
A Dependency-Driven
Formulation of Parareal:
Parallel-in-Time Solution
of PDEs as a Many-Task
Application

Wael R. Elwasif

Oak Ridge National Laboratory

elwasifwr@ornl.gov

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 2

First: Shout-out to Coauthors

● Samantha Foley, David Bernholdt, and Lee Berry
Oak Ridge National Laboratory

● Debasmita Samaddar
ITER Organization

● David E. Newman
University of Alaska, Fairbanks

● Raul Sanchez
Universidad Carlos III de Madrid

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 3

Parareal: Trading Flops For Time

● Predictor-Corrector, iterative method for
time-dependent PDE's

● Lions, Maday, and Turnici, 2001

● “Advance system state from initial
condition λ0

at time t0 to time tf , using

N time “slices” (sub-intervals), each
of size Δt, where T = tf – t0 = N Δt

● Fine, accurate (expensive) solver, F
compute “true” solution

● Coarse, approximate (fast) solver, G,
compute approximate solution

● Convergence tester, C

● Guaranteed convergence in K ≤ N
iterations

‒ “Good” scenarios have K << N
Correct Solution Fine Solution Coarse Solution

k = 1k = 2k = 3

N = 10

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 4

first_slice = 1
num_converged = 0
for iteration = 1, max_iterations
 for slice = first_slice..num_slices
 coarse_solve(iteration, slice)

 forall slice = first_slice..num_slices
 fine_solve(iteration, slice)

 for slice = first_slice..num_slices
 test_convergence(iteration, slice)

 num_converged +=
 first_non_converged_slice - first_slice
 if (num_converged == num_slices)
 end // SUCCESS
 else
 first_slice = first_non_converged_slice
end //Failed to converge in max_iteration

Parareal: The Classic Algorithm

Sequential PhaseSequential Phase

Computationally
Cheap

Computationally
Cheap

Parallel PhaseParallel Phase

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 5

Motivational Problem

● Fusion Plasma Turbulence application (BETA) for 160
time slices on 1024 cores

● Fine solver uses VODPK adaptive integrator
● Coarse solver:

‒ Reduced spatial resolution

‒ Less accurate 4th order Runge-Kutta solver

● Implemented as a Many-Task problem
‒ Separate MPI invocation per (coarse/fine) solve task

per time slice per iteration

‒ File system used for inter-task data exchange

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 6

Many Task Classic Parareal

● Coarse tasks executed sequentially during
each iteration

● All fine tasks for a given iteration are
initiated as a single task pool

‒ Maximum of 64 fine solve tasks can be
concurrently active on 1024 cores

● The order of task execution within a task
pool is determined by the underlying
execution framework

● Task Statistics:

‒ Coarse Task : 16 Cores, 3.45 s

‒ Fine Task : 16 Cores, 223.15 s

● Effective utilization: 31.6 %

Coarse Task Started

Coarse Task Ended

Fine Task Started

Fine Task Ended

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 7

The Underlying Framework
The Integrated Plasma Simulator (IPS)
● Component-based Python framework for loosely coupled simulations
● Originally designed for time-stepped fusion simulations

‒ Flexibility allows use in other domains, and other control-flow paradigms

● Major features:

‒ Thin component layer in Python that wraps stand-alone executables

‒ Inter-component data exchange using the file system

‒ Framework services used to assemble a simulation

– Resource management - Task management

– Data management - Asynchronous event services

‒ Simulations execute within a single batch allocation

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 8

IPS Architecture & Execution Model

Tasks
(Parallel
Physics
Codes)

Framework
Resource
Manager

Task
Manager

Data
Manager

Config.
Manager

Event
Service

Comp A

Comp B

Comp C

Driver
Init
Step
Finalize

Init
Step
Finalize

Init
Step
Finalize

Init
Step
Finalize

Compute NodesHead Node

Message
Handlers

Message
Queues

Single
Batch

Allocation

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 9

Used to implement
Dependency-Driven
Parareal

Used to implement
Classic Parareal

Concurrency in the IPS

● Components launch parallel
tasks

● Multiple concurrent tasks
can be launched by the
same component

● Multiple components can be
concurrently active

● Multiple simulations can
execute within a single
framework instance

‒ Original IPS many-task
application
(see our MTAGS10 paper)

