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ABSTRACT
Recently, there has been growing interest in using Cloud resources
for a variety of high performance and data-intensive applications.
While there is currently a number of commercial Cloud service
providers, Amazon Web Services (AWS) appears to be the most
widely used. One of the main services that AWS offers is the Sim-
ple Storage Service (S3) for unbounded reliable storage of data,
which is particularly amenable to data-intensive processes. Cer-
tainly, for these types of applications, we need support for effective
retrieval and processing of data stored in S3 environments.

In this paper, we focus on parallel and scalable processing of
data stored in S3, using compute instances in AWS. We describe a
middleware, MATE-EC2, that allows specification of data process-
ing using a high-level API, which is a variant of the Map-Reduce
paradigm. We show various optimizations, including data orga-
nization, job assignment, and data retrieval strategies, that can be
leveraged based on the performance characteristics of S3. Our mid-
dleware is also capable of effectively using a heterogeneous col-
lection of EC2 instances for data processing. Our detailed exper-
imental study further evaluates what factors impact efficiency of
retrieving and processing S3 data. We compare our middleware
with Amazon Elastic Map-Reduce and show how we determine the
best configuration for data processing on AWS.

1. INTRODUCTION
The outset of Cloud computing as a many-task computing solu-

tion [18] has been apropos in facilitating today’s increasingly data-
intensive projects. In response to the data deluge, processing times
can be expedited by harnessing the Cloud’s resource elasticity, i.e.,
the ability for on-demand allocation of compute instances and os-
tensibly infinite storage units. While Cloud providers continue to
grow in number, Amazon Web Services (AWS) has gained marked
popularity among various stakeholders. AWS offers several ser-
vices that are highly amenable for supporting data-intensive appli-
cations. For instance, the Simple Storage Service (S3) allows for
highly accessible, reliable, and “infinite” data store. Certainly for
data-intensive applications, one important consideration involves
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the effective retrieval and processing of data based in S3. An-
other AWS service is the Elastic Compute Cloud (EC2), where vir-
tual machine instances of varying capabilities, with varying pricing
costs, can be leased for unbounded amounts of time — a welcome
departure from traditional advanced resource reservation schemes.

This notion of on-demand resources has already prompted many
users to adopt the Cloud for large-scale projects, including med-
ical imaging [20], astronomy [5], BOINC applications [13], and
remote sensing [15], among many others. Another distinct set of
data-intensive applications fall under the Map-Reduce framework
[3]. Spurred by its popularity, support for Map-Reduce was quickly
embraced by prominent Cloud providers. The Hadoop-oriented [8]
AWS version (Elastic Map-Reduce) allows users to upload their
map and reduce code, as well as their data sets onto S3. Elastic
Map-Reduce then launches a user-specified number of machine in-
stances, and proceeds to invoke the code, thereby abstracting pro-
cessing nuances from users.

Cloud environments and their use for high-performance and data-
intensive applications are still quite new. Much effort is needed
in understanding the performance characteristics of these environ-
ments. Similarly, we feel that additional services and tools should
be developed for enabling wider use of these environments for end
applications.

This paper focuses on the above two goals in the context of
developing data-intensive applications on AWS. Particularly, the
goal is to be able to use a (possibly heterogeneous) collection of
EC2 instances to scalably and efficiently process data stored in
S3. We have developed a Cloud middleware, MATE-EC2 (Map-
reduce with AlternaTE api over EC2), which deploys a variation
of the Map-Reduce API over Amazon’s EC2 and S3 services. We
show that various optimizations based on S3’s characteristics can
be applied to improve performance. Particularly, we have used
threaded data retrieval to improve the effective bandwidth of data
retrieval. Additionally, our selective job assignment strategy en-
sures that different threads read data from different data objects in
S3, thus avoiding bottleneck. We also show that heterogeneous
clusters of various EC2 instance types can be leveraged effectively
in our middleware.

Our experimental study reveals several issues which affect the
retrieval and processing of data stored in S3. We show that with
increasing chunk sizes, the data processing times increase, but the
data retrieval times decrease. We also evaluate the optimal number
of data retrieval threads for each data processing thread leads for
our applications. Overall, for three popular data-intensive appli-
cations, we report excellent scalability with increasing number of
compute instances. Furthermore, we are able to exploit the aggre-
gated computing power of a heterogeneous cluster very effectively.



Finally, we achieve a performance improvement ranging between 3
and 28 against Amazon Elastic MapReduce for our data-intensive
applications.

The rest of this paper is organized as follows. In Section 2, we
discuss the background on AWS and Map-Reduce. We focus on
considerations for system design in Section 3. A nuanced experi-
mental evaluation is described in Section 4, which is followed by a
discussion of related research efforts in Section 5. Finally, we sum-
marize our conclusions and discuss future directions in Section 6.

2. BACKGROUND
In this section, we present the background on data storage and

computing on the Amazon Web Services (AWS) public Cloud, as
well as on Map-Reduce and Amazon Elastic Map-Reduce.

