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ABSTRACT

Parareal is a novel algorithm that allows the solution of
time-dependent systems of differential or partial differential
equations (PDE) to be parallelized in the temporal domain.
Parareal-based implementations of PDE problems can take
advantage of this parallelism to significantly reduce the time
to solution for a simulation (though at an increased total
cost) while making effective use of the much larger proces-
sor counts available on current high-end systems. In this
paper, we present a dynamic, dependency-driven version
of the parareal algorithm which breaks the final sequential
bottleneck remaining in the original formulation, making it
amenable to a “many-task” treatment. We further improve
the cost and execution time of the algorithm by introduc-
ing a moving window for time slices, which avoids the ex-
ecution of tasks which contribute little to the final global
solution. We describe how this approach has been realized
in the Integrated Plasma Simulator (IPS), a framework for
coupled multiphysics simulations, and examine the trade-
offs among time-to-solution, total cost, and resource utiliza-
tion efficiency as a function of the compute resources applied
to the problem.
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1. INTRODUCTION

In partial differential equation (PDE) based problems,
which include a wide range of computational science prob-
lems of current interest, time is one aspect of the problem
that has long been considered to be strictly sequential by
most practitioners. Although parallelization in time has
been a niche research topic in mathematics since the earliest
days of computing, it was not until the 2001 publication of
the parareal algorithm by Lions, Maday and Turinici [3,14]
that parallel-in-time approaches reached broader awareness.
Today, as the means of scaling computational capability has
shifted from increasing processor clock speeds to increasing
processor (core) counts, the prospect of exposing an addi-
tional dimension of parallelism in PDE problems is attract-
ing growing attention from computational scientists in a va-
riety of disciplines (for example, [3,9,13,22]).

Briefly, the “classic” parareal algorithm (explained in grea-
ter detail below) utilizes a “coarse solver” to quickly step
through time to compute relatively cheap approximate so-
lutions for all time slices of interest, and then refines all of
these approximate solutions simultaneously using an accu-
rate “fine solver”. The application of the fine solver to each
time slice is independent, and thus parallelizable. The re-
fined solutions are then fed back through the coarse solver,
and the iterative cycle continues until all time slices are con-
verged. However, the unavoidable dependencies between
time slices are carried through the coarse solve, which, in



the classic parareal formulation, still involves stepping se-
quentially through time. This represents a sequential bottle-
neck, albeit a much smaller one, assuming the coarse solver
is much faster than the fine solver. At the heart of a suc-
cessful parareal treatment of a given problem, then, is the
ability to find a coarse solver which provides sufficient ac-
curacy to rapidly converge the time slices, while remaining
fast enough to minimize the time spent in this sequential
operation.

However, by looking at the parareal algorithm from a dif-
ferent perspective, it is possible to reformulate the problem
in a form, which, for practical purposes, breaks the sequen-
tial bottleneck and allows much more effective paralleliza-
tion of the algorithm. The insight that gave rise to this
innovation, some ten years after the parareal algorithm was
first introduced, comes from considering parareal through
the lens of many-task computing. The term “many-task
computing” (MTC), first coined in 2008 [21], refers to the
middle ground between traditional high-performance com-
puting, in which major computational resources are brought
to bear on a single problem, and high-throughput comput-
ing, which focuses on using large-scale computing to solve
many computational tasks in a short time period.

More specifically, this innovation was inspired by the ca-
pabilities of the Integrated Plasma Simulator (IPS) [7,11],
a framework developed since 2005 for loosely coupled in-
tegrated simulation of fusion plasmas. The IPS was de-
signed as an extremely flexible environment in order to sup-
port simulations with a wide variety of control structures,
and provides, among other features, multiple levels of con-
currency [8], and dynamic task and resource management,
which have been used to allow the framework to execute mul-
tiple independent simulations concurrently [10] in a many-
task context. Add to this the framework’s event service [23],
which allows components to communicate asynchronously,
and it becomes possible for the IPS to easily represent depen-
dencies among components in a non-procedural form, which
was the key insight into a dependency-driven formulation of
the parareal algorithm. Thus, the parareal algorithm maps
neatly onto the one of the motivating MTC examples of a
loosely-coupled application involving many tasks with lim-
ited dependencies among them which must be respected in
their execution.

This paper makes three primary contributions, which are
noted here in the context of the paper’s organization. Af-
ter discussing related work (Sec. 2), briefly describing the
IPS (Sec. 3), and introducing the classic formulation of the
parareal (Sec. 4),

e We present the dependency-driven parareal formula-
tion, and explain its implementation in the IPS (Sec. 5).

e We offer a “moving window” variant of the parareal
algorithm, which reduces that total cost of a parareal-
based simulation by avoiding largely unproductive com-
putation on time slices that are far from convergence
(Sec. 6).

e Using a plasma turbulence problem, we illustrate the
performance and trade-offs involved in the parareal ap-
proach, comparing the classic, dependency-driven, and
windowed versions (Sec. 7).