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 10

Task Dependencies in Parareal (1)

Data flow

Basic data flow
dependencies
for computing
intra-iteration
coarse and fine
states, and
checking for
convergence

G
(1,1)

G
(1,1)

F
(1,1)

F
(1,1) Iteration

Sl
ic

e

C
(1,1)

C
(1,1)

C
(1,2)

C
(1,2)

G
(1,2)

G
(1,2)

F
(1,2)

F
(1,2)

G
(2,2)

G
(2,2)

F
(2,2)

F
(2,2)

C
(2,2)

C
(2,2)

C
(1,4)

C
(1,4)

G
(1,4)

G
(1,4)

F
(1,4)

F
(1,4)

G
(2,4)

G
(2,4)

F
(2,4)

F
(2,4)

G
(3,4)

G
(3,4)

F
(3,4)

F
(3,4)

C
(2,4)

C
(2,4)

C
(3,4)

C
(3,4)

C
(1,3)

C
(1,3)

G
(1,3)

G
(1,3)

F
(1,3)

F
(1,3)

G
(2,3)

G
(2,3)

F
(2,3)

F
(2,3)

G
(3,3)

G
(3,3)

F
(3,3)

F
(3,3)

C
(2,3)

C
(2,3)

C
(3,3)

C
(3,3)

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 11

Task Dependencies in Parareal (2)

G
(1,1)

G
(1,1)

F
(1,1)

F
(1,1) Iteration

Sl
ic

e

C
(1,1)

C
(1,1)

C
(1,2)

C
(1,2)

G
(1,2)

G
(1,2)

F
(1,2)

F
(1,2)

G
(2,2)

G
(2,2)

F
(2,2)

F
(2,2)

C
(2,2)

C
(2,2)

C
(1,4)

C
(1,4)

G
(1,4)

G
(1,4)

F
(1,4)

F
(1,4)

G
(2,4)

G
(2,4)

F
(2,4)

F
(2,4)

G
(3,4)

G
(3,4)

F
(3,4)

F
(3,4)

C
(2,4)

C
(2,4)

C
(3,4)

C
(3,4)

C
(1,3)

C
(1,3)

G
(1,3)

G
(1,3)

F
(1,3)

F
(1,3)

G
(2,3)

G
(2,3)

F
(2,3)

F
(2,3)

G
(3,3)

G
(3,3)

F
(3,3)

F
(3,3)

C
(2,3)

C
(2,3)

C
(3,3)

C
(3,3)

Data flow State Update

Parareal State
Update

State updates
“correct” output
from coarse tasks

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 12

Task Dependencies in Parareal (3)

G
(1,1)

G
(1,1)

F
(1,1)

F
(1,1) Iteration

Sl
ic

e

C
(1,1)

C
(1,1)

C
(1,2)

C
(1,2)

G
(1,2)

G
(1,2)

F
(1,2)

F
(1,2)

G
(2,2)

G
(2,2)

F
(2,2)

F
(2,2)

C
(2,2)

C
(2,2)

C
(1,4)

C
(1,4)

G
(1,4)

G
(1,4)

F
(1,4)

F
(1,4)

G
(2,4)

G
(2,4)

F
(2,4)

F
(2,4)

G
(3,4)

G
(3,4)

F
(3,4)

F
(3,4)

C
(2,4)

C
(2,4)

C
(3,4)

C
(3,4)

C
(1,3)

C
(1,3)

G
(1,3)

G
(1,3)

F
(1,3)

F
(1,3)

G
(2,3)

G
(2,3)

F
(2,3)

F
(2,3)

G
(3,3)

G
(3,3)

F
(3,3)

F
(3,3)

C
(2,3)

C
(2,3)

C
(3,3)

C
(3,3)

Data flow State Update Convergence Converged Slice

Convergence
results control the
execution of tasks
in next iteration

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 13

Dependency-Driven Parareal

● Three “server” components, Fine, Coarse, and Converge
● Distributed flow control:

