Riding the Elephant: Managing Ensembles with
Hadoop

Elif Dede, Madhusudhan Govindaraju

State University of New York (SUNY)
Binghamton, NY, USA

{edede1, mgovinda} @binghamton.edu

ABSTRACT

Many important scientific applications do not fit
the traditional model of a monolithic simulation
running on thousands of nodes. Scientific work-
flows — such as the Materials Genome project, En-
ergy Frontiers Research Center for Gas Separa-
tions Relevant to Clean Energy Technologies, cli-
mate simulations, and Uncertainty Quantification
in fluid and solid dynamics — all run large num-
bers of parallel analyses, which we call scientific
ensembles. These scientific ensembles have a large
number of tasks with control and data dependen-
cies. Current tools for creating and managing these
ensembles in HPC environments are limited and
difficult to use; this is proving to be a limiting
factor to running scientific ensembles at the large
scale enabled by these HPC environments. MapRe-
duce and its open-source implementation, Hadoop,
is an attractive paradigm due to the simplicity of
the programming model and intrinsic mechanisms
for handling scalability and fault-tolerance. In this
paper, we evaluate the programmability of MapRe-
duce and Hadoop for scientific workflow ensembles.

1. INTRODUCTION

Advances in computing over the past few decades
have resulted in a large number of computational
models being available for simulating complex phys-

Permission to make digital or hard copies of all or part of this work fOf
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that co

Dan Gunter, Lavanya Ramakrishnan
Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA
{dkgunter,lramakrishnan}@Ibl.gov

ical systems. Many of these applications do not
fit the traditional model of a monolithic simula-
tion running on thousands of nodes. For exam-
ple, accurate bounds on the computational mod-
els, through Verification and Validation (V&V) and
Uncertainty Quantification (UQ) are obtained by
running a large number of model runs with dif-
ferent parameters: Similar levels of parallelism is
also seen in other projects such as the Material
Genome project [2] In addition, large data volumes
generated by scientific simulations are resulting in
exploratory data analysis that have similar work-
flow pattern. We use the term scientific ensembles
to describe these class of applications where there
are a large number of parallel tasks with control
or data dependencies that must run in coordina-
tion to arrive at a scientifically meaningful result.
These scientific ensembles have many tasks and/or
operate and generate large amounts of data and
essentially fits in the many-task paradigm [27].
Current approaches to managing these many-
task scientific ensembles provide limited support
for programming, fault-tolerance, scaling and dy-
namic adaptation to varying resource conditions.
In fact, policies on the number of concurrent jobs
from a single user in current batch queue systems
hinder the scalability of these application. These
challenges will be further exacerbated as we ap-
proach the exascale era due to changes in hardware
that affect application failure characteristics, cost
of I/O operations, limit on memory available per
core/task. Thus new and innovative approaches to
managing scientific ensembles are necessary.
n recent years, the MapReduce programming
del and its open source implementation, Apache

bear this notice and the full citation on the first page. To copy otherwisdlegdoop, have taken traction as a means to process
republish, to post on servers or to redistribute to lists, requires prior spedifige volumes of data. The MapReduce [16] pro-

permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

gramming model consists of two functions familiar

to functional programming, map and reduce, that
are each applied in parallel to a data block. The
Google implementation of MapReduce remains pro-
prietary; Apache Hadoop is an open-source Java
implementation of MapReduce. The inherent sup-
port for parallelism built into the programming

model enables horizontal scaling and fault-tolerance.

Scientific ensembles have many characteristics in
common with MapReduce workloads, as they both
employ a high degree of parallelism that must be
run in coordination to arrive at a meaningful re-
sult. However these scientific workloads have a
key distinguishing characteristic: multiple files per
task and specific parameters per task. Thus, we
must investigate further to see whether MapRe-
duce and its open-source implementations are a
convenient programming model to manage loosely
coupled asynchronous scientific ensembles.

Recently, there have been a number of imple-
mentations of MapReduce and similar data pro-
cessing tools [10, 14, 18, 20, 24, 30, 36]. Apache
Hadoop has evolved rapidly as the leading platform
and has spawned an entire ecosystem of support-
ing products. Thus we use Hadoop, as a represen-
tative MapReduce implementation for our evalua-
tion. Prior work has compared the suitability of
these systems for different workloads [13].

In this paper, we evaluate Hadoop’s suitability
as a platform for running large, complex scientific
ensembles. This evaluation encompasses the fol-
lowing contributions:

e We compare and contrast Hadoop jobs and
scientific ensembles,

e We analyze the applicability of MapReduce
for six common ensemble patterns and de-
scribe the challenges from programming these
patterns in Hadoop and,

e We discuss the current gaps and challenges
with using Hadoop for scientific ensembles.

The rest of this paper is organized as follows. In
Section 2 we discuss related work. In Section 3,
we present the background on scientific ensembles,
MapReduce and Apache Hadoop and compare and
contrast scientific ensembles with MapReduce jobs.
Section 4 details our analysis approach. We sum-
marize our results and identify gaps and challenges

in supporting scientific ensembles with Apache Hadoop

in Section 5 and finally conclude in Section 6.

2. RELATED WORK

Scientific ensembles have recently gained trac-
tion due to increased parameter space and data vol-
umes. We are not aware of any prior work that in-
vestigates MapReduce/Hadoop as a framework for
composing and managing these jobs. However the
execution framework required for scientific ensem-
bles have similar characteristics to workflow tools
and other job management frameworks and we de-
tail these systems in this section and contrast it
with our approach.

Scientific Workflow Tools. Running scien-
tific workflows in distributed environments such as
grid environments has been an area of interest since
the introduction of large scale systems. Pegasus [9]
supports execution of workflows in distributed en-
vironments such as campus clusters, grids, clouds.
Pegasus Workflow Management Service maps an
application onto available resources pertaining to
the cluster while keeping the internal and exter-
nal dependencies of the workflow in order. Triana
[35] is an open. source graphical problem solving
environment that allows you to assemble and run
a workflow through a graphical user interface while
minimizing the burden of programming [5]. Tav-
erna [19] provides an easy to use environment to
build, execute and share workflows of web services.
These workflow tools focus on federation of sites
and have limited or no support for automatic scal-
ing with growth in data volumes, fault-tolerance
and dynamic conditions.