We close with a summary of the key points of the paper
(Sec. 8).

2. RELATED WORK

The idea of parallelizing the time domain has been ex-
plored since early in the computer age [12], of which parareal
[14] is one of the most recent and at present the most widely
studied.

Research related to parareal has primarily focused on the
mathematical properties as it has been applied to problems
in a variety of different domains, including molecular dy-
namics [3], fluid dynamics, [9], plasmas [22], reservoir simu-
lation [13]. Notably, the idea of combining parareal’s tempo-
ral domain decomposition with the spatial domain decom-
position approach commonly used to parallelize PDE prob-
lems, and a central feature of our implementation, was first
proposed by Maday and Turinici in 2005 [16].

However, very little work has been done from the algorith-
mic perspective. A recent paper by Aubanel [2] proposes
several new ways of scheduling tasks with the goal of im-
proving speedup. Compared to the classic parareal imple-
mentation, Aubanel’s “master-worker” algorithm increases
the overlap between coarse solves (on the master process)
and fine by launching fine solves on worker processes as soon
as their individual coarse dependencies are satisfied, rather
than waiting until the entire coarse solve completes. His
“distributed” algorithm assigns each slice (both the coarse
and fine solves) to a different parallel process, sequencing
them via the MPI send/receive operations that transmit re-
sults between slices. Minion uses the term “pipelined” to
describe this same algorithm [18].

Our work, carried out contemporaneously with Aubanel’s
and Minion’s, has a similar goal, but takes a very different
approach. Whereas their algorithms remain very much loop
driven, we have used a completely dependency-driven ap-
proach, without any loop structure whatsoever. The result
is similar to the distributed (or pipelined) algorithm, but
with even greater flexibility in terms of what tasks can run
at any given moment, and thus the potential for even better
resource utilization and speedup.

Additionally, to the best of our knowledge, ours is the first
implementation of parareal which eschews two-sided mes-
sage passing (MPI) as the basis for the high-level orchestra-
tion of tasks. While MPI is widely used in high-performance
computing, it suffers two drawbacks in a context like this.
First, unless they have been designed for it, it can be hard
to integrate MPI-based parallel components into a frame-
work which uses MPI to provide a second level of paral-
lelism. Second, two-sided messaging is not the most natural
way to express the parareal algorithm, typically leading to
implementations that impose more synchronization than is
necessary. Approaching the problem from a many-task per-
spective has helped us avoid these issues.

The concept of many-task computing spans a broad range
of target problems and computational capabilities necessary
to support them. While our work has been carried out using
the IPS framework’s many-task computing environment, the
same approach could, at least in principle, be implemented
in any many-task environment with the capability to express
dependencies among tasks. Relying on literature reports, it
appears that many of the frameworks previously discussed
in a many-task context could express a dependency-driven
formulation of parareal, including Uintah [17], Kepler [15],
Taverna [20], Triana [4], GXP Make [25], Swift [27], Pega-
sus [6], Nephele [26], and PLASMA [24] however such publi-
cations rarely provide sufficient detail to determine whether,



and how effectively, the system can handle the dynamic na-
ture of the dependency-driven parareal, including conver-
gence rates that can vary significantly by slice, or the more
complex “windowed” variant of the algorithm described in
Sec. 6. Additionally, it must be noted that these frameworks
provide a wide range of execution environments. Depending
on the framework, tasks may be batch queue submissions or
grid jobs, local, or even tightly integrated into a single exe-
cutable. In the IPS, tasks essentially amount to the launch
of distinct executables, and the entire parareal simulation
takes place within a single batch submission on a single sys-
tem.

3. INTEGRATED PLASMA SIMULATOR

The Integrated Plasma Simulator (IPS) has been devel-
oped by the Center for Simulation of RF Wave Interactions
with Magnetohydrodynamics (SWIM) [1], an effort devoted
to improving the understanding of the interactions of radio
frequency (RF) waves and the extended magnetohydrody-
namic (MHD) phenomena in fusion plasmas. However the
IPS itself has been designed to support a broad range of
integrated modeling of fusion plasmas as well as domains
outside of plasma physics with similar characteristics.