2.1 Computing and Data Storage with AWS
AWS offers many options for on-demand computing as part of

their Elastic Compute Cloud (EC2) service. EC2 nodes (instances)
are virtual machines that can launch snapshot images of operating
systems. These images can be deployed onto various instance types
(the underlying virtualized architecture) with varying costs depend-
ing on the instance type’s capabilities. For example, a Small EC2
Instance (m1.small), according to AWS at the time of writing,
contains 1.7 GB memory, 1 virtual core (equivalent to a 1.0-1.2
GHz 2007 Opteron or 2007 Xeon processor), and 160 GB disk
storage. Many other such instance types exist, also with varying
costs and capabilities.

Amazon’s persistent storage framework, Simple Storage Service
(S3), provides a key-value store. Typically, the unique keys are
represented by a filename and the path to the bucket which contains
it, and the values are themselves the data objects. While the objects
are limited to 5 TB, the number of objects that can be stored in S3
is unrestricted. Aside from the simple API, the S3 architecture has
been designed to be highly reliable and available. It is furthermore
very inexpensive in terms of price to store data on S3.

2.2 Map-Reduce and Amazon Elastic Map-Re-
duce

Map-Reduce [4] was proposed by Google for application devel-
opment on data-centers with thousands of computing nodes. It can
be viewed as a middleware system that enables easy development
of applications that process vast amounts of data on large clus-
ters. Through a simple interface of two functions, map and reduce,
this model facilitates parallel implementations of many real-world
tasks, ranging from data processing for search engine support to
machine learning [2, 6].

The main benefits of this model are in its simplicity and robust-
ness. Map-Reduce allows programmers to write functional style
code that is easily parallelized and scheduled in a cluster environ-
ment. One can view Map-Reduce as offering two important com-
ponents [19]: a practical programming model that allows users to
develop applications at a high level and an efficient runtime system
that deals with the low-level details. Parallelization, concurrency
control, resource management, fault tolerance, and other related is-
sues are handled by the Map-Reduce runtime.

Map-Reduce implementations, particularly the open-source Ha-
doop, have been used on various clusters and data centers [8]. In
fact, AWS also offers Hadoop as a service called Amazon Elastic
Map-Reduce, which allows processing of data hosted on S3 while
using EC2 compute instances. For users of AWS, Elastic Map-
Reduce serves as a high-level framework for data analysis, without
having to perform substantial software installation. Furthermore,
for users of Hadoop or Map-Reduce, Amazon Elastic MapReduce

also alleviates the need for owning and/or managing their own clus-
ter.

3. SYSTEM DESIGN
This section describes the design of the MATE-EC2 middleware.

We will first describe the API for high-level specification of the data
processing task, followed by a nuanced discussion of the middle-
ware design.

3.1 Processing API
In this subsection, we describe the details of the Map-Reduce

programming model and our alternate API implemented in the MA-
TE-EC2 system, which we refer to as the generalized reduction
API.
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Figure 1: Processing Structures

We show the processing structures for the MATE and the Map-
Reduce programming model with and without the Combine func-
tion in Figure 1. The Map-Reduce programming model [4] can
be summarized as follows. The map function takes a set of input
points and generates a set of corresponding output (key, value)
pairs. The Map-Reduce library sorts and groups the intermediate
(key, value) pairs, then passes them to the reduce function in such
a way that the same keys are always placed on the same reduce
node. This stage is often referred to as shuffle. The reduce func-
tion, which is also written by the user, accepts a key and a set of
values associated with that key. It merges together these values to
form a possibly smaller set of values. Typically, just zero or one
output value is produced per reduce invocation.

The Map-Reduce framework also offers programmers an op-
tional Combine function, which can be used to improve the perfor-
mance of many of the applications. Before the (key, value) pairs
are emitted from the mapping phase, they are grouped according



to their key values and stored in a buffer on the map nodes. When
this buffer is flushed periodically, all grouped pairs are immediately
reduced using the Combine function. These intermediate reduced
pairs are then emitted to the reduce function. The use of Combine
can decrease the intermediate data size significantly, and therefore
reducing the amount of (key, value) pairs that must be communi-
cated from the map and reduce nodes.

We now explain the MATE-EC2 API, which also has 2-phases:
The local reduction phase aggregates the processing, combination,
and reduction operations into a single step, shown simply as proc
(e) in our figure. Each data element e is processed and reduced lo-
cally before next data element is processed. After all data elements
have been processed, a global reduction phase commences. All re-
duction objects from various local reduction nodes are merged with
an all-to-all collective operation or a user defined function to obtain
the final result.

The advantage of this design is to avoid the overheads brought
on by intermediate memory requirements, sorting, grouping, and
shuffling, which can degrade performance in Map-Reduce imple-
mentations [9]. At first glance, it may appear that our API is very
similar to Map-Reduce with the Combine function. However, there
are important differences. Using the Combine function can only
reduce communication, that is, the (key, value) pairs are still gen-
erated on each map node and can result in high memory require-
ments, causing application slowdowns. Our generalized reduction
API integrates map, combine, and reduce together while process-
ing each element. Because the updates to the reduction object are
performed directly after processing, we avoid intermediate memory
overheads.

The following are the components in MATE-EC2 that should be
prepared by the application developer:

• Reduction Object: This data structure is designed by
the application developer. However, memory allocation and
access operations to this object are managed by the middle-
ware for efficiency.

• Local Reduction: The local reduction function speci-
fies how, after processing one data element, a reduction ob-
ject (initially declared by the programmer) is updated. The
result of this processing must be independent of the order in
which data elements are processed on each processor. The
order in which data elements are processed is determined by
the runtime system.