Various groups have have modeled workflows us-
ing using formal semantics including lambda cal-
culs [22, 34]. Our work is complementary to these
efforts and specifically explores the representation
of scientific ensembles using the MapReduce model.

MapReduce and Scientific Applications. MapRe-

duce has been gaining popularity for use in scien-
tific applications. With its computational power
and ease of use, MapReduce provides a simple pro-
gramming model for data-intensive applications.
By moving the computation to the data locations,
the model addresses a key performance bottleneck
in data intensive scientific applications like ROOT [§],
BLAST [7], statistical algorithms such as K-means,
bioinformatics, and many other data mining prob-
lems. However, there is still an acknowledged lack
of good examples and techniques for programming
scientific applications with MapReduce. This gap
has been an extensive area of research and has been
targeted by other groups [1, 10, 11].

Hadoop has been used to evaluate the perfor-

mance of various scientific applications from vari-
ous domains including bioinformatics, climate sim-
ulation analysis [29].

CloudBurst [32] uses Hadoop to parallelize map-
ping sequence data for biological analyses while [26]
uses Hadoop to reduce the time spent on human
genome indexing from several hours to a handful
of minutes. Lin et al.[23] evaluate existing MapRe-
duce graph algorithms using Hadoop and proposes
a new set of design patterns addressing the defi-
ciencies encountered.

Hadoop Workflow Tools. CloudWF [37] and
Oozie [3] are workflow systems for cloud that are
built on top of Hadoop. These tools enable users
to chain multiple MapReduce jobs but do not sup-
port any additional patterns. These tools also rely
on Hadoop’s mechanisms for fault-tolerance, scal-
ability and thus we focus our efforts on evaluating
if Hadoop would work for scientific ensembles.

UQ tools. Uncertainty Quantification software
is being used for running large and complex simula-
tions. The DAKOTA (Design Analysis Kit for Op-
timization and Terascale Applications) [12] is used
for software optimization, parameter estimation,
sensitivity and variance analysis. While providing
UQ specific solutions for running large and compli-
cated workflow based applications, DAKOTA also
offers a set of concurrent computing and simulation
interfacing tools [4]. PSUADE [6] is a software
library developed to support UQ studies by pro-
viding features like parallel function evaluations,
sampling and analysis methods, an integrated de-
sign and analysis framework and fault tolerance.
However, in both these tools; details of parallelism
must be explicitly specified by the user thislimiting
scalability.

3. OVERVIEW

In this section we describe the characteristics
of a) scientific ensembles through examples (Sec-
tion 3.1), b) MapReduce model (Section 3.2) c)
Hadoop (Section 3.3). Finally, we compare and
contrast Hadoop jobs and science ensembles (Sec-
tion 3.4).

3.1 Scientific Ensembles

Scientific ensembles are applications with a large
number of loosely-coupled parallel tasks that need
to be managed as a single unit. Scientific ensem-
bles can be diverse in structure. However, they do
share some broad characteristics. In general, en-
sembles consist of one or more phases of execution,

in which input is divided among a number of par-
allel workers, who perform computations on that
input. The output from the parallel workers may
be collected by one process, or recorded by each
worker separately.

Unlike MapReduce workloads, which typically
run on commodity clusters, scientific ensembles of-
ten run in HPC centers. However, they still share
many requirements with MapReduce jobs: proxim-
ity of data, fault-tolerance and the ability to easily
manage and scale up computations with growth of
data.

In the Materials Genome (MG) scientific ensem-
ble, the inputs are atomic crystal structures and
the workers are each running a series of parallel
Vienna Ab-initio Simulation Package (VASP) cal-
culations to produce estimates of the crystal prop-
erties. Each worker reports its results back to a
central database independently.

In the case of the CyberShake scientific ensmble,
there are two phases: first, workers calculate Strain
Green Tensors over a geographic area, then this be-
comes the input for the next phase where workers
generate seismograms and peak spectral accelera-
tion values for different rupture variations. This
is an example of multiple distinct computational
phases linked in series.

Sometimes scientific ensembles may grow during
execution, as they do for the MG VASP jobs: when
a calculation does not converge it may need to be
re-run with different parameters such as additional
mesh points (k-points).

The requirements for scientific ensembles that
perform Uncertainty Quantification (UQ) are even
more complex, in that the results from one sim-
ulation may either add new simulations, modify
parameters, or remove other simulations from the
ensemble. This is true because UQ can explore the
parameter space at different granularities and with
various techniques such as surrogate models, and
the results of a “cheaper” simulation may either ob-
viate or require a more expensive one.

In this paper, we select a set of common scien-
tific ensemble patterns and implement the patterns
with Hadoop, the open-source MapReduce imple-
mentation. We detail the implementation chal-
lenges and analyze the gaps and performance im-
pact for each of the selected workflow patterns.

3.2 MapReduce Basics

MapReduce(MR) is a programming model that
enables users to achieve large-scale parallelism when
processing and generating large data sets. The

MapReduce model is at the foundation of process-
ing large amount of index, log and user behavior
data in global internet companies including Google,
Yahoo!, Facebook and Twitter.

The MapReduce model was designed to be im-
plemented and deployed on very large clusters of
commodity machines. It was originally developed,
and is still heavily used for massive data analysis
tasks. At Google, MapReduce jobs are run on the
proprietary Google File System (GFS) distributed
file system [17]. GFS supports several features that
are specifically suited to MapReduce workloads,
such as data locality and data replication.

We differentiate between the abstract MapRe-
duce model and the Hadoop implementation, fol-
lowing for our abstract representation the style of
formalisms used by Karloff et al. [21]. In the ab-
stract, MapReduce is defined by two functions, a
mapper p and reducer p. These functions operate
on key/value pairs, (k,v) , where both the key and
value are finite binary strings. The mapper function
takes as input one (k, v) and outputs a finite multi-
set of (k’,v’) pairs, where the domains for k, k', v,
and v’ are distinct. The mapper must be state-
less, i.e., it must operate on each key/value pair
independently with no side-effects. This allows ar-
bitrary splitting of the input set of key/value pairs
across parallel mapper instances, with zero com-
munication between them.

The reducer takes as input a key, k and list of
N values {v; : i = 1... N} and outputs a multi-set
of M pairs {(k,v;) : i =1... M} where again each
k is the same as the input key, and the values v;
are from the same domain as the input values v;.
The values must be from the same domain because
this allows reducers to be nested arbitrarily. For
example, it ensures that p(p(k, {z}), p(k, {y, 2})) =
p(k,{z,y,z}). The freedom this allows for parallel
and hierarchical arrangements of reducers greatly
increases parallel scalability.