The IPS, which has been described in greater detail else-
where [7,11], was designed for time-stepped simulation with
relatively loose explicit coupling among the components.
Components in the IPS are generally wrappers around stan-
dalone executables for physics codes which adapt their na-
tive data and control formats to those used by the IPS, al-
lowing the executable (task) to remain unchanged yet in-
teract with the framework and other components. This has
allowed the SWIM project to take advantage of the many
decades of effort the community has put into the devel-
opment, verification, and validation of modeling tools for
the individual physics and focus on the new issues associ-
ated with coupling them. In general, the data exchanged
by components is modest, and is easily managed through
files. The IPS is designed primarily for use in a batch pro-
cessing environment, with a batch job typically comprising
a single invocation of the framework, calling the individ-
ual physics codes underlying the components many times
as the simulation progresses. IPS simulations are typically
orchestrated by a “driver” component, though simulation-
controlling logic can also be built into individual compo-
nents, as in the dependency-driven parareal implementa-
tion described here. The IPS also provides both check-
point /restart coordination, and task re-execution capabil-
ities for fault tolerance. The task re-execution capability
can be controlled on a per-component basis, with decisions
based on the nature of the component, as well as the fault
experienced [23].

The capabilities of the IPS that play a key role in sup-
porting the novel parareal formulation presented here were
all originally put into the IPS for other reasons. This work
merely presents a novel way to use them.

Existing modeling codes in the plasma physics commu-
nity span a wide range of parallelism. Some codes remain
strictly sequential, while others are quite scalable. Many
are in between. In order to allow better overall utilization
of resources on a parallel computer, the IPS supports mul-
tiple levels of concurrency, providing the flexibility for IPS
users to maximize the number of compute nodes in use at
any point in the simulation [8,10]. Individual computational

tasks (the physics executables underlying IPS components)
can be parallel, components can launch multiple computa-
tional tasks simultaneously, multiple tasks can be executed
concurrently in a simulation, and multiple simulations can
also be run simultaneously. The dependency-driven parareal
utilizes all but the last form of parallelism.

In order to support multiple levels of parallelism, the IPS
provides flexible resource and task management. When the
IPS is started, it detects the computational resources which
have been allocated to it, and instantiates an internal re-
source manager. This resource manager tracks their use
throughout the run, responding to allocation requests from
the task manager and releasing allocations when tasks com-
plete, using a simple first-come first-served algorithm with
first-fit backfill. The IPS task manager provides non-blocking
task launch capabilities which allow the concurrency de-
scribed. The framework uses the appropriate mechanism for
the host system, such as mpiexec or aprun (Cray) to launch
the individual computational tasks within the resources al-
located to the job. IPS tasks generally exchange data via
files, as there is no MPI connectivity between distinct tasks.

Finally, the IPS event service provides a simple publish—
subscribe mechanism, allowing components to asynchronous-
ly post and receive user-defined messages. The event service
was originally introduced in order disseminate fault-related
information within the framework and components in order
to allow for more informed responses to system faults [23]. It
was also used to make information about the progress of the
simulation available through an external web-based portal.
The first use of the event service in controlling simulations
has been in SWIM’s work on the use of radio-frequency (RF)
waves to control plasma stability, in which a continuously
running component uses the event service to signal another
to update a key simulation quantity, and then incorporates
the new data on the next iteration after it receives a signal
that the update is complete [11]. While the dependencies in
the parareal algorithm are significantly more complex, the
concept is fundamentally the same.

4. PARAREAL ALGORITHM

Consider a time-dependent system with initial state Ao at
time to. Parareal utilizes a fine solver, F', that, over time
domains of interest (slices), advances the target system with
acceptable accuracy. Functionally, F' is a propagator that
advances the system state, for example, from time t = ¢;,_1
and state A\l ; to time ¢t = t; and state A" It is described by
notation A\’ = FAt(/\fll) with At =t; — t;—1. The desired
solution over the interval [to,tn] = NAt is then given by
MY = Fna:(A) where the initial conditions are given by
M=o

The second element of parareal is a coarse solver, G. Since
it is the coarse solver in parareal that embodies the remain-
ing time dependence between the different time slices, it
must balance speed and accuracy. It must be sufficiently ac-
curate to ensure rapid convergence of the fine solves, while
being fast enough to minimize the time spent in the sequen-
tial time propagation. Techniques for developing a coarse
solver include reduced spatial resolution, reduced time res-
olution, different basis functions, or even a simplified sys-
tem of equations. While specific mathematical requirements
(apart from speed) are given in [14], the effectiveness of
G is, in practice, determined by testing. As with F', the



coarse solver implements a state advance operator A =
Gar(My).

The notation AkGéF will be employed to distinguish be-
tween states for the coarse/fine solvers G/F, for iteration
k at the end of time slice i. Whenever states are used
as arguments or in an operator statement, use of the ap-
propriate transformation, for example Agi — )\g ; within
)\f’iﬂ = FAt(Aﬁi) is implied and must be carried out be-
fore the propagator is applied. Additionally, the parareal
algorithm requires a method for evaluating convergence and
initial states )\1G,0 and )\fo.

