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Parareal: Trading Flops For Time

● Predictor-Corrector, iterative method for 
time-dependent PDE's

● Lions, Maday, and Turnici, 2001

●  “Advance system state from initial 
condition λ0  

at time t0 to time tf , using 

N time “slices” (sub-intervals), each
of size Δt, where T = tf – t0  = N Δt 

● Fine, accurate (expensive) solver, F 
compute “true” solution

● Coarse, approximate (fast) solver, G, 
compute approximate solution

● Convergence tester, C

● Guaranteed convergence in K ≤ N 
iterations

‒ “Good” scenarios have K << N
Correct Solution     Fine Solution    Coarse Solution

k = 1k = 2k = 3

N = 10
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first_slice = 1 
num_converged = 0 
for iteration = 1, max_iterations 
   for slice = first_slice..num_slices
      coarse_solve(iteration, slice) 

   forall slice = first_slice..num_slices
      fine_solve(iteration, slice) 

   for slice = first_slice..num_slices 
      test_convergence(iteration, slice) 

   num_converged += 
      first_non_converged_slice - first_slice 
   if (num_converged == num_slices) 
      end // SUCCESS 
   else 
      first_slice = first_non_converged_slice 
end //Failed to converge in max_iteration

Parareal: The Classic Algorithm

Sequential PhaseSequential Phase

Computationally 
Cheap

Computationally 
Cheap

Parallel PhaseParallel Phase
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Motivational Problem 

● Fusion Plasma Turbulence application (BETA) for 160 
time slices on 1024 cores

● Fine solver uses VODPK adaptive integrator
● Coarse solver:

‒ Reduced spatial resolution

‒ Less accurate 4th order Runge-Kutta solver

● Implemented as a Many-Task problem
‒ Separate MPI invocation per (coarse/fine) solve task 

per time slice per iteration

‒ File system used for inter-task data exchange
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Many Task Classic Parareal

● Coarse tasks executed sequentially during 
each iteration

● All fine tasks for a given iteration are 
initiated as a single task pool

‒ Maximum of 64 fine solve tasks can be 
concurrently active on 1024 cores

● The order of task execution within a task 
pool is determined by the underlying 
execution framework

● Task Statistics:

‒ Coarse Task : 16 Cores,     3.45 s

‒ Fine Task      : 16 Cores, 223.15 s

● Effective utilization: 31.6 %

Coarse Task Started

Coarse Task Ended

Fine Task Started

Fine Task Ended
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The Underlying Framework
The Integrated Plasma Simulator (IPS)
● Component-based Python framework for loosely coupled simulations
● Originally designed for time-stepped fusion simulations

‒ Flexibility allows use in other domains, and other control-flow paradigms

●  Major features:

‒ Thin component layer in Python that wraps stand-alone executables

‒ Inter-component data exchange using the file system

‒ Framework services used to assemble a simulation

– Resource management - Task  management

– Data management  - Asynchronous event services

‒ Simulations execute within a single batch allocation
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IPS Architecture & Execution Model

Tasks 
(Parallel 
Physics 
Codes)

Framework
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Task
Manager
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Driver
Init
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Init
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Init
Step
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Init
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Message
Handlers

Message
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Single 
Batch 

Allocation
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Used to implement 
Dependency-Driven
Parareal

Used to implement 
Classic Parareal

Concurrency in the IPS

● Components launch parallel 
tasks

● Multiple concurrent tasks 
can be launched by the 
same component

● Multiple components can be 
concurrently active

● Multiple simulations can 
execute within a single 
framework instance

‒ Original IPS many-task 
application 
(see our MTAGS10 paper)
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Task Dependencies in Parareal (1)

Data flow                     

Basic data flow 
dependencies  
for computing 
intra-iteration 
coarse and fine 
states, and 
checking for 
convergence
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Task Dependencies in Parareal (2)
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Task Dependencies in Parareal (3)
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results control the 
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in next iteration



