 

  Straightforward form of I/O and is widely used 

  Independently by an individual process or any subset of 

processes of a parallel application 

  Independent nature ignores other processes without coordination  

  This ignorance of other processes could destroy the locality of 

requests and hurts overall performance due to contention 

  Not only lose the potential benefit of collective I/O optimization, 

but also deteriorate the I/O performance if without coordination 
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Dynamic Coordination for Independent I/O 
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Dynamic Coordination for Independent I/O 
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Dynamic Coordination for Independent I/O 
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Dynamic Coordination for Collective I/O 

  Collective I/O enables a group of processes participate 
together in reading or writing data 

  Allows the requests to be serviced together 

  Creates opportunity to optimize I/O by exploring correlations 

  Benefits 
•  Filter overlapping and redundant I/O requests from multiple processes 

•  Merge small requests to large and contiguous requests 

•  Reduce the number of system calls 
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Dynamic Coordination for Collective I/O 
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Implementation Strategies 

  Data distribution on storage servers can be obtained via 
parallel file systems API 
•  Happens at the first time an I/O occurs, can then be cached in runtime system 

•  Such a caching is safe as the data layout of a specific file is determined when it 
is created and will be static except deleted or explicitly changed. 

  The network topology is static and can be revealed to the 
DRA component  

  I/O interconnection usage information can be periodically 
sampled and provided 

  Application’s I/O requests are analyzed for access patterns as 
well, which is used to direct the coordination 
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Preliminary Results of Dynamic Coordination 
for Independent I/O 

  User-level checkpointing with same total image size 
  Performance was nearly doubled with the dynamic coordination in a large 

scale case with simultaneous I/O 
  Bandwidth decreased when the number of processes increased 
  Coordinated I/O achieved stable performance and more scalable 
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Preliminary Results of Dynamic Coordination 
for Collective I/O 

Left: IOR Random Reads Testing 
Up to 74% speedup 
On average, 40% speedup 

Right: IOR Random Writes Testing 
Up to 38% speedup 
On average, 23% speedup 
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Ongoing Work 

  Modeling the dynamic coordination and analyze the potential 
of coordinated I/O in theory 

  Hierarchical coordination and aggregation 
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evaluations at a scale 
of O(10K-100K) 
processes 
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Conclusion 

  Exascale systems near the horizon, critical to design and develop a 
scalable I/O architecture for such ultra large scale systems 

  Challenges in terms of substantial amount of concurrency and 
contention, and reduced locality and increased latency  

  The proposed coordinated I/O intends to address these issues 
•  Provides an access-aware, topology-aware, and layout-aware I/O architecture 

•  Manages the growing amount of I/O concurrency 

•  Reduces I/O contention and regains diminished locality 

  Long-term goal: provides a scalable I/O architecture to meet the 
needs of exascale systems and the growing demand of data-
intensive science 
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Any Questions? 

Thank You. 
For more information please visit 

http://discl.cs.ttu.edu/ 
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