In the MapReduce model all parallel instances of
mappers or reducers are the same program; any dif-
ferentiation in their behavior must be based solely
on the inputs they operate on.

The canonical basic example of MapReduce is
a word-count algorithm where the map emits the
word itself as the key and the number 1 as the
value; and the reduce sums the values for each key,
thus counting the total number of occurrences for
each word. We would notate this as follows, where
M refers to the mapper and R to the reducer:

M: p((‘word’, @)) — {(word,v)}

R: p(word,{vi,ve,...,vn}) = {{(word,n)}

Thus, scientific ensembles structures have many
similarities with the MapReduce model and a sci-
entific ensemble can be considered as a series of
map and reduce phases. For example, a scientific
ensemble can be considered to consist of a sequence
of R mappers and reducers.

<N17PI:N27927 cee 7MR7pR>

Other combinations and sequences of maps and
reduces might also be possible e.g. two map phases
followed by a reduce phase.

3.3 Hadoop

Hadoop is an open-source distributed computing
platform that implements the MapReduce model.
Hadoop consists of two core components: the job
management framework and the Hadoop Distributed
File System (HDFS) [33]. Hadoop’s job manage-
ment framework is highly reliable and available, us-
ing techniques such as replication and automated
restart of failed tasks. The framework has opti-
mizations for heterogeneous environments and work-
loads, e.g., speculative (redundant) execution that
reduces delays due to stragglers. HDFS is a highly
scalable, fault-tolerant file system modeled after
the Google File System. The data locality fea-
tures of HDFS are used by the Hadoop scheduler
to schedule the I/O intensive map computations
closer to the data.

The scalability and reliability characteristics of
Hadoop suggest that it could be used as an en-
gine for running scientific ensembles. However, the
target application for Hadoop is very loosely cou-
pled analysis of huge data sets. It is not appar-
ent that the Hadoop implementation, or perhaps
even MapReduce itself, is sufficiently flexible to
be used (without significant additional infrastruc-
ture) for scientific ensembles, which typically ex-
hibit more complex data and computational de-
pendency structures. The goal of this paper is to
understand the feasibility and difficulty level of us-
ing the MapReduce model and specifically Hadoop
to compose and manage scientific ensembles.

3.4 Hadoop Jobs and Scientific Ensem-
bles

Scientific ensembles and Hadoop jobs have a num-
ber of similarities in their characteristics and re-
quirements:

e Hadoop jobs consist of two primary phases -
map and reduce. The jobs consist of a large
number of maps that performs data trans-
formation and one or more reduces that per-
forms a combine operation to produce the fi-
nal result. Scientific ensembles might have
many execution phases but they can be roughly
categorized as data setup or problem decom-
position, data transformation and data aggre-
gation. The problem decomposition is im-
plicit in vanilla Hadoop jobs where the input
is divided into blocks for the workers to op-
erate on. The data transformation and data
aggregation phases are similar to the map and
reduce phases of a Hadoop job.

e Both scientific Hadoop jobs and scientific en-
sembles have a similar structure - large num-
ber of parallel tasks in the “map” phase and a
smaller number of tasks in the “reduce” phase.

e Both scientific ensembles and Hadoop jobs
exhibit data-flow parallelism i.e., they oper-
ate on either different data sets or different
parameters on the same data sets.

e Scientific ensembles and Hadoop jobs both re-
quire the ability to scale up easily as more
data or when additional parameters need to
be analyzed.

e The large-scale parallelism makes fault-tolerance

and data proximity critical for both applica-
tions.

However there are a number of differences be-
tween Hadoop workloads and typical scientific en-
sembles. First, Hadoop jobs consists of a map
phase followed by a reduce phase whereas scien-
tific ensembles might have a diverse set of tasks
followed by a variable number of stages with ad-
ditional tasks. Second, Hadoop assumes that each
mapper works on a subset of the data and there
is no affinity between map tasks and data blocks.
In contrast, scientific applications often operate on
files rather than blocks of data. Scientific appli-
cations may also require diverse codes to run as
map tasks and/or may take additional parameters
that might change the processing in the map tasks
appropriately.

Workflow tools have also been previously used to
compose scientific ensembles. Workflow tools typ-
ically have been control-flow oriented rather than
data-flow oriented. Scientific ensembles however
exhibit distinct data-flow characteristics, and hence
workflow tools are not always appropriate for them.

MapReduce has evolved in a completely differ-
ent paradigm from scientific computations. The
strengths of the model arise from its simple easy-
to-learn programmability and, in implementation,
its ability to adapt to failures in the underlying re-
sources. Today, a large number of scientific compu-
tations use the Message Passing Interface (MPI) [15]
as the programming model. MPI is a standardized
and portable message-passing system designed by
a group of researchers from academia and indus-
try to function on a wide variety of parallel com-
puters. Unlike in Hadoop, within standard MPI
programs fault-tolerance needs to be handled ex-
plicitly by the application programmer. However,
resource failures during execution are becoming an
increasingly important issue for ever-larger scien-
tific ensembles [31]. Hence, we explore the use of
the MapReduce programming model for scientific
ensembles.

4. EVALUATION

The scientific ensemble examples in Section 3.1

illustrate the diverse characteristics of scientific pipelines.

In our evaluation, we use six representative ensem-
ble patterns to capture the variation found in scien-
tific ensembles. The patterns were selected to rep-
resent the different structures possible in scientific
ensembles. We describe these patterns and discuss
how they fit in the MapReduce model and discus-
sion implementation challenges in Hadoop and cor-
responding impact on performance and reliability.

Workload Patterns. A schematic of each pat-
tern is shown in Figure 1. We consider a data-
parallel ensemble pattern that is closest to the de-
fault MapReduce pattern with just a map phase
and zero reduces(Figure reffig:disjoint). The single
input (Figure 1b) ensemble is representative of a
scientific ensemble where a single input file might
trigger multiple simulation or analysis in parallel
with different parameters.The multi-stage pattern
(Figure 1c) has three phases in stage one (a prob-
lem decomposition, computation or data transfor-
mation and a data aggregation phase) and the fi-
nal stage triggers additional computation and data
aggregation steps. The inverse tree pattern (Fig-
ure 1d) is selected to represent a mult-stage data

ONORNO

(a) Data-parallel

(d) Inverse tree

(b) Singleinput

G

OC)O

e) Dynamic

%

¢) Multi-stage

(f) Iteration

Figure 1: Workflow Patterns

aggregation. The dynamic (Figure le) and itera-
tion patterns (Figure 1f) capture the run-time vari-
ability that might result in change in the workflow
structure. These workflow patterns also exhibit di-
verse characteristics in terms of number of stages,
number of initial inputs, number of outputs and
hierarchy depth.