November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 13

Dependency-Driven Parareal

● Three “server” components, Fine, Coarse, and Converge
● Distributed flow control:

‒ Simulation logic spread across the three components

● Components initiate tasks independently 

‒ As as soon as all their dependencies are satisfied

‒ Each component encodes dependencies for its class of tasks

● Components manage their own task wait queues (FIFO)
● Framework maps ready-to-run tasks to available resources
● Control flow through events published to the IPS events 

service indicating task completion and location of output data

Synchronization-reducing algorithms
   - Break Fork-Join model                             

                Jack Dongara – Critical Issues at Peta & Exascale for Algorithm and Software Design
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IPS Event Service

Dependency Propagation Using the IPS 
Event Service

Converge Component

CONVERGE EVENTS

FINE EVENTS

COARSE EVENTS

Coarse ComponentFine Component
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● Overlap the execution of 
multiple iterations
‒ Up to 5 in this case

● Perform the same work 
done by the classic 
Parareal
‒ Change only WHEN a  

task is executed

● Effective utilization: 70.6%
Coarse Task Started

Coarse Task Ended

Fine Task Started

Fine Task Ended

Dependency-Driven Parareal: Results
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Dependency-Driven Parareal: Results

Dependency-Driven Parareal uses 44.5 % wallclock time of the classic version

Serial* Classic Dep.-Driven

Run Time (S) 35,704 14,330.8 6,379.6

Speed Up 1 2.5 5.6

Cores Used 16 1024 1024

Utilization % 100 31.6 70.6

Cost (Cpu H) 158.7 4,076.3 1,814.6

Relative Cost 1 25.7 11.4

* Estimated
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Moving Window Parareal

● Heat map shows convergence error per slice, 
per iteration (logarithmic color scale)

● Error in upper-left corner suggests  limited 
reach of the coarse solver

‒ Quality of coarse solution deteriorates as we 
move away from last converged result

● Optimize resource utilization by NOT 
executing those tasks

‒ Implement a “moving window” version

‒ Start with n < N slices

‒ Add more, as slices converge

● Less work, less resources

‒ But may need more iterations

● Introduces trade-off between window size, 
time to solution, and required resources
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Exploring the Moving Window Parareal 
Trade-offs

● Simulations used to explore the trade-off between resource utilization, 
window size, and time to solution for BETA

● Best choice depends on what's important (time, or cost ?) 

● Moving window parareal allows users to choose the configuration that 
best meets their priorities

CostSimulation Time
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In Summary

● Parareal algorithm re-cast as a many-task problem executed within the IPS 
Framework

● Dependency-driven parareal improves resource utilization and reduces 
simulation time

● Moving window parareal avoids the performance of un-productive work and 
reduces over-all resource requirements

● Many-task implementation using IPS-parareal is:

‒ Flexible – easily experiment with different coarse solvers

‒ Retargettable – adapting to new problems takes less than a day's work

‒ Currently being used to explore 1D MHD problems (JOREK1D), gyrokinetic 
(GENE) and fluid electrostatic turbulence (TRB)

‒ Starting work on 3D MHD (PIXIE3D)

● Dependency-Driven formulation should allow the use of slower (and better) 
coarse solvers, probably leading to faster convergence

‒ Subject of future study
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Questions ?
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Programs and the ORNL Higher Education Research Experiences Program which are sponsored 
by ORNL and administered jointly by ORNL and by the Oak Ridge Institute for Science and 
Education (ORISE). ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy 
under Contract No. DE-AC05-00OR22725. ORISE is managed by Oak Ridge Associated 
Universities for the U.S. Department of Energy under Contract No. DE-AC05-00OR22750. The 
authors are grateful for grants of supercomputing resources at the University of Alaska, Arctic 
Region Supercomputing Center (ARSC) in Fairbanks.

For more info on the IPS,  join us for the PYHPC paper

“The Integrated Plasma Simulator: A Flexible Python  
Framework for Coupled Multiphysics Simulations”, 

Friday, 11:00 AM, TCC 102.
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