• Global Reduction: In this function, the final results
from multiple copies of a reduction object are combined into
a single reduction object. A user can choose from one of the
several common combination functions already implemented
in the MATE-EC2 system library (such as aggregation, con-
catenation, etc.), or they can provide one of their own.

Our MATE-EC2’s generalized reduction API is motivated by our
earlier work on a system called FREERIDE (FRamework for Rapid
Implementation of Datamining Engines) [10, 11, 9].

3.2 Design for Processing S3 Data
In this subsection we explain how data should be organized and

accessed by MATE-EC2 in order to maximize processing through-
put.

Data Organization
MATE-EC2 is developed in order to process large amounts of data.

However, there are generally space limitations while storing data
into a file system. Also, it can be more efficient to split data into
many files. Therefore, the first stage of organizing data in MATE-
EC2 is to split the application’s data set into a required number of
data objects.

By itself, this is a fairly trivial process, however, data organiza-
tion must also involve the processing units’ requirements in order
to maximize the throughput. More specifically, the available mem-
ory at the processing node and caching mechanisms in the system
should also be considered. Therefore, MATE-EC2 logically divides
each data object into memory-friendly chunks, typically only some
tens of MBs. In S3, it is not necessary to physically split data ob-
jects into smaller chunk units because it allows for partial data ac-
cesses.

Therefore, the overall organization of data sets in MATE-EC2 is
as follows. The application’s data set is first split into several data
objects. Though the physical limit on the size of each obect is 5
TB, the number of data objects that the entire dataset is split into
is a multiple of the number of processes. Therefore, processes can
be evenly mapped among the data objects, which results in a lesser
number of connections to each object and increase network utiliza-
tion. We further store offsets for accessing each chunk in a meta-
data file associated with each S3 object. This metadata includes:
(1) the full-path to the data object, (2) offset address of the chunk,
(3) size of the chunk, and (4) the number of data points within the
chunk, P . Each data point defines the smallest unit of data that can
be analyzed by the application process.

Consider the following example. Assume we have a set of points
in 3D space. If the data set size is 24 GB and the number of pro-
cesses is 16, then the data can be split into 16 data objects. There-
fore, each process can work on one data object and exploit the
bandwidth. The size of chunks can vary according to the avail-
able resources in the processing unit and the desired workload per
job. Assuming that a 128MB chunk size provides the optimal re-
source utilization, then each data object can be divided into 12
logical data chunks (24GB/(16 × 128MB). Since the real pro-
cessing deals with points in 3D space, the smallest size of the data
unit can be expressed with 3 double-float numbers, and therefore,
P = 128MB/(3 × sizeof(double)). The metadata of the chunk
offsets is stored in an index file and used for the purpose of chunk
assignment to the processing nodes.

With the discussion of data organization, we now describe our
data processing scheme in detail.

Data Retrieval Subsystem
Using the metadata pertaining to data chunks, jobs can now be as-
signed to the processing units. Although S3 provides high availabil-
ity, scalability, and low latency for stored data, the low-level design
details of the system are not made publicly available. Therefore,
we have empirically investigated S3’s performance. As a result
from our experiments, we observed the following features that af-
fect data access performance on S3: (1) Threaded Data Retrieval
and (2) Selective Job Assignment.

Threaded Data Retrieval uses a predefined number of threads in
order to efficiently retrieve data chunks from S3. The process first
allocates the required memory for the data chunk. Shown in Figure
2, each thread in the compute unit reads different parts of the data
chunk from an S3 object via the offsets and writes them into the
pre-specified memory location. When all threads have retrieved
the desired data parts of the chunk, the memory address and the
metadata information are passed to the computing layer in which
data is processed.

Consider a situation where a process must retrieve a data chunk



that is 128 MB in size, using 16 retrieving threads. Each thread
receives a 128MB/16 = 8MB chunklet, i.e., a chunk within a data
chunk, and writes it into their corresponding portions of the buffer.
Because S3 allows for parallel reads per data object, this approach
maximizes bandwidth usage, and reduces overall execution times
of the processes, which we will show in the ensuing section.

Selective Job Assignment exploits the available bandwidth of the
data objects in S3. As we stated above, the threaded retrieval ap-
proach potentially opens many connections to a single data object
in order to efficiently retrieve the data chunks. Naturally, the num-
ber of active connections made on each data object in turn impacts
the data retrieval speed. The jobs, therefore, are distributed among
the processes so that the number of active connections is minimized
on data objects. This is satisfied by checking the connections on
each of the data object and selecting the job from the data object
that has minimum number of active connections.

Computing Layer

S3 Data Retrieval Layer

Buffer

Th0

Th1

Th2

Th3

Chunk0

EC2 Slave Instance EC2 Master Instance
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S3 Data Object

input
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Figure 2: MATE-EC2 Processing System

Figure 2 demonstrates the interaction between MATE-EC2 com-
ponents. This figure depicts an EC2 master instance, an EC2 slave
instance, and a data object with n data chunks. In practice, there is
more than just one slave instance and many data objects. However,
the execution flow follows the same pattern for any configuration.