We evaluate only the basic patterns and other
derived patternsthat are a combination of one or
more of the give basic patterns are possible. Our
goal is to evaluate Hadoop for scientific ensembles
and thus the wider class of generic scientific work-
flows is outside the scope of this paper [28].

Metrics. We analyze each workflow pattern dis-

cussed above along four dimensions:

e MapReduce Realization. We compare the
given workflow pattern with the MapReduce
model to understand the difference of each of
the patterns from the base model.

e Hadoop Implementation. Next, we out-
line our experience and identify strengths and
gaps with composition of the workflow pat-
tern in Hadoop’s implementation of the MapRe-
duce model.

e Data management. We evaluate the ease
in managing the inputs and outputs for a
given workflow pattern in Hadoop’s imple-

mentation.

e Performance and Reliability. Finally, we
outline the impact of our implementation on
the performance, fault-tolerance, efficiency and
scalability relative to what is achievable with
respect to native Hadoop jobs.

In our patterns, we only consider ensembles where
each first-stage task takes a single input. The MapRe-
duce model by default is designed to work such that
each map task works on single input block. There
is limited or no support in tools such as Hadoop for
tasks that might take one or more inputs. In the
following discussion, W stands for the number of
workers, i.e. the desired parallelism. If the work-
flow has multiple distinct “stages” then the paral-
lelism at stage ¢ will be written as W;.

4.1 Data-parallel

In this pattern, each task operates on a separate
file or block of data. These tasks have high degree
of parallelism inherently and often run together as
they are part of the same scientific experiment or
have input data arriving at the same time. These
tasks may or may not have common infrastruc-
ture they access such as backend databases that
might limit the level of parallelism possible. For
example, the content maintenance cycle of the In-
tegrated Microbial Genomes (IMG) system [25] in-
volves running BLAST [7] for identifying pair-wise
gene similarities between new metagenome and ref-
erence genomes. This activity can be highly paral-

lelized as each task works on a set of input metagenomes

that it compares against the reference genomes.

MapReduce Realization. The data-parallel work-

flow pattern (see Figure 1a) is easily represented in
the MapReduce model.. The input value §; is the
appropriate input for each process A, B, ..., Z and
the reduce p simply returns a copy of its inputs as
a multi-set, i.e., the reduce is an identity function.
The key k output by the mapper may be random-
ized or empty.

M : M(<@,6i>) — <k,{’01,1)27. .
R: p((k,{v1,ve,..

5V })

The program would consist of one mapper and
one reducer, (i, p).

Hadoop Implementation. First, we consider
the simple case where A = B = --- = Z. The map-
per phase is straightforward but there are a couple

S on})) = (o), (ks v2), o (K o fferent key k; for each type of function. This key

of alternatives to handling the reduce phase. This
is most naturally implemented with W Identity
reducers. Each mapper associates all its output
with a single unique key that is then passed to each
reducer. Alternatively zero reducers can be speci-
fied allowing for mapper output to be the output
of the job.

‘When the processing is heterogeneous, i.e. when
A+# B # C...,# Z, additional logic needs to be
included in the Mapper implementation to handle
the different possible functions of the tasks A, B, . ..
This is discussed in more detail in (4.2), but we
note that it is true to some extent for all the work-
flow patterns.

Data management. The only difference in the
data management is associated with the fundamen-
tal division of unit of work between MapReduce
jobs and scientific ensembles. Each task in this pat-
tern operates on a different file and thus Hadoop
needs todnstructed to not split the file into blocks.
This can be achieved in Hadoop by specifying the
input to be “Non-Splittable”.

Performance and Reliability. This workflow
pattern is able to take advantage of all Hadoop
features ensuring scaling and performance similar
to a pure MapReduce job.

4.2 Single Input

In this pattern (Figure 1b), a single input is fed
into a number of parallel tasks. The tasks differ
in the parameter that it takes and/or the opera-
tion performed on the data itself might be differ-
ent. For example, UQ analysis might have a set of
tasks operate on the same input deck with different
parameters.

MapReduce Realization. From the perspec-
tive of the MapReduce model, this pattern is sim-
ilar to the Data-parallel pattern. The difference is
that instead of multiple input data blocks §; each
mapper operates on the same input data block §.
This has an important implication: the behavior of
the mapper can no longer be controlled by differ-
ent input data. If each mapper must perform one
of the functions in A, B, ..., Z then this decision

uld need additional information, for example a

may be propagated to the reducers.
M: p((ki,6)) = (i, {v1, v, ..

R: p((ki,{v1,v2,...,0n}))
— {<ki,’01>, <l€i,1)2>, ey <kl,’l)n>}

S Un})

The program would consist of one mapper and
one reducer (i, p).

Hadoop Implementation. Hadoop assumes that
each mapper operates on a separate data item,
which is selected by “splitting” the original input
data. To implement a single data source being
processed in different ways by the same mapper
a mechanism would be needed to communicate the
type of processing to the mapper. We could encode
the key of the key-value pair or introduce a parame-
ter p;. There is no support in Hadoop to communi-
cate additional parameters to the mappers. Addi-
tionally, as our goal was to find mechanisms with
minimal programming effort, we artificially repli-
cated the input to represent multiple inputs that
were then consumed by the mappers, similar to the
Data-parallel pattern.

As in the Data-Parallel pattern (4.1), we set the
number of reducers to either W or zero.

Data management. Hadoop is designed to op-
erate on many different input “splits” of an input
file. In this pattern, each worker must operate
on the same input, but produce separate outputs.
To implement this in Hadoop, we replicated the
file W times by copying the input file in HDF'S,
with different names. Thus, file F' became files
Fy, Fs, ... Fyy.