The iterative state update (sometimes also called state
correction) is the defining element of parareal. The update
for the state for the present iteration k, present time slice ¢
is Ak, = /\kGJ- - AkG—l,i + /\ka1,z‘- The notation A is used to
distinguish between a state that is the result of a propagator,
G or F, and the state A that is the result of the linear
combination of states that constitutes the parareal iterate.
It should be noted that Ay ; can be considered as a correction
applied to the state )\kGJ- computed by the coarse propagator
G (for iteration k > 1) before being used by both the coarse
and fine propagator in time slice 7 + 1.

The basic outline for the parareal algorithm is shown in
Fig. 1. In the first iteration of the algorithm, the coarse
propagator G is applied sequentially to the initial state Ao to
compute system state AZVi € [1, N] (lines 4-7). This set of
states is then used to compute (in parallel) a corresponding
set of fine states A\I'Vi € [1, N] (lines 9-15). Note the special
treatment of the first time slice where the given initial state
Ao is used by both the fine and coarse propagators.

This basic execution pattern is maintained in subsequent
iterations, with two main changes. The first time slice to be
processed is determined based on the results of convergence
testing of all slices. The first slice to be processed in itera-
tion k > 1, slice n, is the first slice that fails the convergence
test (line 21). The convergence test can involve comparing
the state computed by the fine propagator in two consecu-
tive iterations ()\5_1,1- and )\kF_Q,i), which means that testing
for convergence can only start in the third iteration. Other
forms of convergence testing can also be used (e.g. com-
paring the results computed by the coarse and fine solvers
for the same time slice). The other main change in the al-
gorithm involves the use of updated (or corrected) coarse
state (line 27 in Fig. 1) as input to subsequent coarse and
fine propagators.

It should be noted that mathematically, at least one slice
will converge per iteration in the parareal algorithm. This
stems from the fact that the first slice is processed by the
“accurate” fine solver, using either the overall initial state Ao,
or the converged accurate solution computed in the previous
iteration. As such, the algorithm is guaranteed to converge
in at most K = N iterations, though in practice it is possible
to achieve much faster conversion with judicious choice of
the coarse propagator.

Direct parallel implementation of the parareal algorithm
results in repeated cycles of low resource utilization (when
the coarse propagator is sequentially applied), followed by
high utilization where the fine propagator is applied in paral-

lel to all time slices (e.g., the “classic” (red) curve in Fig. 4(b)).

This pattern necessitates the choice of coarse propagators
whose execution time T¢ is significantly less than that of
the fine propagator Tr. Based on the particular problem at
hand, ratio Tr /T of 100 or more is needed for the algorithm

1 // First iteration

W N

// Sequential propagation of coarse solution
through all slices
A1 = Gar(ho)
fori=1,..,N—1do
)‘1G,z‘+1 = GAt(A?,z‘)
end
// Fine solves executed in parallel
for i € [0, N — 1] do in parallel
10 if ¢ == 0 then
11 Air1 = Fat(Xo)
12 else
13 My = Far(\F))
14 end
15 end
16
17 // Subsequent iterations
18
19 for k=2,..,N do
20 // Find first unconverged slice
21 N = MaXmck,n] | converge(j) = True Vj <m
22 if n == N then
23 break
24 // Sequential propagation of coarse solution
through all slices
25 )‘E,n = GAt()‘Efl,nfl)
26 fori=n+1,..,N—-1do

© 0O U

27 AkG,ifl = )\kc,iﬂ - Akcfl,ifl + >\£71,if1
28 Mo =GauAF, )

29 end

30 // Fine solves executed in parallel
31 for i € [n, N — 1] do in parallel

32 if i == n then

33 )‘kF,i = FAt(Agfl,ifl)

34 else

35 M= Fad(AFi 1)

36 end

37 end

38 end

Figure 1: The parareal algorithm.

to achieve adequate wall clock speedup. The need to find
coarse solvers that are both fast enough to avoid excessive
waste of resources during the sequential portions of the algo-
rithm, while having enough accuracy to enable convergence
in K << N iterations, where K is the number of iterations
it takes to converge the IV slices, has been the main hurdle
towards more widespread use of the parareal algorithm.

In the following sections, we present two modifications
to the parareal algorithm that recast the computation as
a many-task problem, allowing for increased efficiency in
resource utilization and reduced wall-clock execution time,
opening the door towards exploring the use of slower (and
usually more accurate) coarse solvers.