‒ Simulation logic spread across the three components

● Components initiate tasks independently

‒ As as soon as all their dependencies are satisfied

‒ Each component encodes dependencies for its class of tasks

● Components manage their own task wait queues (FIFO)
● Framework maps ready-to-run tasks to available resources
● Control flow through events published to the IPS events

service indicating task completion and location of output data

Synchronization-reducing algorithms
 - Break Fork-Join model

 Jack Dongara – Critical Issues at Peta & Exascale for Algorithm and Software Design

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 14

IPS Event Service

Dependency Propagation Using the IPS
Event Service

Converge Component

CONVERGE EVENTS

FINE EVENTS

COARSE EVENTS

Coarse ComponentFine Component

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 15

● Overlap the execution of
multiple iterations
‒ Up to 5 in this case

● Perform the same work
done by the classic
Parareal
‒ Change only WHEN a

task is executed

● Effective utilization: 70.6%
Coarse Task Started

Coarse Task Ended

Fine Task Started

Fine Task Ended

Dependency-Driven Parareal: Results

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 16

Dependency-Driven Parareal: Results

Dependency-Driven Parareal uses 44.5 % wallclock time of the classic version

Serial* Classic Dep.-Driven

Run Time (S) 35,704 14,330.8 6,379.6

Speed Up 1 2.5 5.6

Cores Used 16 1024 1024

Utilization % 100 31.6 70.6

Cost (Cpu H) 158.7 4,076.3 1,814.6

Relative Cost 1 25.7 11.4

* Estimated

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 17

Moving Window Parareal

● Heat map shows convergence error per slice,
per iteration (logarithmic color scale)

● Error in upper-left corner suggests limited
reach of the coarse solver

‒ Quality of coarse solution deteriorates as we
move away from last converged result

● Optimize resource utilization by NOT
executing those tasks

‒ Implement a “moving window” version

‒ Start with n < N slices

‒ Add more, as slices converge

● Less work, less resources

‒ But may need more iterations

● Introduces trade-off between window size,
time to solution, and required resources

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 18

Exploring the Moving Window Parareal
Trade-offs

● Simulations used to explore the trade-off between resource utilization,
window size, and time to solution for BETA

● Best choice depends on what's important (time, or cost ?)

● Moving window parareal allows users to choose the configuration that
best meets their priorities

CostSimulation Time

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 19

In Summary

● Parareal algorithm re-cast as a many-task problem executed within the IPS
Framework

● Dependency-driven parareal improves resource utilization and reduces
simulation time

● Moving window parareal avoids the performance of un-productive work and
reduces over-all resource requirements

● Many-task implementation using IPS-parareal is:

‒ Flexible – easily experiment with different coarse solvers

‒ Retargettable – adapting to new problems takes less than a day's work

‒ Currently being used to explore 1D MHD problems (JOREK1D), gyrokinetic
(GENE) and fluid electrostatic turbulence (TRB)

‒ Starting work on 3D MHD (PIXIE3D)

● Dependency-Driven formulation should allow the use of slower (and better)
coarse solvers, probably leading to faster convergence

‒ Subject of future study

November 14, 2011 Workshop on Many-Task Computing on Grids and Supercomputers 20

Questions ?

This work has been supported by the U.S. Department of Energy, Office of Science, Offices of
Advanced Scientific Computing Research (ASCR) and Fusion Energy Sciences (FES). It has also
been supported by by the ORNL Postmasters and Postdoctoral Research Participation
Programs and the ORNL Higher Education Research Experiences Program which are sponsored
by ORNL and administered jointly by ORNL and by the Oak Ridge Institute for Science and
Education (ORISE). ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725. ORISE is managed by Oak Ridge Associated
Universities for the U.S. Department of Energy under Contract No. DE-AC05-00OR22750. The
authors are grateful for grants of supercomputing resources at the University of Alaska, Arctic
Region Supercomputing Center (ARSC) in Fairbanks.

For more info on the IPS, join us for the PYHPC paper

“The Integrated Plasma Simulator: A Flexible Python
Framework for Coupled Multiphysics Simulations”,

Friday, 11:00 AM, TCC 102.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