Performance and Reliability. The data man-
agement implementation for this workflow pattern
results in wasted storage especially for large input
files. Each file in Hadoop is replicated three times,
thus resulting in 3 % W copies of the input file.
These files are identical, and since the copies are
managed by the user Hadoop cannot efficiently use
all the copies for data locality and fault tolerance
decisions.

4.3 Scatter-Gather

The Scatter-Gather pattern shown in Figure lc
captures a two-level task process where the input
is “scattered” to many tasks whose output is “gath-
ered” into a single task, which may then re-scatter
the input to the next stage. Such a workflow pat-
tern would be common in exploratory data analysis
where a first stage data analysis is fed as input to
the second stage of data analysis and so forth.

MapReduce Realization. As discussed earlier,
the pattern’s data setup task P does not have an
equivalent in the MapReduce model. Thus, that
task can be represented as either a map or a reduce
task. If we were to express P as a map task, the
first map task M; can be expressed as a series of
functions f; applied to a single input §s, generating

multiple key/value pairs with one key per reducer
task (A...Z in Figure 1c). The rest of the pattern
is a series of MapReduce stages. Tasks A...Z cor-
respond to a data-parallel map phase and the task
@ corresponds to a single reduce task.

Mp £ p((,6.)) = f1(80), f2(82), - Ful6) =
{(k1,valuesi), (k2,valuess), ..., (kn,valuesn)}

M u((2,6) = (b {onva, .. vn})

R: p((k,{vi,v2,...50n})) = {(k,v1), (k,v2),...,

Thus the pattern can be represented as {{Mp, M, R)*}.

Alternatively, this pattern can be considered a
sequence of two types of map and reduce tasks. At
a given step, s; in the sequence the first map task
My (P in the figure) can be expressed as a series of
functions f; applied to a single input 5, generating
multiple key/value pairs with one key per reducer
task (A...Z in the figure).

The next stage mapper M simply copies the in-
puts with the same empty or constant key x so that
a single type of next stage reducer Ry will receive
all the outputs.

M, :,u/(<"§755>) = f1(65)7f2(65)7 .- fn(és) —

{{kiyvaluest), (k2,valuessa), ..., (kn,values,)}

Ri : p({ks, values;)) — (ki, vi)
K

(
Mo : pu((ki,vi)) = (K, vi)
Ro :p(< {1)1,1)2, - ,Un}) — {(Fé, 65+1>}

The extended MapReduce program then becomes
a repeated sequence of these four {(M1, R1, M2, R2)*}.

Hadoop Implementation. We chose to imple-
ment the first MapReduce realization for our im-
plementation. Task P in Figure 1lc is the data
preparation phase and we model it as a single task
Single Input MapReduce job since this step is im-
plicit in traditional MapReduce jobs. Subsequent
stages in the workflow are modeled as series of
data-parallel patterns with a single reducer (e.g.,
task Q). The execution flow across these stages are
managed through a script that submits the jobs to
Hadoop. The inputs to the second and subsequent
MapReduces are the output files generated from
the first MapReduce.

Data management. In MapReduce jobs, each
reduce task creates a single output file. However
in our case, task Q needs to emit multiple output
files that drive the second stage of the workflow.
To implement this, we overrode a Hadoop method

(k,vn)}

called generateFileNameForKey in the Multiple-
TextOutputFormat class to create a different out-
put file for each key. There is no easy way to con-
trol the output splits from task P or Q without
embedding the logic in the task implementation.

Performance and Reliability. In this case,
we could have a load imbalance problem since task
Q might have more outputs for one key value re-
sulting in one task processing more data than the
others.

4.4 Inverse Tree

This workflow pattern (see Figure 1d) begins with
W workers, then recursively merges their output to
W/2 workers in each subsequent stage until there
is only one worker left. In the MapReduce model
this pattern can be achieved by encoding the po-
sition in the tree into the key itself, as described
below.

MapReduce Realization. To implement this
in the abstract MapReduce model, we first observe
that if each node at the top of the Inverse Tree is
numbered consecutively from left to right, then in-
teger division of each of these numbers by 2 will
group the outputs correctly for the next level. The
binary representation of that number can be thought
of as the path from the bottom (root) to the leaf
where 0 means “left” and 1 means “right”. An ex-
ample with W = 5 is shown in Figure 2.

Reduce / Map

Reduce

Figure 2: Numbering of 5-node tree

If the keys k; for inputs §; are these binary num-
bers, every mapper will simply divide the keys by
two and pass through the input to the reducer. A
minor additional complexity is that the first phase
mapper Mo must also do the work f. that is done
in subsequent phases within the reducer. Thus, the
representation in the MapReduce model uses a dif-
ferent mapper and reducer for the first phase, My
and Ry, than for the subsequent phases:

Mo : p((ki, 6)) — {(k; = ,valuesj = f;(ON}
Ro : p((k:, values;)) — (kl,vl)

M (i) = (o v2)

R : p((ki, values:)) = (ki, f; (values;))

Hadoop Implementation. Traditional MapRe-
duce applications have one phase of maps followed
by a reduce phase. Hadoop has an additional fea-
ture called chaining that allows job dependencies
to be programmatically specified. Hadoop chaining
in essence allows key-value pairs to be processed by
multiple mappers and with a single reducer. The
pattern could also be represented as multiple map
phases followed by a single reduce phase but then
the maps need to - be able to handle multiple in-
puts that is also not supported in the model. Fun-
damentally, the MapReduce model does not allow
for a selected set of tasks to be merged and thus
the logic of selectively merging the appropriate in-
puts will need to be implemented in the application
layer.

Data management. The data management is
performed by a script. The script’s first MapRe-
duce phase is identical to the Data-Parallel pattern
(4.1). For subsequent phases, the script must man-
ually specify the two inputs needed by each map-
per. However, in Hadoop it is not possible to con-
trol specific outputs from maps to specific reducers
or to control parameters to different mappers. This
needs to be handled in the appled in the applica-
tion layer. We solved this problem by numbering
the W; output files at stage ¢ with the mapper’s
task ID, creating files Fo, F1,..., Fyy,—1. Then, in
stage ¢ + 1 each mapper task ID ¢ processes the
two input files Fa.; and Fasi41 from its parent. In
other words, mapper 0 processes files Fy and Fi,
mapper 1 processes files F» and Fj, etc.