S. DEPENDENCY-DRIVEN PARAREAL

The classic parareal algorithm presented in Sec. 4 achieves
faster wall clock solution time (relative to the standard solu-
tion using successive application of the “accurate” fine solver),



provided that a coarse solver that is both fast and suf-
ficiently accurate can be found for the problem at hand.
Historically, parareal has been implemented using an MPI-
based multiple-program multiple-data (MPMD) approach
that links all elements of the algorithm (coarse solver, fine
solver, convergence testing, and control flow) into a single
executable. This implementation methodology makes it dif-
ficult to experiment with different coarse solvers. Further-
more, direct implementation of the algorithm makes poor
use of available computational resources, as a significant
fraction of the time is spent in the sequential coarse prop-
agation phase of the algorithm, during which most parallel
resources go idle.

The key to restructuring the parareal algorithm is the real-
ization that each application of the coarse and fine solvers to
any given time slice can be thought of as an independent task,
that can proceed as soon as the inputs on which the task de-
pends are available. For example, in the first iteration, the
two operations AY; = Gar(Xo) and A{; = Far(\o) can
proceed concurrently, since both depend only on initial con-
dition \g. Furthermore, using the same arguments, it is pos-
sible to overlap the execution of fine and coarse solver tasks
from different iterations, provided their input dependencies
are satisfied.

Re-casting the parareal algorithm as a dependency-driven
problem, where tasks are ready to execute as soon as their in-
put dependencies are satisfied, leads to the second element of
the re-structured algorithm, namely the elimination of cen-
tralized control entity and the use of a distributed control
model. Under this model, the logic is split across the three
primary components: the coarse solver, the fine solver, and a
convergence testing component. Each component maintains
a collection of tasks that can execute once their (internal and
external) dependencies are satisfied. In the IPS implemen-
tation, data are stored in files by the generating tasks, and
the asynchronous event service of the IPS is used to signal
the availability of the data that the components depend on.

Fig. 2 shows the dependencies between the different tasks
in dependency-driven parareal. We distinguish between sev-
eral kinds of dependencies used in the algorithm. Data flow
dependencies and state update dependencies constitute the
core of the parareal algorithm. Note that we choose to use
the fine output from two successive iterations to determine
the convergence of any given time slice. In addition, we
choose to express the state update dependency as a precon-
dition for executing a coarse solve task, even though the
data is only needed after the coarse task has finished. This
choice avoids the need to perform the state update twice
for both the dependent fine and coarse tasks, and adds no
additional delays to the algorithm. Convergence status de-
pendencies communicate the decisions of the convergence
component. Note that the coarse and fine tasks for time
slice i, iteration k depend on convergence of both time slice
¢ and ¢ — 1 in iteration k — 1. This added dependency is
used to determine if i is the first slice to run in iteration k,
which then will use the output from the fine solver in slice
i — 1, iteration k — 1 ()\f_Lk_l) instead of the output from
the (not executed) coarse task for time slice ¢ — 1, iteration
k ()\l-G_Lk). This added dependency also has no impact on
overall timing, since the convergence status for slice ¢ can
only be made after the convergence status for all slices j < 4
has been determined in any given iteration.

While some particular details vary among the three com-

Slice

Iteration

—_— —_ ———
Data flow State Update Convergence

S
>

Converged Slice

Figure 2: Dependencies in the parareal algorithm.
G,F,C represent coarse, fine, and convergence test-
ing tasks, respectively. Indices are (iteration, slice).

ponents, they share a general overall structure which is pre-
sented in Fig. 3 for the coarse component. As can be seen
in Fig. 3, the algorithm for a constituent component in
the task-based parareal implementation is composed of four
phases. In the initialization phase (lines 3-8), the compo-
nent subscribes to event topics where the other two com-
ponents publish their status updates. In addition, the first
task to compute )\fl is initialized with its only external de-
pendency Ao. This task is then placed into a FIFO queue
maintained by the component for later execution.

In the task dispatch phase of the algorithm (lines 12-18),
queued tasks that are ready to run are submitted for exe-
cution via the IPS framework. Tasks in the IPS are stan-
dalone MPI programs that are executed, within the IPS’s
batch resource allocation, using the host platform’s native
MPI execution command (e.g., mpiexec). Using the frame-
work’s non-blocking task launch capability, tasks are sub-
mitted until the component runs out of ready tasks, or until
task submission fails due to unavailability of computational
resources. In the latter case, the failed task is re-queued for
future execution.