The EC2 master instance distributes the unprocessed data chunks
among the requesting processes in EC2 slave instances. Because
the chunk information is in the metadata file, the master instance
can compile a job and assign it to the process which is requesting
it. When the process in a slave instance retrieves the job’s metadata,
it extracts the chunk information and begins requesting the chunk
from the S3 object. The parts of the chunk are then written to the
process’ buffer by the retrieving threads. When the chunk is ready
in the buffer, it is passed to the computing layer, where processing
is handled at a coarser scale.

As we mentioned, the metadata pertaining to a chunk includes
the number of data points, P , for that particular chunk. Therefore,
the computing layer can calculate the data unit size and iteratively
process the number of data units that can fit into the CPU’s cache.
Whereas the number of data points per chunk helps our system to
effectively utilize the cache, the chunk size helps take advantage of
memory usage. When all the data units in a chunk have been con-
sumed, the process requests another job from the master instance.
Once all the data chunks have been consumed, the processes syn-
chronously enter the global reduction phase and combine all the
reduction objects into the final result.

3.3 Load Balancing and Handling Heterogene-
ity

As discussed in previous sections, MATE-EC2 was also designed
to manage computation on a heterogeneous set of compute instances.
The motivation for this arises from how AWS makes instances avail-
able as on-demand, reserved, and spot instances, which are avail-

able due to the amount of money a user is willing to bid. Let us sup-
pose an organization has several large instances reserved. During
high workloads, it may choose to obtain additional spot instances
to improve the processing rate. Depending on the organization’s
budget, if these spot instances happen to be small instances, the
processing will have to be performed on heterogeneous set of in-
stances. Currently, Amazon Elastic MapReduce is not capable of
using a heterogeneous set of instances. In contrast, MATE-EC2
provides dynamic load balancing to allow the effective use of the
aggregate processing power.

Algorithm 1: Assigning jobs to the EC2 Instances
Input: chunkInfoList, metadata of the chunks
Result: job, which is assigned to EC2 compute instance

s3ObjList← createS3ObjList(chunkInfoList);
/* EC2 instance request handler loop */
while true do

ec2CompIns← ReceiveReq();
if CheckAssigned(ec2CompIns) then

SetProcessed(ec2CompIns, s3ObjList);

s3Obj← AvailS3Obj(s3ObjList);
job← CreateJob(s3Obj);
Transfer(job, ec2CompIns);
if IsNotEmpty(job) then

Assign(ec2CompIns,s3Obj);

Algorithm 2: Processing Chunks on EC2 Compute Instance
Input: scheduler, Job Scheduler

: rObj, User specified initial reduction object
Result: Updated final reduction object, rObj

/* Execute outer sequential loop */
while true do

/* Execute job request loop */
while true do

job← RequestJob(scheduler);
if IsEmpty(job) then

break;

s3Obj← GetS3Obj(job);
chunksInfo← GetChunksInfo(job);
foreach chunk info cinfo in chunksInfo do

{* Retrieve data chunk chk with cinfo from
s3Obj *};
(i, val)← Process(chk);
rObj(i)← Reduce(rObj(i), val);

{* Perform Global Reduction *};

Our approach for supporting dynamic load balancing is based on
a pooling mechanism. The metadata information that is extracted
from the data objects is used for this purpose. First, the EC2 master
instance retrieves and reads the metadata file from S3 and creates
the job pool. Next, the processes in slave instances commence re-
questing jobs from the master instance. The appropriate job is se-
lected from the pool and assigned to the requesting process. There-
fore, the system throughput and resource utilization are maximized.

Algorithm 1 shows how the master instance manages the com-
pute instances, which is also illustrated in Figure 2. Initially, the
master instance waits for the job requests from slave instances.



When a job request is received, the scheduler checks if any of
the chunks in the system was previously assigned to the requesting
compute instance. If so, the scheduler sets their state as processed.
Then, it creates another job with a new set of chunk information
from the most suitable S3 objects in the system.

The main consideration for the scheduler in choosing an S3 ob-
ject is effectively using the available bandwidth from each. There-
fore, if the number of connections between all pairs of compute
instances and S3 data objects is the same, the job mapping will be
done in a round robin fashion. Conversely, if the number of con-
nection on S3 objects varies, then more compute instances’ requests
will be mapped to the S3 objects with least number of connections,
as long as they still have chunks that need to be processed. After
creating the job from an S3 object, it is transferred to the requesting
compute instance.

When a compute instance receives a job from the scheduler, it
extracts the chunk’s metadata information and begins requesting
the data from the corresponding S3 data object. The data chunk is
retrieved and written to the chunk buffer using the aforementioned
threaded retrieval approach. The data retrieval layer then passes the
chunk to the computing layer and begins the local reduction phase.
After the data processing stage is finished, the compute instance
will request another job, until all chunks are consumed. Finally, all
compute instances reduce their execution with the global all-to-all
reduction. This process is shown in Algorithm 2.

4. APPLICATIONS AND EXPERIMENTAL
RESULTS

In this section, we extensively evaluate our data-intensive com-
puting middleware with various configurations using Amazon EC2
instances and the S3 data store. The goals of our experiments are as
follows: (1) Comparing our middleware with a similar and popular
system, Amazon Elastic MapReduce, (2) investigating Amazon’s
environments and services with various settings to detect the most
suitable configurations for data intensive computing, and (3) deter-
mining the performance of our middleware on homogeneous and
heterogeneous resources.