Note that in all MapReduces except the first, the
input files are not assigned by Hadoop, but rather
read manually by the mapper. Hadoop still re-
quires that each mapper be assigned an input file.
We implemented a work-around by creating an in-
put directory with W dummy input files (contain-
ing only 1 line), each of which is set to be “non-
splittable”. An alternative approach, which we did
not implement, would be to override Hadoop’s in-
put splitter to work with no input files.

Performance and Reliability. We note that

directly reading data from HDFS means Hadoop’s
scheduler has no insight into data locality. This
can impact performance since this goes against the
MapReduce model’s key optimization of moving
code to data. Therefore we expect that this work-
flow pattern would have poor performance for large
input files.

4.5 Dynamic

In the dynamic pattern, a task might decide to
spawn additional tasks at run-time if a particular
condition is met. The number of tasks spawned, or
whether the tasks are going to be spawned at all,
is not known a priori. Any of the scientific ensem-
ble patterns we have discussed might have dynamic
elements resulting in run-time changes to the struc-
ture; for example, the Materials Genome workflows
may need to re-run calculations at higher mesh res-
olutions (more k-points) if the crystal’s atomic en-
ergies have not yet converged. We consider the
pattern shown in Figure le as an example to eval-
uate the support for dynamic conditions in Apache
Hadoop.

MapReduce Realization. There is no support
in the MapReduce model to mark certain tasks as
dynamic.

Hadoop I'mplementation. There is no built-in
property in Hadoop that provides dynamic tasks in
MapReduce jobs. This needs to be performed man-
ually. We at first tried launching Hadoop jobs from
within the reducers (i.e. within Hadoop jobs), but
ran into a permissions issue. This stems from the
fact that at execution time all jobs run under user
hadoop instead of the original system user. There-
fore, an external script was required to coordinate
the workflow stages.

Data management. Similar to the Inverse Tree
pattern (see 4.4), the script works by manipulat-
ing input and output files. In this case, we used
a hardcoded “marker directory” to act as a queue
of new jobs to be processed. While mappers are
running they come to a point of decision whether
to add a new set of tasks or not. If they decide to
do so they create a file in the marker directory in
which they write the path to the their output files.
Logic inside the mapper can dynamically decide
which paths to write. After the first set of MapRe-
duce job completes, the script checks the marker
directory for new files. If it finds any, then new
MapReduce jobs are spawned for each output file
it finds. A similar logic can be implemented in a
reducer if the dynamic elements might be spawned
from reduce tasks. This implementation is essen-

tially a simplistic task manager since there is no
support for dynamic tasks in Hadoop.
Performance and Reliability. The result of
our work-around is that Hadoop’s job scheduler has
no knowledge of the intermediate data products
and is not able to leverage data locality scheduling
impacting performance and fault-tolerance.

4.6 Iterative

Many scientific processes require iterative sim-
ulations where the parameters for the next run
is determined based on the results from the cur-
rent run. For example, Uncertainty Quantification
workflows may run the same simulation with many
different sets of parameters that are chosen using
Latin Hypercube or some other orthogonal sam-
pling method in the large multi-dimensional pa-
rameter space. Such iterative processes are con-
trolled by real-time decisions and there is no prior
knowledge of the number of iterations or if the iter-
ation will occur at all. Figure 1f shows the workflow
pattern.

MapReduce Realization. The MapReduce model
has no support for iterations.

Hadoop Implementation. The iterative pat-
tern is very similar to the dynamic pattern, and
required the same type of scripted management.
For our specific pattern we implemented the condi-
tional logic for subsequent iterations in the (single)
reducer of the MapReduce job.

Data management. Input and output files were
assigned to the jobs using the “marker directory”
approach from the Dynamic workflow pattern. How-
ever, only the reducer (instead of all mappers) write
a file in this directory.

Performance and Reliability. The QoS im-
pact for this pattern is similar to the dynamic pat-
tern.

S. DISCUSSION

There are a number of challenges when using
Hadoop for scientific applications in current HPC
environments [29], [14], [13]. In this section, we
summarize our evaluation and discuss the gaps in
current MapReduce frameworks in supporting sci-
entific ensembles.

5.1 Pattern-based Analysis

In this section we summarize the implementa-
tion challenges we described in Section 4 using a
three-point difficulty scale. We rate the Hadoop
Implementation and Data Management categories

Workflow Type Hadoop Impl.

Data Management

MR Realization Perf. & Reliability Total Score

Data Parallel O O O O 0
Single Input O - - - 1.5
Scatter-Gather - - - - 2
Inverse Tree 6 ‘ ‘ 6 3
Dynamic [) O [) [) 3.5
Tteration [) O [) [) 35

Key: O: Easy/Minimal e: Moderate ‘: Difficult/Significant

Table 1: Visual Summary of Hadoop Applicability by Workflow. To calculate the total score,
we assign a value of 0 (easy), 0.5 (moderate) and 1 (difficult).

as easy, moderately difficult, or very diffi-
cult. Similarly, we rate the MapReduce Real-
ization and Performance/Reliability categories as
minimal, moderate, or significant impact. While
our criteria for comparison is largely qualitative, we

create map-and-reduce jobs with any executable or
script as the mapper and/or the reducer. This is
the most suitable model for scientific applications
that have years of code in place capturing complex
scientific processes. For an application to be able to

summarize the suitability of Apache Hadoop/MapReduceuse this model, it needs to read input through stdin

by assigning scores of 0, 0.5, 1 (higher score indi-
cating more difficult or more impact) to each of the
categories for better understanding of the relative
difficulty of each of the categories and patterns. We
intentionally use a distinct scoring scheme rather
than continuous scoring since our intention is to
understand the difficulty of managing scientific en-
sembles in Hadoop. A quantitative performance
analysis is outside the scope of this discussion.

A visual summary of the scores for all type of
workflows is given in Table 1. We sum the scores
for each pattern in the column Total score. Our cri-
teria for the rating is based on how easy it would
be for an application scientist to plug-in their par-
ticular workflow in Hadoop. We could implement
all patterns within ' Apache Hadoop but some of the
patterns required significant programming or wrap-
pers for manipulation. These manual mechanisms
can be difficult for application scientists and also
tend to be error-prone. The dynamic and iteration
patterns present the most challenges for implemen-
tation in Hadoop. The inverse tree present some
challenges while the data-parallel and single input
are the easiest to implement with Apache Hadoop.