The component then proceeds to the event processing
phase of the algorithm (lines 21-33) where the event ser-
vice of the IPS is polled for events published to the sub-
scribed topics, and where such events (if any) are processed.
A polling frequency of O(0.1 — 1.0s) is perfectly adequate
to avoid delays, as tasks typically run for seconds to hours,
while minimizing the load due to polling. Between polls, the
component process itself sleeps, waiting for computational
tasks it has launched to complete. The ALL CONVERGE event
published by the convergence component signals the termi-
nation of the algorithm. Other events signal the termination
of tasks executed by the other components (fine tasks or con-



// Phase 1 : Initialization

subscribe (FINE EVENTS)
subscribe (CONVERGE EVENTS)
taskQueue = Queue ()

taski,1 = newTask()
satisfyDependency (taski 1, Ao)
addTask (taskQueue, taski,1)

WU N

—
(=

while not done do
// Phase 2: Task dispatch
12 for task € taskQueue do
13 if launchTask(task) == success then
14 continue
15 else
16 break
17 end
18 end
19
20 // Phase 3: Event Processing
21 events = pollTopics()
22 for e € events do

-
-

23 if e== ALL CONVERGE then

24 done = TRUE

25 break

26 else if e ==TASK FINISHED then
27 data = e[task_output]

28 for task € dependent tasks do
29 satisfyDependency (task, data)
30 if readyToRun(task) then

31 addTask (taskQueue, task)
32 end

33 end

34

35 // Phase 4: Completed tasks processing
36 finishedTasks = checkTasks (runningTasks)
37 for task € finishedTasks do

38 publish(COARSE EVENTS, task)
39 data = task[output]

40 for deptask € dependent tasks do

41 satisfyDependency (deptask, data)
42 if readyToRun(deptask) then

43 addTask (taskQueue, deptask)
44 end

45 end

46 end

Figure 3: The dependency-driven parareal algo-
rithm (coarse solver).

vergence check tasks). In addition to a distinguishing type,
these events carry a payload which describes the context of
the event. In the case of convergence events, that payload
will contain the time slice and iteration indices of the task,
along with the result of the convergence test. In the case
of fine task completion events, the payload will contain the
indices of the task, along with file system path to any data
generated by the task that is used in the parareal algorithm.

Data from external events are used to update the depen-
dencies of the component’s own local tasks. A task is ready
to run, and is placed in the ready queue, once all its de-

pendencies are satisfied (as reported by the readyToRun()
method and depicted in Fig. 2). Note that for the conver-
gence component, tasks may not be computationally inten-
sive, hence can be directly executed by the component with
no need for scheduling and launching using the framework.
The readyToRun() method also verifies whether the task ac-
tually needs to be run. Time slices beyond the simulation’s
configuration, and those which have converged before all de-
pendencies have been satisfied do not need to be executed.

The final phase in the algorithm (lines 36-46) involve the
processing of tasks that had been submitted during the task
dispatch phase, and which have finished execution. The out-
put from such tasks is used to update the input dependencies
of other local tasks. Furthermore, events are published to
the appropriate topic signaling the termination of the task,
along with a payload that contains the task indices and task
output that is needed by the other components in the sim-
ulation.

While the classic formulation of parareal serializes the
coarse solve, the dependency-driven approach allows com-
plete flexibility to execute any task for which the previous
dependencies have been satisfied, on any available resources.
This effectively eliminates the sequential bottleneck of the
coarse propagation by allowing tasks from multiple time
slices and multiple iterations to execute concurrently. As
a result, resource utilization can be significantly improved,
and the wall-clock time to solution significantly reduced
(e.g., the “dependency-driven” (blue) curve in Fig. 4(b)).

6. MOVING WINDOW PARAREAL

In both the classic parareal algorithm, and the dependency-
driven formulation, system state is calculated for all non-
converged time slices in any given iteration up to and includ-
ing the last time slice, N. In the early iterations (k << K),
this aspect of the algorithm results in the fairly inaccurate
coarse solver being used to compute a relatively large num-
ber of provisional system states whose “quality” rapidly de-
teriorates the further it is away from the first non-converged
time slice in any given iteration (i.e. from the last known ac-
curate state). This means that work performed in the upper
left triangle in Fig. 2 tends to contribute little to the overall
solution, which manifests as large error values (Fig. 4(a)).
These calculations contribute to the resources consumed by
the algorithm, while contributing little to the rate of con-
vergence.

To address this problem, we introduce a moving window
variation of the parareal algorithm that aims to reduce the
overall resource utilization of the algorithm by not execut-
ing tasks that contribute little or nothing to the speedup.
In this formulation, a window size of Ny is chosen, such that
No < N, and the first Ny non-converged slices are processed
during each iteration. (Thus, when Ny = N it is the same
as the original dependency-driven algorithm.) As slices con-
verge, new slices are added, maintaining the window size,
until the edge of the window reaches slice N. The differ-
ence may be understood visually by comparing Fig. 4(a) to
Fig. 5(a). The diagonal band in Fig. 5(a) represents the
window, which advances as slices converge. The white area
in the upper left are slices not evaluated in the windowed
variant, or those that do not have enough fine solver results
to compare in the current iteration.