We used large EC2 instances (m1.large) for our experiments.
According to Amazon at the time of writing, these are 64-bit in-
stances with 7.5 GB of memory. Large instances provide two vir-
tual cores, and each core further contains two elastic compute units.
Large instances are also rated as having high I/O performance by
AWS.

Throughout our experiments, we used varying numbers of large
instances as slaves for computing purposes and one separate large
instance as the master node for managing execution flow. The orig-
inal data file was divided into 16 data objects and stored in S3. Each
of these data objects is logically separated into different number of
chunks and metadata information were extracted during this oper-
ation.

Three representative data-intensive applications were used to eval-
uate our system: This includes two popular data mining algorithms,
KMeans Clustering and Principal Component Analysis (PCA), and
PageRank [16]. The data set size for both KMeans and PCA is 8.2
GB (thus, each data object stored in S3 is 8.2/16 GB or nearly 500
MB). The data set used for PageRank is 1 GB, contains 9.6 million
nodes and 131 million edges.

During the experiments, we set the computation parameters con-
stant and observed the execution time with processing, synchro-
nization, and data retrieval times. The initialization times of the
instances are omitted. For each configuration, we repeated the ex-
periment at least five times and display the average of the results.

4.1 Comparison of MATE-EC2 and Amazon
Elastic Map-Reduce

In this set of our experiments, we evaluate the performance and
scalability of our middleware and compare it to Amazon Elastic
MapReduce. Of the three applications we used, we implemented
two different version of KMeans and PageRank applications on
Elastic Map-Reduce (EMR): with and without using the Combiner
function, which are referred to as EMR-combine and EMR-no-
combine, respectively. The nature of computation in PCA does
not allow us to use the combiner function, as we will explain later.
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Figure 3: MATE-EC2 vs. Elastic MapReduce

In Figure 3(a) we show the execution times of MATE-EC2,
EMR-combine and EMR-no-combine with increasing number
of elastic compute units for KMeans. If we consider the 8 com-



pute units configuration as the baseline, the scalability ratios for
EMR-no-combine are 1.38 and 1.46 for 16 and 32 compute units,
respectively. In EMR-combine, these ratios are 1.73 for 16, and
2.97 for 32 compute units. Moreover, the speedups of using Com-
biner function are 1.78, 2.23 and 3.61 for 8, 16 and 32 compute
units. Thus, Combiner’s intermediate reduction, which reduces
data transfers between the map and reduce nodes, is resulting in
significant benefits.

In terms of scalability of MATE-EC2, if we consider the 8 com-
pute units configuration as the baseline, the speedups of the 16 and
32 compute units are 1.86 and 3.82, respectively. That is, the rel-
ative parallel efficiency is 90% or higher. Considering the perfor-
mance, MATE-EC2 runs 3.54, 3.81, and 4.58 times faster for 8, 16,
and 32 compute units respectively than EMR-combine.

We believe there are several likely reasons for the higher perfor-
mance with MATE-EC2. First is the difference between the pro-
cessing APIs: Although Combiner function reduces the pairs be-
fore they are emitted from the local process, they are still required
to be sorted and grouped before they are passed to the Combiner
function from the map function. Furthermore, the pairs need to be
shuffled after they are emitted. In MATE-EC2’s processing struc-
ture, on the other hand, the pairs are accumulated into the reduc-
tion object according to their key values right after their generation,
which eliminates these overheads.

Typically, Map-Reduce’s task tracker maps the tasks where the
data resides, thus the locality is maximized. However, in our exper-
iments we examine the situations in which the data is stored in S3
resources. Therefore, data needs to be retrieved and then processed.
According to Amazon’s documents, a good practice is to initiate
EC2 resources in the same region where the data is located. Thus,
the map and reduce tasks can exploit the bandwidth, though they
cannot be mapped to the nodes in which the data resides. Consid-
ering MATE-EC2, our data organization, job assignment and data
retrieval strategies optimize the interaction between processes and
S3 data objects.

We repeated the same experiment for PageRank and present the
results in Figure 3(b). The speedups of MATE-EC2 are 1.58 for 16
and 2.53 for 32 compute units, whereas EMR-combine configu-
ration’s are 1.23 and 1.37. Furthermore, we observe that the exe-
cution times for MATE-EC2 are 4.08, 5.25, and 7.54 times faster
than EMR-combine for 8, 16 and, 32 compute units, respectively.
The data read and write operations are the dominating factors for
EMR-combine execution times.

In Figure 3(c), we repeated and displayed the execution times of
PCA application with EMR-no-combine and MATE-EC2. The
speedups of MATE-EC2 are 1.96 and 3.77 for 16 and 32 compute
units. On the other hand EMR-no-combine achieved speedups
of 1.77 and 3.27. When we compare the execution times of MATE-
EC2 and Elastic MapReduce, our middleware is 28 times faster
than Map-Reduce execution for all three configurations.