5.2 Language

Apache Hadoop and a number of the other open
source MapReduce implementations are in Java.
Scientific codes are often written in Fortran, C,
C++ or use languages such as Python for anal-
ysis. The Hadoop streaming model allows one to

and send output to stdout. Thus, legacy applica-
tions are limited to using the streaming model that
may not harness the full benefits of the MapReduce
framework.

5.3 Filesystem.

The Hadoop Distributed File System (HDFS)
does not have a POSIX compliant interface severely
restricting the adoptability for legacy applications.
HDF'S’s data locality features can be useful to ap-
plications that need to process large volumes of
data. However, Hadoop considers only the data
locality for a single file and does not handle ap-
plications that might have multiple input sets. It
is possible to implement work-arounds by merging
multiple input files into one before staging them
into HDFS. This adds potentially large I/O over-
heads at the beginning of execution. It also re-
duces the usability of Hadoop, since it requires pre-
processing or changes to the application.

5.4 Data Formats.

Apache Hadoop considers inputs as blocks of data
where each map task gets a block of data. Scien-
tific applications often work with files where the
logical division of work is per file. Apache Hadoop
has internal support to handle text data and cer-
tain other data formats. Hadoop also provides an
extensible Java API to implement new data types
in the framework. However this will require mul-
tiple Java classes to be implemented to define the

data format and define how to split a map task’s
inputs. Additionaly, code modules for readers and
writers are needed to load the data and convert it
to a key/value pair.

5.5 Diverse Tasks.

Traditionally, all mapper and reducer tasks are
considered identical in function roughly working
on equal sized workloads. Implementing different
mapper and reducer requires logic in the tasks that
differentiate the functionality since there is no easy
way to specify it in the higher-level programming
model. In addition, differences in inputs or algo-
rithms can cause worker processing times to vary
widely. This could result in timeouts and restarted
tasks due to the speculative execution in Hadoop.
If there is a large difference in processing time be-
tween tasks, this will cause load imbalance. This
may dramatically impact the horizontal scalability.

5.6 Summary

Our analysis shows that it was possible to imple-
ment the general scientific ensembles patterns in
Apache Hadoop with varying degrees of difficulty.
However, in the case of some patterns we required
a significant amount of custom code making it diffi-
cult for scientists to use Hadoop without significant
programming expertise. Thus, there are a number
of gaps and challenges when supporting scientific
ensembles through current MapReduce implemen-
tations. Our analysis shows that there are oppor-
tunities to generalize some of the features required
by applications into the programming model and
execution framework. We summarize them here:

e QOur initial analysis shows the formalizations
of these workflow patterns in the MapReduce
programming model. The MapReduce model
was developed to process large volumes of
data for operations such as search, data min-
ing, log processing etc. The difficulty of im-
plementing these patterns in MapReduce stem
from the differences in the nature of the tasks

compared to traditional MapReduce jobs. There

is further research mneeded into appropriate
programming model abstractions or extensions
to MapReduce that can effectively support
these ensemble models while providing the
ease of programming and scaling that MapRe-
duce provides. Support for task diversity, pa-
rameters, multiple inputs will need to be con-
sidered.

e Data locality is increasingly becoming impor-

tant for scientific applications as data vol-
umes increase due to advances in computing
hardware and sensor technologies. Similarly,
the cost of I/O transactions, size of I/O stor-
age subsystems, and disparity in growth be-
tween computation, memory and storage on
exascale systems will make data locality more
critical. However new advances are needed to
handle data locality of multiple files.

e There is additional support needed in exe-
cution frameworks that can handle dynamic
tasks and iterations.

e Additionally, MapReduce implementations that
are conducive to handling scientific codes and
languages will be needed in the near future.

6. CONCLUSION

Many-task scientific ensembles require program-
ming support for automatic scalability, fault-tolerance
and dynamic adaptation in diverse resource envi-
ronments. In this paper, we evaluate the difficulty
in representing common scientific ensemble pat-
terns - data-parallel, single input, multi-stage, in-
verse tree, dynamic and iterative in Apache Hadoop’s
MapReduce implementation. Our evaluation con-
siders four criteria including differences from the
MapReduce model, Hadoop implementation, data
management and performance and reliability im-
pact. While it was possible to implement all the
patterns in the framework, the level of difficult
varied with dynamic and iteration being the most
difficult and the Data-parallel being the easiest.
Our analysis identifies the gaps and challenges in
MapReduce and specificially in Apache Hadoop in
supporting many-task scientific ensembles. In ad-
dition, our evaluation will help applications iden-
tify if their workflows might be suitable to run in
MapReduce frameworks.

7. REFERENCES

[1] MapReduce-MPI Library.
http://www.sandia.gov/ sj-
plimp/mapreduce.html.

[2] Materials Genome.
http://www.materialsgenome.org/.

[3] Oozie: Workflow engine for Hadoop.
http://yahoo.github.com/oozie/.

[4] The DAKOTA Project Large-Scale
Engineering Optimization and Uncertainty
Analysis. http://dakota.sandia.gov.

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Triana The Open Source Problem Solving
Environment.
http://www.trianacode.org/index.html.
Uncertainty Quantification.

Simplified data processing on large clusters.
In Proceedings of the 6th Symposium on
Operating System Design and Implementation
(0OSDIO04), San Francisco, CA, USA, 2004.

https://computation.llnl.gov/casc/uncertainty_quarfifictidilfemawat, H. Gobioff, and S.-T. Leung.

S. Altschul, W. Gish, W. Miller, E. Myers,
and D. Lipman. Basic local alignment search
tool. Journal of Molecular Biology,
215:403-410, 1990.

R. Brun. Root 4AT an object oriented data
analysis framework. Nuclear Instruments and
Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and
Associated Equipment, 389(1-2):81-86, 1997.
E. Deelman, J. Blythe, A. Gil, C. Kesselman,
G. Mehta, S. Patil, M. hui Su, K. Vahi, and
M. Livny. Pegasus: Mapping scientific
workflows onto the grid. pages 11-20, 2004.
J. Ekanayake, H. Li, B. Zhang,

T. Gunarathne, S. Bae, J. Qiu, and G. Fox.
Twister: A runtime for iterative mapreduce.
In Proceedings of the 19th ACM International
Symposium on High Performance Distributed
Computing, pages 810-818. ACM, 2010.