In the dependency-driven formulation, this variant amou-
nts to an extension of the logic of testing for tasks beyond the



system size to allow for a different set of active slices in each
iteration. The other noteworthy change involves extending
the special processing for coarse and fine tasks in the first
iteration to those tasks that correspond to time slices freshly
added during any iteration k > 1.

It should be noted that choosing the right value for the
window size Ny is crucial to achieving the right balance be-
tween efficient resource utilization and speedy convergence.
A too large a value for Ny increases the likelihood that tasks
will be executed with no meaningful contribution to the
speedup. Choosing a too small a value for Ny reduces the
“effective depth” of the algorithm where successive parareal
state updates for the same time slice improves the accuracy
of the state produced by the coarse solver to speed conver-
gence. In the limit, with Ny = 1, the algorithm reduces to
sequential application of the fine solver, with no speedup.

7. RESULTS AND ANALYSIS

In order to illustrate the performance and cost character-
istics of the different parareal approaches described above,
we have applied them to a fusion plasma turbulence prob-
lem using the BETA code [19]. This same code had previ-
ously been used in a monolithic MPI-based implementation
of the classic parareal algorithm by Samaddar, Newman,
and Sanchez [22], which facilitated verification of the IPS
implementation.

Both the coarse and fine solvers utilized the fast Fourier
transform-based BETA code. However the fine solver was
configured to use the VODPK [5] adaptive integrator, while
the coarse solver used 4th-order Runge-Kutta integration,
and also used a reduced number of harmonics. The simula-
tion has been divided into 160 time slices.

The first set of results, comparing the classical and depen-
dency-driven variants were run on a Cray XT5 at the Uni-
versity of Alaska consisting of 432 8-core nodes (“Pingo”).
Both the coarse and fine solvers were run with 16 cores per
task. Mean execution times were 3.45 s for the coarse task
and 223.15 s for the fine. Because of job size limitations on
this system, these runs were carried out on 128 nodes (1024
cores), limiting the concurrency to a maximum of 64 tasks
compared to the theoretical maximum of 160 (the number
of slices).

Fig. 4(a) depicts the convergence of the parareal algorithm
in 14 iterations (the same for both formulations). However
Fig. 4(b) illustrates the difference in resource utilization and
time to completion for the two variants. The processor uti-
lization of the classic version shows a cyclical pattern as
the algorithm alternates between the sequential coarse solve
(low utilization) and the parallel fine solves (high utiliza-
tion), converging all 160 slices in 14330.81 s, with a total
cost of 4076.32 CPU-hours and an average resource utiliza-
tion of 31.6%. The dependency-driven version, on the other
hand, shows generally high utilization as the coarse and fine
solves overlap, completing in 6379.66 s, with a total cost of
1814.66 CPU-hours and an average resource utilization of
70.56%.

Both the classic and dependency-driven versions of the al-
gorithm perform the same amount of work (the same num-
bers of coarse and fine tasks), but the dependency-driven
variant performs it more efficiently because it exposes more
parallelism. The windowed variant, on the other hand, re-
duces the total amount of work by limiting the number of

Table 1: Summary of Moving Window Parareal
Runs and Simulations

Window Observed  Simulated
Cores Size Iterations Time (s)  Time (s)
160 20 22 5293.08 5433.8
160 30 18 5127.39 4939.2
240 30 18 4653.46 4742.4
160 40 16 5301.94 5205.2
256 160 12 7696.08 7000.8

slices evaluated in each iteration. Fig. 5(a) illustrates the
convergence heat map for a window size of 40 slices.

Fig. 5(b) depicts the resource utilization of the moving
window dependency-driven parareal implementation for a
40-slice window. Because the window size limits the amount
of parallelism available, this job was run on 160 cores, al-
lowing 20 concurrent tasks. We must note that the timings
in Fig. 5(b) (and Table 1) are not directly comparable to
those in Fig. 4(b). During this work, the Pingo system was
repurposed for classified use, and the windowing runs were
carried out on a 150-node Linux cluster at the University of
Alaska (“Pacman”) with a main compute partition made up
of 12- and 16-core nodes (1936 cores). Additionally, BETA
was run on 8 cores rather than 16 on this system.

Table 1 illustrates the trade-off between window size and
the number of iterations required to converge,! including the
160-slice window, which, as discussed in Sec. 6, is merely
another way of denoting the dependency-driven algorithm
without the limiting window. As expected, the number
of iterations required for convergence increases as the win-
dow narrows. This is because the tasks outside the window
(which are not run in the windowed version) do make some
contribution to convergence. For the same resource alloca-
tion, the run times vary little for the different window sizes,
but all are significantly faster than the full (160-slice) algo-
rithm, even though they were run on fewer nodes.