The performance differences are much higher for PCA, and the
reasons arise from its computing pattern. PCA involves two itera-
tions (job flows) during its execution. The first iteration calculates
the mean value of the matrix, which can be implemented efficiently
with Map-Reduce. In the second iteration, however, the computa-
tion requires two rows from the matrix simultaneously in order to
calculate the covariances of a target row. While one of the rows
(target row) can be handled directly with an emitted (key, value)
pair, the other row must be traversed and identified in the data ob-
jects. This operation is done for all row pairs, which contributes to
significant overhead. This computational nature is the reason why
the EMR-combine version is not implemented for PCA.

In contrast, the offset information and the data unit size can

be used in order to efficiently traverse over the data chunks and
data objects with MATE-EC2. Therefore, the data organization of
MATE-EC2 effectively improves the performance for fetching the
matrix rows from S3 data objects.

Overall, we believe that this set of experiments offer strong ev-
idence that MATE-EC2 outperforms Elastic MapReduce in terms
of both scalability and performance.

In the next subsection, we show how we evaluated the MATE-
EC2’s performance with different parameters and determined the
best configuration. As the trends are similar with all three applica-
tions, we report detailed results only from KMeans and PCA.

4.2 Detailed Performance Studies on AWS
We focus first on the performance of MATE-EC2 with varying

chunk sizes and retrieving threads. We employed 4 large instances
(16 compute units) as slaves for processing and 1 large instance as
the master for job scheduling.
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Figure 4: KMeans – 1 Data Retrieval Thread for each Process-
ing Thread

Figure 4 shows the performance of MATE-EC2 with only one re-
trieving thread per processing thread, and with varying chunk sizes.
For instance, the configuration with 128KB size splits each data
object close to 4200 logical chunks within the S3 data object itself,
whereas the 128MB size divides each data object into only 4 logical
chunks.

This implies that the number of separate requests to S3 with
a 128MB chunk size is significantly smaller than the configura-
tion with 128KB chunk size. Considering the worst case, i.e., 128
KB, and the best performing cases, i.e., 16MB, 32MB, 64MB, and
128MB, the speedups of using larger data chunks range from 2.07
to 2.49. The execution times can further be analyzed according to
their data retrieval, synchronization and processing times. Consid-
ering the 128KB chunk size as the base configuration, the speed-
ups of data retrieval times with increasing chunk sizes range from
1.55 to 3.71 where 64MB chunk size configuration exhibits the best
performance. The synchronization time does not introduce signifi-
cant overhead to the system, however it increases while the chunk
sizes increase. The slowdowns of processing times change from
17% to 59% with increasing chunk sizes, and the highest slow-
down ratio was with 64MB configuration. Since, most of the ex-
ecution time is spent during the data retireval phase, the speedups
of using larger chunk sizes dominate the slowdowns of process-
ing times. Thus, chunk sizes have a very substantial impact on the
performance while retrieving and processing data from S3. The
minimum data processing time is with the 128 MB configuration,
although the average time of the experiments with this configura-
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(b) PCA - 16 Data Retrieval Threads for Each Processing Thread

Figure 5: Performance with Varying Chunk Sizes

tion shows higher overall execution time than the 16MB, 64MB and
32MB configurations.

The number of retrieving threads used for each processing thread
(or core) turns out to be a very important factor for overall perfor-
mance. Thus, before detailed analysis of the trends observed in
Figure 4, we also consider results for the case where threaded re-
trieval is used. Thus, as shown in Figure 5, the execution times of
varying chunk sizes with 16 retrieval threads were observed.

Let us first consider the KMean application in Figure5(a). If the
8MB configuration is considered as the base setting, the speedups
of 16MB, 32MB, 64MB and 128MB are 1.13, 1.20, 1.30, and 1.27,
respectively. Similar to the previous experiment, the minimum ex-
ecution times are observed with the 128MB setting, even though
the average execution time is slightly higher than the 64MB. If
we only consider the data retrieval times, the speedups range from
1.38 to 3.25, where the best performance is observed with 128MB
chunk size configuration. Although increasing chunk sizes intro-
duce slowdowns, which are between 6% and 27%, in data process-
ing times, this is again amortized with reductions in data retrieval
times.

If we juxtapose Figures 4 and 5(a), we can clearly observe the
effect of using multithreaded data retrieval, as the speedup of the
8MB setting with 16 retrieving threads over 1 retrieving thread is
1.24. Similarly, we can apply the same comparison to the other
configurations: the speedups of using 16 retrieving threads are 1.40
for 16MB, 1.56 for 32MB, 1.65 for 64MB and 1.81 for 128MB.
Clearly, using multithreaded data retrieval approach improves the
performance of the execution of KMeans.

Figure 5(b) presents the same configuration with PCA applica-
tion. The execution times follow the same pattern with KMeans.
For this configuration, if we consider the 8MB setting as the base
line, the speedups are 1.12, 1.30, 1.46, and 1.43 for 16MB, 32MB,
64MB, and 128MB chunk size configurations, respectively. The
comparison of 1 threaded versus 16 threaded configurations fol-
lows a similar pattern that we had in KMeans application for PCA.
If we focus on the data retrieval times, the speedups change from
1.23 to 2.91, and the 128MB chunk size configuration provides the
best performance.

In analyzing all experiments where chunk size is varied, we can
see that, as data chunks increase in size, the processing times like-
wise increase in all cases. We believe this is because of the cache
behavior on virtual cores and non-dedicated machines. With smaller
chunk sizes, data can be cached effectively between retrieval and
processing. At the same time, as chunk size increases, data retrieval
times decrease, and this is likely due to the high latency of data ac-
cesses on S3. Thus, when the total number of distinct chunks to be
read is smaller, we have lower data retrieval times.