J. Ekanayake, S. Pallickara, and G. Fox.
Mapreduce for data intensive scientific
analyses. In Proceedings of the 2008 Fourth
IEEE International Conference on eScience,
pages 277-284, Washington, DC, USA, 2008.
IEEE Computer Society.

M. Eldred, A. Giunta, and B.van

Bloemen Waanders. Multilevel parallel
optimization using massively parallel
structural dynamics. Structural and
Multidisciplinary Optimization, 27:97-109,
2004. 10.1007/s00158-003-0371-y.

Z. Fadika, E. Dede, M. Govindaraju, and

L. Ramakrishnan. Benchmarking mapreduce
implementations for application usage
scenarios. Grid 2011: 12th IEEE/ACM
International Conference on Grid
Computing, 0:1-8, 2011.

7. Fadika, E. Dede, M. Govindaraju, and

L. Ramakrishnan. Mariane: Mapreduce
implementation adapted for hpc
environments. Grid 2011: 12th IEEE/ACM
International Conference on Grid
Computing, 0:1-8, 2011.

M. P. I. Forum. Mpi: A message-passing
interface standard, 1994.

S. Ghemawat and J. Dean. Mapreduce:

18]

[21]

[25]

The google file system. In Proceedings of the
nineteenth ACM symposium on Operating
systems principles, SOSP 03, pages 2943,
New York, NY, USA, 2003. ACM.

Y. Gu and R. L. Grossman. Sector and
sphere: the design and implementation of a
high-performance data cloud. Philosophical
transactions. Series A, Mathematical,
physical, and engineering sciences,
367(1897):2429-2445, June 2009.

D. Hull, K. Wolstencroft, R. Stevens,

C. Goble, M. Pocock, P. Li, and T. Oinn.
Taverna: a tool for building and running
workflows of services. Nucleic Acids Research,
34(Web Server issue):729-732, July 2006.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and
D. Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. In
Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on
Computer Systems 2007, FuroSys 07, pages
59-72, New York; NY, USA, 2007. ACM.

H. Karloff, S. Suri, and S. Vassilvitskii. A
model of computation for mapreduce. In
Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete
Algorithms, SODA 10, pages 938-948,
Philadelphia, PA, USA, 2010. Society for
Industrial and Applied Mathematics.

P. M. Kelly, P. D. Coddington, and A. L.
Wendelborn. Lambda Calculus as a Workflow
Model. Practice, 21(July 2009):1999-2017,
2008.

J. Lin and M. Schatz. Design patterns for
efficient graph algorithms in mapreduce. In
Proceedings of the Eighth Workshop on
Mining and Learning with Graphs, MLG ’10,
pages 78-85, New York, NY, USA, 2010.
ACM.

H. Liu and D. Orban. Cloud mapreduce: A
mapreduce implementation on top of a cloud
operating system. In Proceedings of the 2011
11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing,
CCGRID 11, pages 464—474, Washington,
DC, USA, 2011. IEEE Computer Society.

V. M. Markowitz, F. Korzeniewski,

(26]

27]

(28]

29]

(30]

(31]

32]

(33]

K. Palaniappan, E. Szeto, N. Ivanova, and
N. C. Kyrpides. The integrated microbial
genomes (img) system: a case study in
biological data management. In Proceedings
of the 31st international conference on Very
large data bases, VLDB ’05, pages 1067—1078.
VLDB Endowment, 2005.

R. K. Menon, G. P. Bhat, and M. C. Schatz.
Rapid parallel genome indexing with
mapreduce. In Proceedings of the second
international workshop on MapReduce and
its applications, MapReduce 11, pages
51-58, New York, NY, USA, 2011. ACM.

I. Raicu, I. Foster, and Y. Zhao. Many-task
computing for grids and supercomputers. In
Many-Task Computing on Grids and
Supercomputers, 2008. MTAGS 2008.
Workshop on, pages 1 —11, nov. 2008.

L. Ramakrishnan and B. Plale.
Multidimensional classification model for
scientific workflow characteristics. In 1st
International Workshop on Workflow
Approaches to New Data-centric Science
(WANDS’10), Indianapolis, IN, 06/2010
2010.

L. Ramakrishnan, P. T. Zbiegel, S. Campbell,
R. Bradshaw, R. S. Canon, S. Coghlan,

I. Sakrejda, N. Desai, T. Declerck, and

A. Liu. Magellan: experiences from a science
cloud. In Proceedings of the 2nd international
workshop on Scientific cloud computing,
ScienceCloud ’11, pages 49-58, New York,
NY, USA, 2011. ACM.

C. Ranger, R: Raghuraman, A: Penmetsa,
G. Bradski, and C. Kozyrakis. Evaluating
mapreduce for multi-core and multiprocessor
systems. In Proceedings of the 2007 IEEE
13th International Symposium on High
Performance Computer Architecture, pages
13-24, Washington, DC, USA, 2007. IEEE
Computer Society.

D. A. Reed, C. da Lu, and C. L. Mendes.
Reliability challenges in large systems. Future
Generation. Computer Systems, 22(3):293 —
302, 2006.

M. C. Schatz. Cloudburst: highly sensitive
read mapping with mapreduce.
Bioinformatics (Ozford, England),
25(11):1363-1369, June 2009.

K. Shvachko, H. Kuang, S. Radia, and

R. Chansler. The hadoop distributed file
system. In Mass Storage Systems and

Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1 —10, May 2010.

J. Sroka, J. Hidders, P. Missier, and

C. Goble. A formal semantics for the taverna
2 workflow model. Journal of Computer and
System Sciences, 76(6):490 — 508, 2010.

1. Taylor, M. Shields, I. Wang, and

A. Harrison. The Triana Workflow
Environment: Architecture and Applications.
In I. Taylor, E. Deelman, D. Gannon, and
M. Shields, editors, Workflows for e-Science,
pages 320-339. Springer, New York,
Secaucus, NJ, USA, 2007.

M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster
computing with working sets. In Proceedings
of the 2nd USENIX conference on Hot topics
in cloud.computing, HotCloud’10, pages
10-10, Berkeley, CA, USA, 2010. USENIX
Association.

C. Zhang, H. De Sterck, M. Jaatun, G. Zhao,
and C. Rong. CloudWF: A Computational
Workflow System for Clouds Based on
Hadoop. In M. G. Jaatun, G. Zhao, and

C. Rong; editors, Cloud Computing, volume
5931 of Lecture Notes in Computer Science,
pages 393-404. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