To get a better understanding of the performance and cost
trade-offs of the windowed parareal, we employed the IPS
Resource Usage Simulator (RUS) [10], extended to model
the various parareal formulations presented here. Task exe-
cution times for the simulations were sampled from probabil-
ity distributions that best matched the observed timings on
Pacman. We used the actual observed convergence pattern
for the simulations because although an empirical conver-
gence model has been developed for the full problem [22],
that model has yet to be modified to account for the use of
a moving window of time slices. The final column of Table 1
shows the results of RUS simulations of the actual Pacman
runs.

We then used RUS to model a larger range of resource allo-
cations ranging from 8 to 1024 processors, considering both
the solution time and the total cost (CPU-hours). Fig. 6(a)
shows the timings as a function of the number of nodes al-
located. The serial solution (160 successive invocations of

'Due to the nonlinear and chaotic nature of the plasma tur-
bulence problem modeled using the BETA code, the number
of iterations to convergence may vary, as seen in the results
from Pingo and Pacman for the 160-slice dependency-driven
algorithm. The results presented here have been verified by
the authors as sound.
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the fine solver) and the classic parareal implementation are
shown for reference, along with the dependency-driven ver-
sions with 20-, 40-, and 160-slice windows. The 20-slice and
40-slice windowed algorithms are significantly faster than
the full (160-slice) algorithm initially, due to the reduced
work. However they soon exhaust the parallelism available
due to the window’s limitations, and flatten out near 160 and
320 cores, respectively. The full 160-slice algorithm provides
more parallelism, and so eventually becomes faster than the
smaller windows, but for modest resource allocations, the
reduced work of the windowed approach provides significant
benefits in the run time. In this region, the particular choice
of window size is less significant. It is also worth noting that
all versions of parareal quickly become faster than the serial
solution, starting at 48-96 cores.

Fig. 6(b) shows the cost of the approaches. First, we
must note that all of the parareal variants are significantly
more expensive than the serial version—the whole point of

parareal is to trade resources (total cost) for solution time.
Next, we observe that the classic parareal is significantly
more expensive than any of the dependency-driven versions
because the sequential treatment of the coarse solve makes
it less efficient. Finally, we see that the smaller windows are
much less expensive than the full 160-slice algorithm because
of the reduced work. However, as observed in the timings,
when the windowed algorithm exhausts the available paral-
lelism, its costs start to rise rapidly.

Taken together, these two plots showcase the efficiency af-
forded by using the dependency-driven moving window ap-
proach to parareal, when executed in a flexible environment
such as the IPS. The algorithm provides “knobs” to allow the
user to select the set of parameters that satisfies both the
specific run time and resource utilization constraints that
govern the modern high-end scientific computing commu-
nity.
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8. SUMMARY AND FUTURE WORK

In this paper, we have presented a novel dependency-
driven formulation of the parareal algorithm for paralleliza-
tion of time-dependent PDE problems in the temporal do-
main. This approach to the algorithm was inspired by many-
task computing concepts and implemented in the Integrated
Plasma Simulator, which supports both many-task style com-
putations and more traditional HPC simulations. Depende-
ncy-driven parareal exposes more parallelism than the “clas-
sic” formulation, thus allowing better utilization of resources
allocated to the simulation, and faster completion. For a
plasma turbulence simulation, we demonstrated improve-
ments of more than a factor of two in both average resource
utilization and time to completion.

We also described a variant of parareal which uses a mov-
ing window to limit the number of time slices evaluated
in each iteration of the algorithm. This approach avoids
treating slices that are far from convergence and therefore
contribute little to the overall solution. Experiments show
that the windowed dependency-driven parareal easily offers
a 30% reduction in time to solution and even larger reduc-
tions in total cost over the full (non-windowed) version. Us-
ing a simulator to explore a broader range of resource allo-
cations, we see that windowed parareal can be very effective
compared to the full algorithm for modest resource alloca-
tions. Once the allocation is large enough to exhaust the
available parallelism, which is limited by the window size,
the benefits plateau and eventually, the full algorithm will
beat the windowed, both in terms of time to solution and
total cost.

These formulations of parareal offer significant benefits to
researchers seeking to expose more parallelism in their sim-
ulations in order to take advantage of the rapidly increasing
core and processor counts on today’s massively parallel sys-
tems. Because we have eliminated the sequential bottleneck
of the classic parareal, the success of the method is much
less dependent on the ratio of execution times Tr/Tg be-
ing large. This opens the door for the exploration of coarse

solvers which are much more accurate than those typically
used today, which have the potential to significantly accel-
erate convergence. We expect this to be the most significant
area of future work following this paper.
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