Another interesting observation pertains to synchronization ti-
mes, i.e., the time taken to synchronize threads for transitioning
from the data processing phase to the combination/reduction phase.
These tend to increase while the chunk sizes become larger. We be-
lieve this is due to job granularity. That is, when all data chunks in
the system have been consumed, the processing threads must ag-
gregate all reduction objects and calculate the final result. At this
point, all processes are required to interact and wait for each other.
If the job size is large, all the threads must wait on the thread that
was scheduled the final job. Therefore, synchronization time is im-
pacted by the chunk size, as well as the throughput of the final
process. In combining the three factors, the best performance is
achieved with 64MB and 128MB chunk sizes. In general, however,
this can be application dependent. In the future, we will add a per-
formance model and/or an auto-tuning framework in our system to
automatically select the optimal chunk size.

Continuing our study of different performance parameters, we
next varied the number of data retrieval threads. The results are
shown in Figures 6(a) and 6(b). We used 128MB chunk size as
our default configuration. For both of applications, as the number
of retrieving threads increase, the data transfer speed expectedly
also increases, causing overall execution times to decrease. How-
ever, after 16 retrieving threads we begin experiencing diminishing
returns due to scheduling overheads when there are too many thre-
ads. Our results show that the speedups of using many retrieving
threads against 1 retrieving thread range from 1.38 to 1.71 for PCA,
and from 1.37 to 1.90 for KMeans. Moreover, the speedups in data
retrieval times are between 1.74 and 5.36 for KMeans, and 1.71
to 3.15 for PCA. For both applications, the best performance was
observed with 16 retrieval threads.

The next set of experiments addresses the effects of data assign-
ment. Our threaded data retrieval approach opens many connec-
tions to the targeted S3 object. If several processes are assigned to
the same data object, then the number of connections becomes a
bottleneck. Without a selective job assignment scheme, the sched-
uler assigns jobs sequentially. Because logical chunks are consecu-
tively placed among the data objects, consecutive job requests from
various processes are mapped to the same data object. This re-
sults in a flood of connections on the same object, which slows
down data retrieval. Conversely, a selective job assignment strat-
egy, where the scheduler can choose to assign jobs to minimally
accessed data objects, may offer performance gains.

In Figure 7(a) and 7(b) we show the execution times of KMeans
and PCA with selective and sequential job assignment
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Figure 6: Execution Times with Varying Number of Data Re-
trieval Threads

strategies. The speedups of using selective assignment for
KMeans are 1.01 for 8MB and range from 1.10 to 1.14 for the
other chunk size configurations. The reason why our approach does
not show a significant speedup for 8MB configuration is due to the
small chunk size that results in short data chunk retrieval times.
This implies that there is little opportunity where a single object
would be simultaneously accessed by multiple threads. The speed-
ups of using selective assignment for PCA are 1.32, 1.51, 1.47,
1.68, and 1.19 for 8 MB, 16 MB, 32 MB, 64 MB, and 128 MB set-
tings, respectively. The difference between the execution times are
more clear in PCA because the application consists of two itera-
tions, which can lead to the requirement of retrieving every data
element twice. These results also indicate that splitting data into
several data objects and concurrently processing them can lead to
better performance than working on one large data object.

4.3 Performance of MATE-EC2 on Heteroge-
neous Environments

In the previous subsection, we empirically determined that the
optimal configuration for MATE-EC2 involves 16 retrieving thre-
ads, a 64MB or 128MB data chunk size, and use of the selective
job assignment strategy.

In this set of experiments, we evaluate our middleware on hetero-
geneous environments using this optimal configuration. In order to
provide a heterogeneous environment, we ran our middleware on
varying number of Amazon EC2 small and large instances. Small
instances provide 1.7 GB memory and one virtual core with one
elastic compute unit on a 32-bit architecture. Moreover, the I/O
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Figure 7: Chunk Assignment Strategies, Varying Chunk Sizes

performance of small instances has been rated as being moderate.
This is in contrast to large instances (7.5 GB memory, 2 virtual
cores where each virtual core has 2 elastic compute units, and high
I/O ratings). Therefore, we emphasize that heterogeneity does not
only exist in terms of processing rate, but also I/O performance.

In our experiments, we used a total of 8 instances, but varied the
mix of small and large instances. The L and S labels in Figures 8(a)
and 8(b) refer to the large and small instance types respectively. For
example, 6L/2S denotes that 6 large instances and 2 small instances
were used.

Results in Figures 8(a) and 8(b) show a comparison between the
actual execution times and Predicted Optimal times. The Predicted
Optimal times reflect the perfect use of the aggregate processing
power of a heterogeneous configuration. To calculate these, we
first derive the ratio between the performance of the given appli-
cation on the two homogeneous configurations (0L/8S and 8L/0S).
This ratio indicates the throughput capacity of a large instance over
a small instance, considering both the I/O and computation perfor-
mance of the instances. Using this ratio, we can further compute the
predicted execution times of each heterogeneous configurations.

We can now analyze the overheads of our middleware on het-
erogeneous environments. In Figure 8(a), we display the execution
times of KMeans, whose overheads above the predicted optimal
values are near 1% on all configurations. Similarly, Figure 8(b)
shows the execution times of the same environment with PCA ap-
plication. The overheads for PCA are 1.1% for 6S/2L, 7.4% for
4S/4L and 11.7% for 2S/6L configurations.

Even though we show that the execution times on heterogeneous
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Figure 8: MATE-EC2 in Heterogeneous Environments

environments are close to the Predicted Optimal times, two obser-
vations can be made: (1) The overheads increase while the number
of large instances grow in the system and (2) PCA’s overheads are
higher than those of KMeans. We believe the reason for observa-
tion (1) is due to the synchronization issues that rise because of the
difference between large and small instance types’ I/O and through-
put performance. Our approach for calculating the overheads as-
sumes perfect timing for synchronization among the instances due
to the ratio calculation which is being derived from homogeneous
environments. The reason for observation (2) is because PCA in-
volves two iterations, and therefore, the processes must synchro-
nize twice. Because the granularity of jobs ultimately determines
the synchronization intervals during execution, chunk sizes have a
direct effect on such heterogeneity-related overheads. Therefore,
the overheads due to the heterogeneity can further be controlled
with smaller chunk sizes, i.e., jobs. Conversely, however, this may
also cause additional overhead due to the inefficient bandwidth us-
age that we showed in the previous subsection.

5. RELATED WORK
An increasing number of data-intensive projects have been mi-

grated onto the Cloud since its emergence, and in particular, the
celebrated class of Map-Reduce [3] applications. Driven by its pop-
ularity, Cloud providers including Google App Engine [7], Amazon
Web Services, among others, began offering Map-Reduce as a ser-
vice.

Several efforts have addressed issues in deploying Map-Reduce
over the Cloud. For instance, the authors propose a preliminary

heuristic for cost-effectively selecting a set of Cloud resources [12].
Related to performance, Zaharia, et al. analyzed speculative ex-
ecution in Hadoop Map-Reduce and revealed that its assumption
on machine homogeneity reduces performance [23]. They pro-
posed the Longest Approximate Time to End scheduling heuristic
for Hadoop, which improved performance in heterogeneous envi-
ronments. While our findings indeed echoed the authors’ obser-
vation that heterogeneous nodes can be executed more effectively,
our work nonetheless differs where processing patterns on data in
S3 can lead to optimizations. In another related effort, Lin et al.
have developed MOON (MapReduce On Opportunistic eNviron-
ments) [14], which further considers scenarios where cycles avail-
able on each node can continuously vary. The dynamic load bal-
ancing aspect of our middleware has a similar goal, but our work is
specific to AWS.

Many efforts have conducted cost and performance studies of
using Cloud environments for scientific or data-intensive applica-
tions. For instance, Deelman et al. reported the cost of utilizing
Cloud resources to support a representative workflow application,
Montage [5]. They reported that CPU allocation costs will typi-
cally account for most of the cost while storage costs are amor-
tized. Because of this, they found that it would be extremely cost
effective to cache intermediate results in Cloud storage. Palankar et
al. conducted an in-depth study on using S3 for supporting large-
scale computing [17]. In another work, Kondo et al. compared
cost-effectiveness of AWS against volunteer grids [13]. Yuan et al.
proposed a strategy [22] for caching for large-scale scientific work-
flows on clouds. A tangential study by Adams et al. discussed the
potentials of trading storage for computation [1]. Weissman and
Ramakrishnan discussed deploying Cloud proxies [21] for acceler-
ating web services. The goal of our work, in contrast, has been to
study retrieval and processing of data stored in S3 and developing
a middleware for data-intensive computing.

6. CONCLUSIONS AND FUTURE WORK
Recently, users are becoming increasingly attracted by the bene-

fits in using Cloud computing resources for data-intensive projects.
The Cloud’s on-demand resource provisioning and infinite storage
are highly suitable for various large-scale applications. This paper
addressed two main issues in supporting data-intensive applications
on Amazon Web Services, which have emerged as the most popu-
lar provider among the available Cloud services. The first issue is
understanding the performance aspects of retrieving and process-
ing data from Amazon S3. The second is developing an efficient
and scalable middleware with a high-level API for data-intensive
computing.

Our experiments with S3 have shown that high efficiency is achi-
eved by having about 16 data retrieval threads for each processing
thread, using a chunk size 64MB or 128 MB, and by minimizing
the number of connections on each data object in S3. Using these
observations, we have developed MATE-EC2, a middleware for
facilitating the development of data processing services on AWS.
We have shown that this middleware outperforms Amazon Elastic
MapReduce by a factor of 3 to 28. Also, we are able to support data
processing using a heterogeneous collection of instances in AWS,
thus offering more flexibility and cost-effectiveness to users.

In the future, we would like to expand our work in several di-
rections. First, we will experiment with additional applications.
Second, a performance model and/or an autotuning framework is
needed to automatically select chunk sizes and number of retriev-
ing threads. Finally, we will like to extend MATE-EC2 to enable
cloud bursting, i.e., use Cloud resources as a complement or al-
ternative to local resources. Specifically, we wish to process data



stored on a combination of local resources and S3, while using pro-
cessing power from both EC2 and local resources.
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